000149833 001__ 149833
000149833 005__ 20250210083426.0
000149833 0247_ $$2doi$$a10.1098/rsif.2013.0866
000149833 0248_ $$2sideral$$a89135
000149833 037__ $$aART-2014-89135
000149833 041__ $$aeng
000149833 100__ $$0(orcid)0000-0002-8503-9291$$aCilla, M.
000149833 245__ $$aMathematical modelling of atheroma plaque formation and development in coronary arteries
000149833 260__ $$c2014
000149833 5060_ $$aAccess copy available to the general public$$fUnrestricted
000149833 5203_ $$aAtherosclerosis is a vascular disease caused by inflammation of the arterial wall, which results in the accumulation of low-density lipoprotein (LDL) cholesterol, monocytes, macrophages and fat-laden foam cells at the place of the inflammation. This process is commonly referred to as plaque formation. The evolution of the atherosclerosis disease, and in particular the influence of wall shear stress on the growth of atherosclerotic plaques, is still a poorly understood phenomenon. This work presents a mathematical model to reproduce atheroma plaque growth in coronary arteries. This model uses the Navier–Stokes equations and Darcy's law for fluid dynamics, convection–diffusion–reaction equations for modelling the mass balance in the lumen and intima, and the Kedem–Katchalsky equations for the interfacial coupling at membranes, i.e. endothelium. The volume flux and the solute flux across the interface between the fluid and the porous domains are governed by a three-pore model. The main species and substances which play a role in early atherosclerosis development have been considered in the model, i.e. LDL, oxidized LDL, monocytes, macrophages, foam cells, smooth muscle cells, cytokines and collagen. Furthermore, experimental data taken from the literature have been used in order to physiologically determine model parameters. The mathematical model has been implemented in a representative axisymmetric geometrical coronary artery model. The results show that the mathematical model is able to qualitatively capture the atheroma plaque development observed in the intima layer.
000149833 536__ $$9info:eu-repo/grantAgreement/ES/DGA/B137-09
000149833 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000149833 590__ $$a3.917$$b2014
000149833 591__ $$aMULTIDISCIPLINARY SCIENCES$$b7 / 57 = 0.123$$c2014$$dQ1$$eT1
000149833 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000149833 700__ $$0(orcid)0000-0002-0664-5024$$aPeña, E.$$uUniversidad de Zaragoza
000149833 700__ $$0(orcid)0000-0002-8375-0354$$aMartínez, M. A.$$uUniversidad de Zaragoza
000149833 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000149833 773__ $$g11, 90 (2014), 20130866 [16 pp.]$$pJ. R. Soc. Interface$$tJournal of the Royal Society Interface$$x1742-5689
000149833 8564_ $$s12168922$$uhttps://zaguan.unizar.es/record/149833/files/texto_completo.pdf$$yPostprint
000149833 8564_ $$s2535848$$uhttps://zaguan.unizar.es/record/149833/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000149833 909CO $$ooai:zaguan.unizar.es:149833$$particulos$$pdriver
000149833 951__ $$a2025-02-10-08:31:06
000149833 980__ $$aARTICLE