000149842 001__ 149842
000149842 005__ 20250128160610.0
000149842 0247_ $$2doi$$a10.1098/rsif.2019.0313
000149842 0248_ $$2sideral$$a115012
000149842 037__ $$aART-2019-115012
000149842 041__ $$aeng
000149842 100__ $$0(orcid)0000-0001-7620-3355$$aEscuer, Javier$$uUniversidad de Zaragoza
000149842 245__ $$aMathematical modelling of the restenosis process after stent implantation
000149842 260__ $$c2019
000149842 5060_ $$aAccess copy available to the general public$$fUnrestricted
000149842 5203_ $$aThe stenting procedure has evolved to become a highly successful technique for the clinical treatment of advanced atherosclerotic lesions in arteries. However, the development of in-stent restenosis remains a key problem. In this work, a novel two-dimensional continuum mathematical model is proposed to describe the complex restenosis process following the insertion of a stent into a coronary artery. The biological species considered to play a key role in restenosis development are growth factors, matrix metalloproteinases, extracellular matrix, smooth muscle cells and endothelial cells. Diffusion-reaction equations are used for modelling the mass balance between species in the arterial wall. Experimental data from the literature have been used in order to estimate model parameters. Moreover, a sensitivity analysis has been performed to study the impact of varying the parameters of the model on the evolution of the biological species. The results demonstrate that this computational model qualitatively captures the key characteristics of the lesion growth and the healing process within an artery subjected to non-physiological mechanical forces. Our results suggest that the arterial wall response is driven by the damage area, smooth muscle cell proliferation and the collagen turnover among other factors.
000149842 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/BES-2014-069737$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2016-76630-C2-1-R
000149842 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000149842 590__ $$a3.748$$b2019
000149842 591__ $$aMULTIDISCIPLINARY SCIENCES$$b18 / 70 = 0.257$$c2019$$dQ2$$eT1
000149842 592__ $$a1.694$$b2019
000149842 593__ $$aBiochemistry$$c2019$$dQ1
000149842 593__ $$aBioengineering$$c2019$$dQ1
000149842 593__ $$aBiotechnology$$c2019$$dQ1
000149842 593__ $$aBiomedical Engineering$$c2019$$dQ1
000149842 593__ $$aBiophysics$$c2019$$dQ1
000149842 593__ $$aBiomaterials$$c2019$$dQ1
000149842 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000149842 700__ $$0(orcid)0000-0002-8375-0354$$aMartínez, Miguel A.$$uUniversidad de Zaragoza
000149842 700__ $$aMcGinty, Sean
000149842 700__ $$0(orcid)0000-0002-0664-5024$$aPeña, Estefanía$$uUniversidad de Zaragoza
000149842 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000149842 773__ $$g16, 157 (2019)$$pJ. R. Soc. Interface$$tJournal of the Royal Society Interface$$x1742-5689
000149842 8564_ $$s770578$$uhttps://zaguan.unizar.es/record/149842/files/texto_completo.pdf$$yPostprint
000149842 8564_ $$s1383199$$uhttps://zaguan.unizar.es/record/149842/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000149842 909CO $$ooai:zaguan.unizar.es:149842$$particulos$$pdriver
000149842 951__ $$a2025-01-28-14:57:05
000149842 980__ $$aARTICLE