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Abstract

This paper describes GimmeHop, a beer recommender system for Android mobile de-

vices using fuzzy ontologies to represent the relevant knowledge and semantic reasoners

to infer implicit knowledge. GimmeHop use fuzzy quantifiers to deal with incomplete

data, fuzzy hedges to deal with the user context, and aggregation operators to manage user

preferences. The results of our evaluation measure empirically the data traffic and the running

time in the case of remote reasoning, the size of the ontologies that can be locally dealt

with in a mobile device in the case of local reasoning, and the quality of the automatically

computed linguistic values supported in the user queries.
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1. Introduction

In our daily lives, we typically use a significant number of mobile applications (apps),

for example to receive updated information about the weather or the traffic. This is possible

because of the ever increasing computing capabilities of mobile devices, and the almost

pervasive connectivity that the current wireless networks provide us with.

Because semantic technologies have proved to be very useful in many applications [4],

enhancing such applications to enjoy the advantages of semantic technologies has been

suggested. In particular, ontologies have become a de-facto standard for knowledge repre-

sentation. Using ontologies for the knowledge representation of smart apps will have several
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benefits, such as improving knowledge sharing, reusing and maintenance, decoupling of the

knowledge from the application, or discovering implicit knowledge.

Semantic reasoners are software implementations providing an automatic discovery of

implicit knowledge that can be logically inferred from ontology axioms. This is possible

because ontology languages, such as the the standard language for ontology representation

OWL 2 (Web Ontology Language) [11], have logical foundations. To do semantic reasoning

on mobile devices, it is possible to use local, remote, or hybrid approaches [3]. Unfortunately,

the use of semantic reasoners in apps is still rather challenging [5, 58].

While ontologies and semantic web technologies have proved to be very useful in many

applications, there are many real world domains with imprecise and vague knowledge. In

such scenarios, fuzzy extensions of the ontologies with elements of fuzzy logic and fuzzy set

theory have been explored [60]. This way, for example, it would be possible to consider places

which are close to the current user location, obtained using the sensors of the mobile device.

However, all the previous techniques have been explored in an isolated way. Unfortu-

nately, the integrated management of ontologies, fuzzy logic, and semantic reasoners on

mobile devices has not received enough attention. In particular, semantic reasoning is usually

not performed on the local device but on an external server, requiring good connectivity and

leading to some privacy risks. In this paper, we describe an application for mobile devices

combining fuzzy logic and semantic reasoners. In particular, we present a semantic beer

recommender system called GimmeHop, aiming at providing users with good recommen-

dations about beers. We think that this kind of applications is particularly interesting these

days: more foreign beers are imported by many stores and bars, the number of artisan beers

is growing significantly, and users are willing to try new beer styles, thanks in large part to

to the phenomenon of home-brewing.

An important issue when managing big amounts of real data is that quite often there is

missing information, i.e., entities for which the values of some attributes are unknown. In

this paper, we use quantifier-guided aggregation [56] to provide recommendations even in

cases of incomplete information.

The remaining of this paper is organized as follows. Section 2 provides some background

on fuzzy logic and fuzzy ontologies. Then, Section 3 describes our recommender system,

paying special attention to the use of fuzzy ontologies and the management of data on mobile
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devices. Next, Section 4 reports an evaluation of the quality of the linguistic labels and the

recommendations, but also of the performance of the system. A detailed comparison our

contribution with other previous work can be found in Section 5. Finally, Section 6 sets out

some conclusions and ideas for future work.

2. Background

This section overviews some basics notions on fuzzy logic (Section 2.1) and fuzzy

ontologies (Section 2.2) that will be used in the rest of this paper. Readers who are familiar

with these subjects might jump ahead directly to the next section.

2.1. Fuzzy Sets and Fuzzy Logic

Fuzzy set theory and fuzzy logic were proposed by L. A. Zadeh [59] to manage imprecise

and vague knowledge. While in classical set theory elements either belong to a set or not,

in fuzzy set theory elements can belong to some degree. More formally, let X be a set of

elements called the reference set. A fuzzy subset A of X is characterized by a membership

function µA(x), or simply A(x), which assigns to every x∈X a degree of truth, measured as

a value in a truth space, usually [0,1].

As in the classical case, 0 means no-membership and 1 full membership, but now a value

between 0 and 1 represents the extent to which x can be considered as an element of the

fuzzy set A. To distinguish between fuzzy sets and classical (non-fuzzy) sets, we refer to the

latter as crisp sets.

Fuzzy logics provide compositional calculi of degrees of truth. The conjunction, disjunc-

tion, complement and implication operations are performed in the fuzzy case by a t-norm

function ⊗, a t-conorm function ⊕, a negation function 	 and an implication function⇒,

respectively. For a formal definition of these functions we refer the reader to [24]. Examples

of t-norm and t-conorm are the minimum and the maximum, respectively.

Fuzzy modifiers (or fuzzy hedges) apply to fuzzy sets to change their membership func-

tion. Popular examples include very or moreOrLess. Formally, a modifier is a function

fm : [0,1]→[0,1]. For example, For instance, we can use the modifier very(x)= x2 and apply

it to the fuzzy set Young, so that for each individual x we can be compute the degree of being
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very young as µVeryYoung(x)= (µYoung(x))2. Two notable families or fuzzy modifiers are in-

creasing, if fm(x)≥ x, and weakening, if fm(x)≤ x. very is an example of weakening modifier.

Other popular fuzzy operators are Aggregation Operators (AOs), mathematical functions

that are used to combine different pieces of information (typically, membership degrees to

fuzzy sets) [50]. Given a domain D (such as the reals), an AO of dimension n is a mapping

@ :Dn→D. For us, D= [0,1]. Thus, an AO aggregates n values x1,x2,...,xn of n different

criteria. Often, an AO @ is parameterized with a vector of n weights W = [w1,...,wn] such

that wi∈[0,1] and
∑n

i=1wi =1. In that case the AO is denoted as @W .

A classical example of AO is the weighted mean (WMEAN) or weighted sum, defined as

@ws
W (x1,...,xn)=

n∑
i=1

wixi . (1)

A very important family of AOs are the Ordered Weighted Averaging (OWA) opera-

tors [54]. OWA operators provide a parameterized class of mean type AOs. Formally, given

a weighting vector W, an OWA operator of dimension n is an AO such that:

@owa
W (x1,...,xn)=

n∑
i=1

wixσ(i) (2)

where σ is a permutation such that xσ(1) ≥ xσ(2) ≥ ··· ≥ xσ(n), i.e., xσ(i) is the i-th largest

of the values x1,...,xn to be aggregated. A fundamental aspect of these operators is the

reordering step. In particular, a weight wi is not associated with a specific argument but

with an ordered position of the aggregate. As a result, the OWA operator is non-linear. By

choosing different weights, OWA operators can implement different AOs, such as arithmetic

mean, k-th maximum, k-th minimum, median or order statistic, among others. However, the

weighted sum cannot be represented as an OWA operator.

OWA operators verify internality, i.e., min(x1,...,xn)≤@(x1,...,xn)≤max(x1, ..., xn). Since

the two extreme cases of OWA operators correspond to the largest t-norm (the minimum) and

the smallest t-conorm (maximum), the class of OWA operators nicely “fills the gap” between

the intersection and the union [41].

A common problem when working with OWA operators is the definition of the weights.

A very popular solution is to rely on the so-called quantifier-guided aggregation [56].

Before addressing the problem of computing the weights, let us briefly recall the notion of

quantifiers. Classical logic has two quantifiers, the universal ∀ and the existential ∃ quantifier.
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These are extremal ones among several other linguistic quantifiers such as most, few, about

half, some, many, etc. Quantifiers can be seen as absolute or proportional [24]; we will only

consider the proportional ones. A proportional fuzzy quantifier Q : [0,1]→[0,1] is a fuzzy

subset such that for each r∈[0,1], the membership grade Q(r) indicates the degree to which

the proportion r satisfies the linguistic quantifier that Q represents. We will consider the

Regular Increasing Monotone (RIM) quantifiers [55], that satisfy the boundary conditions

Q(0) = 0 and Q(1) = 1, and are monotone increasing, i.e., Q(x1) ≤ Q(x2) when x1 ≤ x2.

Essentially, these quantifiers are characterized by the idea that as the proportion increases,

the degree of satisfaction does not decrease.

A RIM Q can be used to define an OWA weighting vector WQ of dimension k, where

each weight is computed as follows:

wi =Q(
i
n

)−Q(
i−1
n

) (3)

Note that indeed wi∈[0,1] and
∑

iwi =1. For example, in Figure 1, most and almost all are

RIM quantifiers, but about half is not.

Figure 1: Some examples of fuzzy quantifiers

We propose to use right-shoulder (Figure 2 (d)), linear (Figure 2 (e)), and power functions

(Figure 2 (f)) to build RIMs.

2.2. Fuzzy Ontologies

An ontology is an explicit and formal specification of the concepts, individuals and

relationships that exist in some area of interest, created by defining axioms that describe the
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properties of these entities [43]. Ontologies can provide semantics to data, making knowledge

maintenance, information integration, and reuse of components easier.

In several real world domains, knowledge is imprecise and vague, and classical ontolo-

gies are not enough. As a solution, fuzzy ontologies extend classical (crisp) ontologies by

considering several notions of fuzzy set theory and fuzzy logic [45, 29].

The elements of a fuzzy ontology are the following ones:

• Fuzzy concepts (or classes) denote unary predicates and are interpreted as fuzzy sets

of individuals, such as YoungHuman. Concepts can be simple (atomic) or complex,

built up using different types of concept constructors depending on the expressivity

of the ontology language.

• Individuals denote domain elements or objects. For example, luke and darthVader.

• Fuzzy properties (or roles) denote binary predicates relating a pair of elements and are

interpreted as fuzzy binary relations. There are two types of properties: object proper-

ties link a pair of individuals, whereas data properties relate an individual with a data

value. For instance, hasFriend relates two human individuals and is an object property,

while hasAge links an individual with an integer number and is a data property.

• Fuzzy datatypes denote elements that do not belong to the represented domain, but

rather to a different domain that is already structured and whose structure is already

known to the machine. Crisp data values can be, for example, numerical values, textual

values, or dates. Fuzzy datatypes generalize crisp values by using a fuzzy membership

function. For example, instead of considering the crisp value 18, now it is possible to

consider about18, defined using a triangular function. In this paper, we will restrict to

some fuzzy datatypes defined over a subinterval of the rational numbers. In particular,

we will consider trapezoidal (Figure 2 (a)), triangular (Figure 2 (b)), left-shoulder

(Figure 2 (c)), and right-shoulder (Figure 2 (d)) membership functions.

• Fuzzy axioms are formal statements involving these ontology elements, like a recipe

that defines how to combine the previous ingredients to represent the knowledge of

some particular domain. A novelty of fuzzy ontologies is that fuzzy axioms express

statements that are not either true or false but hold to some degree. The available types
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(a) (b) (c)

(d) (e) (f)

Figure 2: (a) Trapezoidal function; (b) Triangular function; (c) Left-shoulder function; (d) Right shoulder function;

(e) Linear function; (f) Power function

of axioms depend on the expressivity of the ontology language, but some typical types

are:

– Concept assertions state the membership of an individual to a class. For example,

we can state that luke belongs to the concept of YoungHuman with at least

degree 0.95, meaning that he is rather young.

– Object property assertions describe the relation between two individuals, e.g.,

one can state that luke and darthVader are related via hasFather.

– Data property assertions describe the relation between an individual and a data

value. For example, it is possible to express that Luke’s age is 19 by relating

luke and the number 19 via hasAge.

– Subclass axioms, stating that a concept is more specific (a subclass) of another

one. For example, Woman is more specific than Human.

The interested reader can find a complete list of the crisp OWL 2 concepts, properties, and

axioms in [11]. Although there is not a standard fuzzy ontology language, Fuzzy OWL 2 [6]
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is a popular choice. The language extends OWL 2 ontologies [11] with OWL 2 annotations

encoding fuzzy information using an XML-like syntax. The key idea of this representation

is to start with an OWL 2 ontology created as usual, with a classical ontology editor. Then,

it is possible to annotate the elements to represent the features of the fuzzy ontology that

OWL 2 cannot directly encode. In particular, it is possible to annotate fuzzy axioms by

adding a degree of truth, to represent fuzzy datatypes, and to define specific elements of fuzzy

ontologies (such as fuzzy modifiers or aggregated concepts). This language is supported by

some fuzzy ontology reasoners such as fuzzyDL [7].

3. GimmeHop System

This section describes our beer recommender system. Section 3.1 starts by describing

the fuzzy ontology. Then, Section 3.2 describes the architecture, used technologies, offered

services, algorithms, user interface and some relevant implementation details.

3.1. A Fuzzy Beer Ontology

Our fuzzy ontology is able to represent both types and concrete examples of beers. The

ontology is distributed in two files, with a general schema including definition of the types of

beers and the properties, and another file that populates the schema ontology with individuals

(beers) and their attribute values. While the schema can be reused, the license of the beer data

does not currently make it possible to distribute the instances (a third-party beer company

owns the data). On the contrary, we envision that each bar or beer store interested on the

app can populate the schema ontology only with the relevant beers that are available in their

particular case.

Our ontology is encoded in OWL 2 EL [51], one of the tractable profiles of OWL 2, and

was developed using the Protégé editor [34]. The ontology schema has 411 axioms (215

logical axioms), 121 classes, 5 object properties, 14 data properties, 10 fuzzy datatypes, and

22 country individuals. There are two additional files populating the schema with individuals

(we will give more details later on). The ontology architecture is illustrated in Figure 3.

Classes. Figure 4 (a) shows the main classes of the ontology. The most important ones

form a hierarchy of beer types, grouped in 5 main families: Ale, Lager, Sour, Wheat, and
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Figure 3: Ontology schema and two instance files

Specialty. These classes are abstract and cannot have instances, but have subclasses (that

can be abstract or not). Specialty includes beers with unusual grains, fruits, spices, herbs,

etc. The depth of the subontology with the beer types is 5.

There are also some classes representing a brewery (Brewery), a location (Country), a

currency (Currency) to specify the beer price, a won award (Award), and a hierarchy of

ingredients (Ingredient).

Our ontology imports DBpedia [27] and uses its list of countries (e.g., dbpedia:Bel-

gium)1 and its list of currencies (e.g., dbpedia:Euro). Ingredients of the ontology reuse the

categorization in an existing ontology about beers (described in Section 5).

Properties. The main properties of the ontology are depicted in Figure 4 (b). Our 5 object

properties link instances of Beer or Brewery with instances of Country (locatedAt), and

instances of Beer with instances of Award (wonAward), Brewery (brewedBy), Currency

(usesCurrency), and Ingredient (hasIngredient). Note that we do not represent their inverse

properties, as they are not allowed in OWL 2 EL [51].

Data properties make it possible to represent different beer attributes:

• ABV (Alcohol By Volume) and IBU (International Bitterness Units) denote alcohol

and bitterness degrees, respectively, measured in [0,100] and [0,1000], respectively.

1Note that some of them do not belong to the class dbpedia:Country, such as dbpedia:Scotland.
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Figure 4: Ontology representation, a) classes and b) data and object properties.

• color is a numerical value representing the color in Standard Reference Method (SRM)

units, measured in [0,40].

• turbidity is a numerical value representing how hazy a beer is in European Brewery

Convention (EBC) units, measured approximately in [0,200].

• aroma, flavor, and foam represent some information using string values. These prop-

erties are not functional so that several values can be attached to a single beer. For

example, we can have a data property assertion stating that it smells like bananas and

another one stating that it states like clove.

• fermentation has the following possible values: top, bottom, any, wild, and aged.

• era indicates if the beer was brewed in a modern style, in a traditional style, or if

belongs to a historical period and is no longer available.

• price is a numerical property representing the cost of the beer (recall that the object

property currency indicates the semantics of the number).
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• overallRating and styleRating are numerical values in [0,100] representing the per-

centile of the rating, compared to all the beers or to the beers of the same style,

respectively, given by the community of users.

• industrial is a Boolean property (true indicates a industrial beer, false an artisan one).

• img is the path of an image file with a picture of the beer that could be displayed in

the GUI.

In the future, the ontology could be extended with a hierarchy of classes representing aromas,

flavors, and foam types; and replacing the data properties with object properties. However,

because our aim is to manage fuzzy datatypes and there is no easy way to represent those

attributes using fuzzy membership functions defined over a a numerical scale, we have left

it as future work.

Fuzzy datatypes. The ontology stores precise values using data property assertions (for

instance, that the alcohol degree of Guinness Draught is 4.2), but also includes 10 fuzzy

datatypes, 5 associated to the alcohol and 5 associated to the bitterness. There are more data

properties to which one could also associate fuzzy datatypes, such as price, color, or turbidity.

However, as we will discuss later, our beer data did not include that information and hence

they were not considered in the current version. Furthermore, we chose not to define fuzzy

datatypes for the ratings because in a recommender system the user is interested in items

with the best possible rating, as long as they satisfy his/her requirements.

To compute the linguistic values of the data properties of an ontology, we used Datil [22]. 2

Datil is a software implementation of an algorithm to learn fuzzy datatypes for fuzzy on-

tologies based on the values of the data properties. A clustering algorithm provides a set of

centroids, which are then used as the parameters to build fuzzy membership functions par-

titioning the domain of a values of the data property. Datil implements several unsupervised

clustering algorithms such as k-means [28], fuzzy c-means [2], and mean shift [9], and sup-

ports different input formats, including OWL 2 ontologies. Examples of fuzzy membership

functions built after the centroids (denoted by broken lines) are shown in Figure 9.

2http://webdiis.unizar.es/˜ihvdis/Datil
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After our first experiments, we noticed that the results were counter-intuitive because

of the existence of beers with very high alcohol values. Figure 5 shows the number of beers

for each alcohol degree (with 1 digit precision). We can see that there are several beers with

more than 20 degrees; one of them (Schorschbräu Schorschbock) with 57.7◦. A consequence

of having such values is that the centroids used to build the fuzzy membership functions are

much higher than the expected values for a human expert. For this reason, we extended Datil

with a new feature: it is now possible to specify a minimal and a maximal threshold (denoted

Θ1 and Θ2, respectively), so that lower and greater values, respectively, are ignored for the

clustering algorithm. In Section 4.1 we will report some experiments to select the thresholds

Θ1 and Θ2, and the best clustering algorithm.

Figure 5: ABV of beers

Class axioms. There are also some axioms imposing some restrictions on the classes. Firstly,

there are disjointness axioms stating that two classes cannot share any instance. For example,

Ale and Lager are disjoint. Note however that Ale, Sour, and Wheat, three of the five families

of beer types, are not disjoint; indeed, BerlinerWeisse is a subclass of those three classes.

We can also find some necessary conditions of the beer types. For example, Lager
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restricts the value of the property fermentation to be low. Another typical restriction involves

the colour, for instance, Schwarzbier restricts the value of the property colour to be in [17,30]

(SRM).

There are also a few General Concept Inclusion (GCI) axioms that make it possible

to infer that if a beer is brewed by a brewery located in a country (e.g., Belgium), that

country should also be associated to the beer, e.g.,
(
brewedBy some (locatedAt value

dbpedia:Belgium)
)
SubClassOf (locatedAt value dbpedia:Belgium).3

Individuals. A first file (denoted O1) populates the ontology with 15317 beer individuals and

4510 brewery individuals. In general, for each beer we know its beer type (membership to

a class), its brewery and country (via 2 object property assertions), and the values of the data

properties ABV, IBU, img, overallRating, and styleRating (via 5 data property assertions).

Figure 6 illustrates a sample individual.

Figure 6: Example of a beer individual

Table 1 shows some statistics about the individuals in ontology O1. In particular, it

includes the number and the percentage of beers for which information about some features

(alcohol, bitterness, country, and style rating) is available. While the alcohol degree is always

known, this is not the case for other attributes (indeed, bitterness is unknown for 82% of the

beers). Therefore, a beer recommender system needs to take the existence of missing data

into account.

3We use OWL 2 Manchester syntax for readability, but it does not actually provide any support for GCIs.
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Data property # Individuals % Individuals

ABV 15317 100

IBU 2786 18

country 4365 28

styleRating 14378 94

Table 1: Statistics of available values for some features of the Beer ontology

Since the number of beers in the ontology is too high, we selected a subset to be used in

the evaluation of our system. In particular, we defined another file (denoted O2) as a subset

of O1, with 30 beer individuals and 24 brewery individuals. These beers are likely to be

rather popular, to make it easier finding human experts that could evaluate them. The first

three columns on Table 2 detail the selected beers, the alcohol degrees, and the linguistic

labels, computed using Datil (we will explain later the procedure to obtain them). The table

shows the label with the highest membership degree; note that in the case of Mahou Clásica

there are two maxima (the membership degrees to Low and Neutral are the same ones). The

list of beers include many examples from Spain (and, in particular, from Zaragoza), because

most of the experts that took part in the evaluation live there. Note also that there are no

examples with very low or very high alcohol.

3.2. Implementation

GimmeHop is a knowledge-based recommender system that receives user requirements

for the items that s/he expects to receive (values for some attributes) and provides user with

pull-based recommendations (a ranked list of beers). It is also a context-aware recommender

system that takes into account contextual information in order to recommend items to users

under certain circumstances. In general, context can be “any information that can be used

to characterize the situation of an entity” [14]. In our case, we consider the position of the

user, so it can be seen as a location-based service.

Language. GimmeHop works on Android Operating System (OS) mainly because the high

availability of semantic reasoners working on Android (as most of them are written in Java,

one of the two official programming languages for Android). Furthermore, it is nowadays
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Beer ABV Datil label # OK % OK # Valid reply % Valid reply

Carling 4 Low 10 21.7 23 50

Guinness Draught 4.2 Low 2 4.3 43 93.5

Bud Light 4.2 Low 13 28.3 33 71.7

Pilsner Urquell 4.4 Low 11 23.9 32 69.6

Mort Subite Kriek 4.5 Low 4 8.7 24 52.2

Coronita 4.5 Low 18 39.1 46 100

Mahou Clásica 4.8 Low-Neutral 36 78.3 37 80.4

Quilmes Cristal 4.9 Neutral 18 39.1 33 71.7

Cruzcampo Premium Lager 5 Neutral 17 37 40 87

Amstel 5 Neutral 27 58.7 41 89.1

Asahi Super Dry 5 Neutral 8 17.4 25 54.3

Budweiser 5 Neutral 22 47.8 43 93.5

Franziskaner Hefe-Weissbier 5 Neutral 12 26.1 41 89.1

Heineken 5 Neutral 24 52.2 45 97.8

Ámbar CaesarAugusta 5.2 Neutral 9 19.6 29 63

Ámbar Especial 5.2 Neutral 24 52.2 38 82.6

Mahou 5 Estrellas 5.5 Neutral 26 56.5 39 84.8

BrewDog Punk IPA 6 Neutral 9 19.6 24 52.2

Alhambra 1925 6.4 Neutral 13 28.3 38 82.6

Hijos de Rivera 1906 Extra 6.5 Neutral 9 19.6 32 69.6

Leffe Blonde 6.6 Neutral 11 23.9 37 80.4

Ámbar Export 7 Neutral 9 19.6 33 71.7

Chimay Rouge 7 Neutral 9 19.6 27 58.7

Voll Damm 7.2 Neutral 2 4.3 38 82.6

Paulaner Salvator 7.9 Neutral 10 21.7 32 69.6

Pauwel Kwak 8.4 High 4 8.7 14 30.4

Delirium Tremens 8.5 High 12 26.1 27 58.7

Judas 8.5 High 16 34.8 33 71.7

Chimay Bleue 9 High 10 21.7 25 54.3

Ámbar 10 10 High 6 13 22 47.8

Table 2: List of beers in ontology O2 and replies of our experts.
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the most popular mobile OS. Our prototype has been developed in Java 1.8 using the IDE

Android Studio 5.3.3.

Queries. GimmeHop supports three types of queries or searches:

• Basic search: the input is the name (or part of the name) of a beer or a brewery. The

output is a list of beers or breweries matching syntactically the query.

• Advanced search: the input is a beer type and, optionally, values (using linguistic

labels) of ABV and/or IBU. The output is a list of beers retrieved using a semantic

reasoner, together with the recommendation degrees (i.e., the satisfiability degree of

the query). The list is decreasingly ordered by the recommendation degrees (we will

explain later how to compute it). The user is also able to select some user preferences

(the most important property).

• Similarity search: the input is a beer and the output is a list of similar beers with the

similarity degrees.

User interface. Figure 7 (a) shows the main view of the app, where the user has two options,

a (basic) search and an advanced search. Figure 7 (b) shows the form to submit an advanced

search. The user must select the style. Optionally, s/he can set the degrees of alcohol and

bitterness, using linguistic labels rather than numerical values (it is also possible to select

“Indifferent”). The user can also choose the most important property between ABV, IBU, style

rating, or indifferent. We wanted to make the interface as simple as possible, a possible exten-

sion would be to ask for a complete ordering of the three properties in terms of importance.

Figure 7 (c) illustrates the output of the advanced search with respect to the query specified

in Figure 7 (b). We can see that the beers are decreasingly ordered and that the numbers (the

recommendation degrees) are colored to illustrate the importance of the recommendation

(going from green to red as the quality of the recommendation degree decreases).

Figure 8 (a) shows the output of a basic search, a list of beers relevant to the name “Ámbar

beer”. The system retrieves all the coincidences with beer names in the ontology, without any

numerical degree. If the user clicks on any beer presented in a list of results, s/he navigates to

another page displaying information about the beer (name, brewery, style, bitterness, alcohol,
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a) b) c)

Figure 7: Some screenshots of GimmeHop: (a) initial page, (b) advanced search form, and (c) result of an advanced

search

country, and rating). Figure 8 (b) illustrates this information when clicking on the “Ámbar

especial” beer. If the user clicks on the button, a similarity search is performed. The results

of the similarity search are similar to those of the advanced queries.

Local and remote modes. The app supports two ways to solve the queries: local or remote.

Note in particular that this involves using a local semantic reasoner or an external one,

respectively. We chose to use the same reasoners in both situations to make a fair comparison,

but this does not need to be the case.

In the local mode, the user interacts with the graphic user interface, tasks are computed

on the mobile, and eventually the user receives the results. The semantic reasoner is invoked

when needed, using an Android service, and therefore it must work on a mobile device.

In the remote mode, the app uses a client/server architecture, TCP protocol, and sockets

to communicate with an external server. The user side send requests, the server computes

and filters the top–k results, and sends them to the client so that it can show them to the user.

A single server is able to handle requests from different clients. The ontology is loaded and

classified when the server is started. Note that the server computes all tasks even if they do
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a) b) c)

Figure 8: Some screenshots of GimmeHop: (a) result of a basic search, (b) detailed information about a beer, and

(c) settings

not require a semantic reasoner (e.g., the basic search) and that the semantic reasoner might

not work on a mobile device.

Settings. App settings are depicted in Figure 8 (c). The user is able to configure the type

of fuzzy quantifier and its parameters; recall that the we support right-shoulder (Figure 2 (d)),

linear (Figure 2 (e)), and power functions (Figure 2 (f)).

Our app is integrated with two semantic reasoners, namely Hermit [18]4 and TrOWL.5

TrOWL reasoner can be directly imported in Android projects, but Hermit cannot and re-

quired some changes in the code, summarized in [5]. It is possible to choose the reasoner

when working on the local mode or when starting the remote server.

The app was designed to be as simple as possible, in the future we will consider allowing

to configure the maximum number of answers (200, so far).

4http://www.hermit-reasoner.com
5http://trowl.org
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Algorithms. Basic search only compares the name given by the user with all the names of

the beers and breweries in the ontology. All strings are split in subwords if they contain the

special character “ ” (representing a blank space) or a blank space. The system retrieves

those beers/breweries where two subwords coincide. As we will see later, advanced and

similarity searches use a semantic reasoner, basic search does not.

Advanced search works in the following way. The submitted query includes a beer type

T and two optional restrictions on the attributes ABV and IBU. The semantic reasoner solves

an instance retrieval task (i.e., retrieving all instances of T). Next, for each retrieved beer b,

we compute the rating degree RatingDegree(b), the alcohol degree ABVDegree(b), and the

bitterness degree IBUDegree(b). The rating degree consists simply in taking the styleRating

of the beer, measured in [0,100], and normalizing it to [0,1]. The alcohol degree is computed

as follows. If the query included a linguistic label for the ABV (i.e., if the value is different

from “Indifferent”), denoted Labv, and we know the ABV of the beer, denoted ABVb, we

compute the membership degree of the ABV to Labv, µLabv(ABVb). The bitterness degree is

computed similarly, but replacing the ABV with the IBU. Finally, the satisfiability degree of

the query is obtained by combining the rating degree, the alcohol degree, and the bitterness

degree using an aggregation operator:

S atDegreeQ(b)=@
(
RatingDegree(b),ABVDegree(b),IBUDegree(b)

)
If the user selected a most important property, we use WMEAN; otherwise we use OWA.

Note also that for some beers the values of styleRating and IBU are not available, so in

general each beer requires a vector of weights with different size (the size of the vector k is

the number of values to be aggregated).

It remains to explain how to obtain the k weights of the aggregation operators. If we

are using OWA, we use quantified-guided aggregation and compute the degrees using Equa-

tion 3. After trying with several quantifiers, we selected the quantifier “Most” defined as

a right-shoulder function with q1 =0.3,q2 =0.8. Note this formula nicely adapts to the fact

that beers can have missing data. For example, for k = 2 this quantifier gives the vector

[0.4,0.6], while for k=3 vector is [0.067,0.667,0.267]. If we are using WMEAN, starting

by computing a vector Vaux using Equation 3. Then, we associate the highest number wmax

in Vaux to the most important property selected by the user. To the other k−1 properties,

19



we assign the same weight (1−wmax)/(k−1). As already mentioned, we deliberately chose to

not ask for a complete ordering of preference between the attributes but it could be possible.

As a final remark, note that this approach could be trivially generalized to consider more

fuzzy attributes, such as the color and the price.

Similarity search is computed as follows. The input beer is compared to each other beer

in the system. We compute the similarity between the styles, similarity between the ABVs,

and the similarity between the IBU, and compute an average (so that the three criteria have

the same importance). Again, this could be trivially generalized to consider more fuzzy

attributes. To compute the similarity between the ABVs, we take the absolute difference

of the ABVs and compute the membership degree to a left-shoulder function with q1 =0.5,

q2 = 1.5. That is, if the difference is at most 0.5◦ , the similarity is 1; if the difference is

at least 1.5◦, the similarity is 0; and for intermediate values, the similarity decreases as the

difference increases. The similarity between the IBUs is similar, but the parameters of the

left-shoulder function are different (q1 =3, q2 =15). Finally, the similarity between the beer

styles is 1 if both beers belong to the same style, a value in (0,1) if they do not have to same

style but belong to the same family (e.g., Ale), and 0 otherwise.

The full set of axioms in the ontology is only used to check the consistency. To speed up

the app, when solving advanced and similarity searches, we only take into account subclass

axioms (the class hierarchy).

Location. GimmeHop takes into account the user location (the country) to customize the

recommendations. Google Play Services offer location APIs that facilitate adding location

awareness to the app with automated location tracking, and other services like activity recog-

nition. GimmeHop can get the location via network (cell tower and Wi-Fi signals) or GPS.

We use Android’s Network Location Provider because it works both indoors and outdoors,

responds faster, and uses less battery power in comparison with GPS Provider. This is enough

for use because the app does not require an optimal accuracy, only the country code, e.g.,

“BE” for Belgium.

After retrieving the user location, GimmeHop proceeds as follows. If the user submits

a query Q and the reasoner retrieves a beer b with a recommendation degree µQ(b) and the

user is located in the beer country, GimmeHop applies a fuzzy modifier to increment the
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degree, assuming that closer beers are more likely to be found and preferable. We use the

popular square root function, although other intensifying modifiers would be possible:

S atDegreeQ(b)=
√
µQ(b)

4. Evaluation

In this section we firstly report our evaluation of the quality of the linguistic labels (Sec-

tion 4.1), then an evaluation of the running time (Section 4.2) and the traffic data (Section 4.3).

Finally, we discuss the overall behaviour of the system with the help of some sample queries

(Section 4.4).

4.1. Evaluation of the Linguistic Labels

As already mentioned, Datil offers several choices to compute the linguistic labels as-

sociated to the alcohol and to the bitterness. In this section, we describe the evaluation of

the quality of the results given by different clustering algorithms and parameters.

We invited 46 beer aficionados to evaluate the linguistic labels associated to the 30 beers

in O2. We designed a webpage where each expert was asked to classify the alcohol of each

beer using the following scale:

{NoReply (0),VeryLow (1),Low (2),Neutral (3),High (4),VeryHigh (5)}

Experts were specifically asked to select NoReply if they had never tried the beer or,

more generally, did not feel qualified to answer properly (in the following, we will use the

term valid answers to exclude no replies). They did not know the information about the

numerical value of the ABV, they just answered according to their user experiences. Beers

were presented sequentially, only one at a time. We restricted to the alcohol level, as we think

that bitterness is much harder to evaluate, in particular if the answers are not given during

a beer tasting. Then, we compared the answers given by the experts with the results given

by Datil, selecting the best match.

Datil currently supports 3 clustering algorithms. For k-means and fuzzy c-means we

tried with different number of clusters, namely 5 and 7. In mean shift the number of labels is

not an input parameter; in all cases the value turned out to be 5. The value of Θ1 was always

0; the values of Θ2 were in {14,15,17,20}.
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For each clustering algorithm, we take into account two measures:

• The number of coincidences, i.e., the cases when both the expert and Datil gave the

same classification.

• The distance between the classification given by the expert and Datil. For instance, if

an expert classifies some beer as having low alcohol and Datil chose high, the distance

is abs(2−4)=2.

Note that some answers are not directly comparable, as the expert scale has 5 linguistic

labels and some clustering algorithms produced 7. To compute the distance in such cases, we

merged the two lowest values and the two greatest ones (that is, we merged VeryVeryLow

and VeryLow, as well as VeryVeryHigh and VeryHigh).

Clustering Θ2 # Labels # OK % OK Distance Avg. distance

K–means

14
5 113 11.4 1598 1.606
7 71 7.1 1888 1.897

15
5 233 23.4 1138 1.144
7 283 28.4 1009 1.014

17
5 290 29.1 940 0.945
7 88 8.8 1753 1.762

20
5 110 11.1 1634 1.642
7 65 6.5 1960 1.970

Fuzzy

c–means

14
5 272 27.3 997 1.002
7 177 17.8 1437 1.444

15
5 285 28.6 995 1
7 174 17.5 1456 1.463

17
5 279 28 1032 1.037
7 181 18.2 1432 1.439

20
5 245 24.6 2416 2.428
7 98 9.8 1830 1.839

Mean shift

14 5 286 28.7 936 0.941
15 5 401 40.3 775 0.779
17 5 386 38.8 779 0.783
20 5 212 21.3 1181 1.187

Table 3: Results for different clustering algorithms and parameters.

22



(a) (b)

Figure 9: Linguistic labels (using Datil and mean-shift) for a) ABV and b) IBU

Table 3 shows the results: it includes the absolute number of coincidences (# OK) and

the percentage of coincidences out of the valid answers (% OK), as well as the absolute

sum of distances and the average distance (divided by the number of evaluated beers and

the number of valid answers). In all cases the best results are obtained by using mean shift

with Θ2 =15; the linguistic labels corresponding to that case are depicted in Figure 9(a). For

the sake of completeness, Figure 9(b) shows the linguistic labels associated to the bitterness

(IBU). The best average distance (0.779) could seem too high at first sight, but the use of

fuzzy logic ensures that there is usually a non-zero membership degree to the precedent and

the subsequent linguistic labels, so the set of linguistic labels behaves well in practice.

The four latter columns of Table 2 show, for each beer, the number (absolute and percent-

age) of coincidences and the number (absolute and percentage) of valid answers, respectively,

for the best clustering algorithm (mean shift with Θ2 =15). We can see that there are beers

not as popular as expected (such as Pauwel Kwak, with 30.4% of valid answers), and also

popular beers with a small percentage of coincidences, such as Guinness (4.3%). Guinness

is an example of counter-intuitive result: the majority of experts thought that it had a high

ABV, which is not the case (4.2).

4.2. Evaluation of the Time

In this section we evaluate the running time of GimmeHop, both in the local and in

the remote modes. We also try to determine the maximal number of individuals that are

acceptable from the perspective of user experience.

We considered two mobile devices for these experiments: a tablet (denoted as A1) and a

smartphone (denoted as A2). The tablet A1 is a Lenovo Yoga 2 10.1 (Android 5.0, Quad-core
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1.86 GHz, Intel Atom Z3745, 2 GB RAM, released in 2014). The smartphone A2 is a ZTE

Blade A610 (Android 6.0, Quad-Core 1.3 GHz ARM Cortex A-53, 2 GB RAM, released in

2016). We also used Amazon Web Services (AWS) and created an instance (denoted S1). S1

is a Ubuntu server 16.04 LST, amd64 xenial image, general purpose type t2.micro, 1 CPU

and 1 GB RAM, located in the EU region (Paris). The versions of the semantic reasoners

were Hermit 1.3.8 and TrOWL 1.5.

We considered two advanced searches (Q1 and Q1′), a basic search (Q2), and a sim-

ilarity search (Q3). There are two advanced searches because the first one (Q1) might be

significantly slower than the next ones (such as Q1′) . We also separated the loading time,

as it is only necessary once. Note that this task could be run when the server starts and not

when the client starts.

Firstly, Figure 10 shows the results on the server for both reasoners. Of course, remote

reasoning is much faster than local reasoning. We can see that there are significant differences

for both reasoners. TrOWL is much faster, although it does not support exact reasoning on

OWL 2 (for more expressive languages than OWL 2, reasoning is approximate). We can see

that indeed the first advanced query (Q1) is slower than the next one (Q1′). Furthermore, the

advanced query is not always more complex than Q2 and Q3. Using TrOWL it is possible

to get the answer to Q1 about O1 in 1.5 seconds (not including the loading time), and the

next one in 0.9 seconds. Of course, times are much faster on the smaller O2.

We will show now the results on the Android devices. In this case, we additionally tested

further subontologies of O1 with different numbers of individuals, between 30 and 15300.

Figure 11 and 12 show the results of Q1 and Q1′ on A1 and A2 using HermiT and TrOWL,

respectively. Similarly, Figure 13 and 14 show the results for Q2 and Q3. Again, TrOWL

was always faster than HermiT, and device A2 was always slower than A1 (the differences

are much higher when using HermiT). There are some missing data because local reasoning

was not possible with ontologies with 10000 individuals or more. As expected, Q1 was

slower than Q1′, Q2, and Q3. When using TrOWL and the ontology with 250 individuals

there was a strange outlier on both A1 and A2, as this ontology is a superset of O2 and a

subset of the ontology with 500 individuals.

Figure 15 summarizes the result of the first advanced query (including the loading time)

for the three devices, the two reasoners, and different ontology sizes. We could say that remote
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reasoning is feasible even with all the individuals, but local reasoning requires a smaller

number. In such case, we must check that the latency of the first query is not much longer than

the average time that mobile users are willing to wait. On A2 it seems feasible handling up

to 2000 beer individuals; the first advanced query might take almost 16 seconds, but the next

ones take less than 2 seconds. On A1 it seems feasible handling up to 3000 beer individuals.

Figure 10: Running time of Load and all queries on S1

4.3. Evaluation of the Data Traffic

Users of apps requiring Internet connection are very often concerned of the data traffic,

so we decided to investigate the cost of GimmeHop when using a remote reasoner.

In order to measure the data traffic of our application, we use the “Data Usage Moni-

toring” (DUM)6 free app and the app-info utility of Android. The DUM makes it possible

to analyze the data in a deeper way, as it provides not only mobile data but also Wi–Fi data,

and makes it possible to obtain both sent and received data.

We considered the remote reasoning approach, and two ontologies with 150 (O3) and

15317 beers (O1). The reason to define O3 is that the size of O2 is appropriate for the

evaluation of the linguistic labels, but it seems not enough to evaluate the data traffic.

We considered the following sequence of queries:

6http://play.google.com/store/apps/details?id=com.jsk.datausagemonitor
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Figure 11: Running time of Load+Q1, Q1 and Q1’ on HermiT

• Firstly, we considered an advanced query. We selected the most populated families

and half of the times no other specification about the other attributes (ABU and IBU).

This led to the worst case, when the number of results that the server sends back to

the user is maximal.

• Then, we submitted a basic query, asking to retrieve a beer from its name. We also

clicked on the result to display the beer information, including its image.

• Finally, we asked to retrieve similar beers to that one.

This sequence was repeated 12 times and we computed the average values. Table 4 presents

the results of our evaluation in KB. The results show that the three methods used to measure

the traffic coincide, and we think that the results are acceptable even for the very large

ontology O1 (recall that the times include 3 queries).

Recall that the server currently only sends the top k results back, with k=200, and note

that data traffic could be optimized by making k a configurable parameter and setting smaller

values.

We also noticed that selecting the value of the attributes on the advanced search did not
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Figure 12: Running time of Load+Q1, Q1 and Q1’ on TroWL

Figure 13: Running time of Q2 and Q3 on HermiT

# Individuals Wi–Fi DUM App–info

150 56.33±6.11 54.85±6.27 54.83±6.19

15317 132.57±1.5 132.19±0.69 132.5 ±0.8

Table 4: Data traffic for a sequence of 3 queries (KB)
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Figure 14: Running time of Q2 and Q3 on TrOWL

Figure 15: Running time of Load+Q1 on all devices and reasoners

make an impact in our cases, although this is not always the case. In ontology O1, the number

of individuals was 200 even after restricting the attributes. In ontology O2, the number of

individuals could be slightly different but without changes in the total data traffic.

When using local reasoning, retrieving the picture of a beer is the only data-consuming

operation. We measured that the average traffic data is about 10.3 KB, although there is a
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big standard deviation because pictures can have very different file sizes.

4.4. Evaluation of the System and Query Examples

Table 5 shows 3 examples of advanced queries. For each of them, the degree of satisfia-

bility of each beer is shown in the two last columns (both when the user location is unknown

and when the user is located in Belgium, respectively). In all three queries the user asks for

an Ale beer, with a neutral alcohol and a neutral bitterness. The difference is that in the two

first queries the user selects a preference in the most important attribute (alcohol and rating,

respectively), so a weighted mean is used to combine the information. However, in the third

query no attribute is selected as the most important, so an OWA operator is used.

Beer ABV IBU Rating Country Partial degrees Degree Degree
Country=? Country=BE

Query (WMEAN): ABV=Neutral, IBU=Neutral, Style=Ale, Important property=Alcohol
Leffe Blonde 6.6 - 90 Belgium [abv=0.98, rating=0.9] 0.95 (1st) 0.97 (1st)

Chimay Rouge 7 - 100 Belgium [abv=0.85, rating=1] 0.91 (2nd) 0.95 (2nd)
Pauwel Kwak 8.4 - 90 Belgium [abv=0.38, rating=0.9] 0.59 (4th) 0.77 (3rd)

Delirium Tremens 8.5 - 92 Belgium [abv=0.35, rating=0.92] 0.57 (5th) 0.76 (4th)
Chimay Bleue 9 - 100 Belgium [abv=0.18 , rating=1] 0.51 (7th) 0.71 (5th)

BrewDog Punk IPA 6 60 69 Scotland [abv=0.84, rating=0.69, ibu=0] 0.67 (3rd) 0.67 (6th)
Judas 8.5 - 37 Belgium [abv=0.35 , rating=0.37] 0.35 (8th) 0.6 (7th)

Guinness Draught 4.2 - 87 Ireland [abv=0.31, rating=0.87] 0.53 (6th) 0.53 (8th)
Query (WMEAN): ABV=Neutral, IBU=Neutral, Style=Ale, Important property=Rating

Chimay Rouge 7 - 100 Belgium [abv=0.85, rating=1] 0.94 (1st) 0.97 (1st)
Leffe Blonde 6.6 - 90 Belgium [abv=0.98, rating=0.9] 0.93 (2nd) 0.97 (2nd)
Pauwel Kwak 8.4 - 90 Belgium [abv=0.38, rating=0.9] 0.69 (3rd) 0.83 (3rd)

Delirium Tremens 8.5 - 92 Belgium [abv=0.35, rating=0.92] 0.69 (4th) 0.83 (4th)
Chimay Bleue 9 - 100 Belgium [abv=0.18, rating=1] 0.67 (5th) 0.82 (5th)

Guinness Draught 4.2 - 87 Ireland [abv=0.31, rating=0.87] 0.65 (6th) 0.65 (6th)
Judas 8.5 - 37 Belgium [abv=0.35, rating=0.37] 0.36 (8th) 0.6 (7th)

BrewDog Punk IPA 6 60 69 Scotland [abv=0.84, rating=0.69, ibu=0] 0.6 (7th) 0.6 (8th)
Query (OWA): ABV=Neutral, IBU=Neutral, Style=Ale, Important property=Indifferent

Leffe Blonde 6.6 - 90 Belgium [abv=0.98 rating=0.9] 0.93 (1st) 0.97 (1st)
Chimay Rouge 7 - 100 Belgium [rating=1 abv=0.85] 0.91 (2nd) 0.95 (2nd)
Pauwel Kwak 8.4 - 90 Belgium [rating=0.9 abv=0.38] 0.59 (3rd) 0.77 (3rd)

Delirium Tremens 8.5 - 92 Belgium [rating=0.92 abv=0.35] 0.58 (4th) 0.76 (4th)
Chimay Bleue 9 - 100 Belgium [rating=1 abv=0.18] 0.51 (7th) 0.71 (5th)

Judas 8.5 - 37 Belgium [rating=0.37 abv=0.35] 0.36 (8th) 0.6 (6th)
Guinness Draught 4.2 - 87 Ireland [rating=0.87 abv=0.31] 0.54 (5th) 0.54 (7th)

BrewDog Punk IPA 6 60 69 Scotland [abv=0.84 rating=0.69 ibu=0] 0.52 (6th) 0.52 (8th)

Table 5: Results for 3 sample queries

The first column of Table 5 includes the name of the beer. Columns 2–5 include the

values of some features (ABV, IBU, style rating, and country); note that some values are

missing. These values are the same ones for each query, but the order of the beers might be
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different. Column 6 includes the values to be aggregated, that is, the membership degrees

to the fuzzy membership functions defined over ABV and IBU, and the normalized rating.

Note that user preference indeed plays a role when ordering the beers. For instance, the

best beer for the first query is Leffe Blonde, but the best beer for the second one is Chimay

Rouge. Note that the user location also plays a role in the recommendation. For example,

in the first query BrewDog Punk IPA drops from the third position to the sixth one when

taking into account the user location.

We also tried three fuzzy quantifiers described using a right-shoulder, a linear, and a

power function. It seems that the best results were obtained using the right-shoulder. For

example, an effect of the power function is that the weight vector is always ordered in

increasing order (if q<1) or decreasing order (if q>1).

We carefully checked this and other similar examples and concluded that the behaviour

of the system is reasonable when providing the recommendations. The final degrees might

be too small for the user, but the system is effective at providing an ordering among the beers.

In several cases where the user was not happy with the result, the reason was that s/he was

wrong about the real ABV/type of the beer.

5. Related Work

This section reviews some related work. Our aim is to highlight our contribution with

the previous work on the domain, fuzzy ontologies, and semantic apps. We also overview

the previous work on semantic reasoners to motivate not having used a reasoner specifically

built for mobile devices.

Beer ontologies. There is a previous effor to build a Beer ontology.7 However, the ontology

only contains 19 beer types and 9 beers. Another limitation is that the only existing axioms

are subclass/subproperty axioms. On the contrary, we impose some conditions on the beer

types (such as necessary conditions or concepts disjointness) and include data property asser-

tions representing attributes of each beer instance. Furthermore, we include fuzzy datatype

definitions allowing to deal with linguistic definitions of some attributes.

7http://dbs.uni-leipzig.de/files/coma/sources/fd/beer.owl
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Fuzzy ontologies. Fuzzy ontologies have proved to be useful in several applications, such

as information retrieval [8, 52], image interpretation [12], the Semantic Web and the In-

ternet [45], ambient intelligence [15], ontology merging [49], matchmaking [36], decision

making [31], summarization [26], robotics [16], diabetes diagnosis [17], construction [20],

or gait recognition [21], and many others [30, 35, 37, 46]. For a more detailed overview, we

refer the reader to [10]. Some of these applications only use fuzzy ontologies for knowledge

representation (e.g., [26]). In other cases, applications also use a fuzzy ontology reasoner

(e.g., [16]). In this work, we show that a classical crisp reasoner can sometimes be used if

one manages fuzzy logic operators in an explicit way.

Semantic reasoners for mobile devices. There are several possibilities to do semantic rea-

soning on mobile devices [3]. The most direct way is to use an external solution, relying

on servers on the cloud which would perform all the calculations. The main advantage is

that one can consider a server which is as powerful as required by the application. However,

in ubiquitous and mobile scenarios where context-awareness and privacy preserving play a

crucial role, sending sensitive data to a remote server might be an important privacy breach,

and even sending non-sensitive data might be dangerous as it could enable the inference of

sensitive information. Furthermore, this requires assuming that the connectivity is fast and

stable enough, but this is not often the case in mobile computing environments. It is also

possible trying to use a local solution, which can be challenging because of the limitations of

mobile devices in terms of CPU power, memory, or battery. Indeed, there is some evidence

that reasoning time is only affordable in small or not very expressive ontologies [5]. For the

sake of completeness, let us also mention that it is possible to develop hybrid strategies.

There are two options to perform local semantic reasoning:

• To reuse or port previously existing ones. AndroidSemantic project made 9 reasoners

available for Android devices [5] (including HermiT [18] and TrOWL [48]). To date,

there are no similar ports for iOS devices and none of the previously existing reasoners

are implemented in the languages natively supported on iOS (Objective-C or Swift).

• To implement specific reasoners. Currently, there are implementations for the follow-

ing mobile operating systems:
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– J2ME: COROR [47], µ-OR [1], Pocket KRHyper [42], and the systems in [25,

33].

– Android: MiniME [39]8 and the system in [53].

– Windows Mobile: mTableau [44] and MiRE4OWL [23].

– iOS: MiniME-Swift [38].9

– Others: The system in [40] is implemented in CLIPS and there is no information

about Delta [32].

Currently, only three of these specific reasoners support OWL 2 RL [40, 47, 53], and the

other ones cannot fully support OWL 2 or any of its profiles. Because the expressivity of

our ontology is OWL 2 EL, we needed to reuse existing reasoners not specifically designed

for mobile devices.

Semantic apps. The roots of semantic apps can be traced back to knowledge mobilization

(KMob), which consists of making knowledge available for real-time use in a form which

is adapted to the context of use and to the needs and cognitive profile of the user [19]. One

of the main requisites of KMob systems is that they should be ubiquitious and, in particular,

accessible from mobile devices. Our system was indeed designed to meet some of the

common requirements of KMob systems, such as being proactive, integrative, context-aware,

declarative, concise, extensible, and easily maintainable.

Early examples of semantic application for mobile systems were very different to the

more recent examples, and they typically relied on external servers. For example, PDA2

system supports the diagnosis of psychological disorders on PDAs [13]. PDA2 uses an

OWL 2 ontology to represent the relevant knowledge and accesses a semantic reasoner stored

on an external server.

Some examples using local semantic reasoners include location-based services providers

(e.g., Sherlock [57] can infer that both a cab and a tram are interesting for a certain mobile

user, given the information obtained from sensors on his/her device such as the location

8http://sisinflab.poliba.it/swottools/minime
9http://sisinflab.poliba.it/swottools/minime-swift
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and time) and navigation applications (e.g., MAR is a mobile augmented reality explorer to

discover points of interest [39]).

The interested reader can find more semantic apps in [58]. Unfortunately, none of the

existing semantic apps use fuzzy logic (with an exception that we will discuss below) or

supports both local and external reasoning, as our system does.

Semantic apps using fuzzy logic. To the best of our knowledge, there is only one previous

application of fuzzy ontologies working on mobile devices: a wine recommendation sys-

tem [31]. The authors represent wine attributes such as price, alcohol level, sugar, or acidity

using fuzzy membership functions. Then, a Java application uses fuzzyDL reasoner [7] to

solve instance retrieval queries, where the output is a list of wines that satisfy some features

combined using an OWA operator. This application is stored on a server and can be accessed

from an Android app.

However, there are several differences with our approach. The main one is that the

authors do not use a semantic reasoner running on a mobile device but require it to be stored

on an external server. On the contrary, we support both reasoning mechanisms: using a

local reasoner or storing it on an external server. Furthermore, the authors require a concrete

fuzzy ontology reasoner, while we can use any standard OWL 2 EL reasoner (of course, we

need further computations to take care of the fuzzy part). We also take into account user

preferences (by supporting weighted mean aggregation in addition to OWA) and manage

the user context in a different way (by using fuzzy hedges). Last but not least, we address

the problem of dealing with incomplete data by using qualified-guided OWA. It is worth

to mention that the wine reccommender system includes a procedure to reach a consensus

between multiple users that could also be adopted in our app.

6. Conclusions and Future Work

In this paper we have presented GimmeHop, a recommender system for Android mobile

devices, using fuzzy ontologies and semantic reasoners. GimmeHop is a proof of concept

showing that fuzzy logic, semantic technologies, and both local and remote reasoning can

be combined in mobile applications.
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The application domain, beers, is a hot topic which is receiving a notable attention in

the last years. In fact, two local companies are interested in the results of our project.

GimmeHop is able to deal with user context (in particular the location) by using fuzzy

hedges, with user preferences by using weighted mean aggregation, and with incomplete

data by using quantifier-guided OWA to provide weighting vectors with different sizes.

This paper includes an extensive evaluation of several features of the system, namely

the data traffic, the running time, the quality of the recommendations and the quality of the

linguistic labels. Our experiments about the data traffic and running time show that remote

reasoning is feasible and cheap (in terms of both data traffic and time). Local reasoning is

only feasible if we limit the number of individuals, the tested devices were able to support

2000–3000 beers. We think that this number would be enough in practice for most bars or

stores interested in recommending beers to their users.

Facing a real-world problem has also made it possible to evaluate a previous tool for

fuzzy ontology learning, Datil. Our current research identified a new requirement for Datil,

the need for minimal and maximal thresholds, which is already implemented. Furthermore,

a group of experts evaluated the quality of the linguistic labels given by Datil and helped to

identify the best learning strategy.

Future work. There are a lot of directions for our future work. The main one is to take user

feedback into account for future recommendations. So far, we take into account a global

rating defined by the community, but it would also be interesting to take into account the

user personal rating.

Another possible extension is providing social recommendations, i.e., recommending

products that a user with similar profiles liked. This would require a characterization of the

user profile and letting the aggregation operator take into account the similarity between user

profiles.

As already discussed, it would also be desirable to build more complex representations of

the possible values for some attributes of a beer, such as flavor, aroma, or foam. Furthermore,

the individuals of the ontology could include values for the attributes price, color, or turbidity.

In that case, we could use Datil to compute their associated linguistic labels and to include

them in the recommendation process as well.
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Our definition of context could also be extended to consider other factors, such as the

temperature (e.g., Berliner Weiße is particularly appropriate for summer) or food to combine

with (e.g., Guinness is a good choice to combine with a chocolate cake).

Moreover, we could introduce fuzziness at other levels. For instance, we could assume

that a beer belongs to a type with some degree, or that a beer type is a subtype of another

one with some degree. In this case, data acquisition seems particularly challenging.

Last but not least, it would also be possible to consider more general aggregation oper-

ators (not only OWA or WMEAN), fuzzy quantifiers (not only right-shoulder, linear, and

power functions), or intensifying fuzzy modifiers (not only the square root).
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[34] M. A. Musen. The protégé project: a look back and a look forward. AI Matters,

1(4):4–12, 2015.

[35] T. D. Noia, M. Mongiello, F. Nocera, and U. Straccia. A fuzzy ontology-based

approach for tool-supported decision making in architectural design. Knowledge and

Information Systems, 58(1):83–112, 2019.

[36] A. Ragone, U. Straccia, F. Bobillo, T. D. Noia, and E. D. Sciascio. Fuzzy bilateral

matchmaking in e-marketplaces. In Proceedings of the 12th International Conference

on Knowledge-Based and Intelligent Information & Engineering Systems (KES

2008), Part III, volume 5179 of Lecture Notes in Computer Science, pages 293–301.

Springer-Verlag, 2008.

[37] J. A. Rodger. A fuzzy linguistic ontology payoff method for aerospace real options

valuation. Expert Systems with Applications, 40(8), 2013.

[38] M. Ruta, F. Scioscia, F. Gramegna, I. Bilenchi, and E. D. Sciascio. Mini-ME Swift:

the first OWl reasoner for iOS. In Proceedings of the 16th Extended Semantic Web

Conference (ESWC 2019), Lecture Notes in Computer Science. Springer, 2019.

[39] F. Scioscia, M. Ruta, G. Loseto, F. Gramegna, S. Ieva, A. Pinto, and E. D. Sciascio.

A mobile matchmaker for the ubiquitous semantic web. International Journal on

Semantic Web and Information Systems, 10(4):77–100, 2014.

[40] C. Seitz and R. Schönfelder. Rule-based OWL reasoning for specific embedded devices.

In Proceedings of the 10th International Semantic Web Conference (ISWC 2011), Part

II, volume 7032 of Lecture Notes in Computer Science, pages 237–252. Springer, 2011.
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