
Modelización computacional de nanoestructuras: introducción a
la espectroscopia teórica

ANEXOS DEL TFG

De

Andrés Maŕıa Belaza

Promoción 2010-2014

20 de junio de 2014

Director:
Dr. Alberto Castro

Ponente:

Dr. Jose Luis Alonso

Universidad de Zaragoza
Facultad de Ciencias

Departamento de F́ısica Teórica

Anexo A. Formula de Rabi para interacciones armónicas.

0.1. Imagen de interacción

Para poder demostrar fácilmente la expresión de la formula de Rabi introducimos la imagen de inter-
acción. Supongamos que tenemos un Hamiltoniano de la forma siguiente:

H = H0 + V(t) (1)

En una base de autoestados del Hamiltoniano sin perturbar, H0. Y definimos la función de ondas |α〉T
en la imagen de interacción a partir de la función de ondas en la imagen de Schröndinger |α〉S de la siguiente
manera, manteniendo unidades atómicas, ~ = 1:

|α〉T = eiH0t |α〉S (2)

La interpretación es que la base de la interacción es la base que evoluciona en el tiempo de la forma
que evolucionaŕıa la base si no hubiera perturbación. De esta forma, podemos reescribir la ecuación de
Schöndinger en la imagen de interacción:

i
∂

∂t
|α〉T = −H0 · eiH0t |α〉S + eiH0t

(
i
∂

∂t
|α〉S

)
= ... (3)

... = −H0 · eiH0t |α〉S + eiH0tH0 |α〉S + eiH0tV |α〉S

Pero el Hamiltoniano sin perturbar conmuta con su exponencial aśı que:

i
∂

∂t
|α〉T = eiH0tV e−iH0t |α〉I

i
∂

∂t
|α〉T = V ′ |α〉I (4)

Con V ′ = eiH0tV e−iH0t el potencial en la imagen de interacción. Con esto podemos ahora calcular como
varian las distintas componentes de una base a lo largo del tiempo.En general, cualquier función de Ondas
puede ser desarrollada en función de elementos de la base:

|α〉T =
∑
n

cn(t) |n〉 (5)

Y si aplicamos la ecuación de Schöndinger a estos coeficientes

i
∂

∂t

∑
n

cn(t) |n〉 = eiH0tV e−iH0t
∑
m

cm(t) |m〉

i
∑
n

ċn(t) |n〉 = eiH0tV

(∑
m

e−iEmt |m〉 cm(t)

)

Si multiplico por la izquierda el autovector 〈n|

1

iċn = 〈n| eiH0tV

(∑
m

e−iEmt |m〉 cm(t)

)
= e−iEnt 〈n|V

(∑
m

e−iEmt |m〉 cm(t)

)

Obteniendo asi una expresión para la evolución de los coeficientes

ċn = −i
∑
m

ei(En−Em)t 〈n|V |m〉 cm(t) (6)

0.2. Expresión de Rabi

Ahora estamos preparados para plantear nuestro problema de dos niveles. Vamos a resolverlo para
c1(t = 0) = 1, c2(t = 0) = 0 y para una interacción del tipo. 〈1|V |1〉 = 〈2|V |2〉 = 0, 〈1|V |2〉 = W12e

iωt y
〈2|V |1〉 = (〈1|V |2〉)∗. A partir de (6) obtenemos:

ċ1 = −iei(E1−E2)tW12e
iωtc2 = −iW12e

i∆t (7)

ċ2 = −iW12e
−i∆t

Con ∆ ≡ ω − (E2 − E1). Si volvemos a derivar para ċ1

c̈1 = ∆W12e
i∆tc2 +−iW12e

i∆tċ2 = ∆
1

−i
(
−iW12e

i∆tc2

)
+−iW12e

i∆t
(
−iW12e

−i∆t) = i∆ċ1 −W 2
12c1

c̈1 − i∆ċ1 +W 2
12c1 = 0

Que presenta soluciones del tipo c1 = Aeλ+t + Beλ−t donde λ+ y λ− son las soluciones del polinomio
caracteŕıstico:

λ± =
i

2
(∆±

√
∆2 + 4W 2

12) = i(
∆

2
± α)

Donde, para evitar arrastrar la ráız, hemos definido α ≡
√

∆2

4 +W 2
12. Para calcular c2, basta con aplicar

(7), y derivando c1.

c1 = ei
∆
2
t
(
Aeiαt +Be−iαt

)
c2 =

1

W12
ei

∆
2
t

(
−A(α+

∆

2
)eiαt +B(α− ∆

2
)e−iαt

)

Si aplicamos las condiciones iniciales c1 = 1, c2 = 0, podemos obtenerA =
α−∆

2
2α y B =

α+ ∆
2

2α

Nuestro interés cae en la probabilidad de encontrar en el autoestado |2〉 a un tiempo T, es decir |c2(T)|2,
por lo que primero calculamos c2(T)

c2 =
1

W12
ei

∆
2
t

(
−
α− ∆

2

2α
(α+

∆

2
)eiαt +

α+ ∆
2

2α
(α− ∆

2
)e−iαt

)
=
−i
W12α

(
α2 − ∆2

4

)(
eiαt − eiαt

2i

)

2

Insertando la definición de α y sustituyendo la definición de la funcion seno a partir de la exponencial
compleja:

c2 =
−iW12√
∆2

4 +W 2
12

ei
∆
2
t sin

(√
∆2

4
+W 2

12t

)
(8)

Calculando su cuadrado, obtenemos la expresión de la formula de Rabi para este tipo de oscilación.

P12 = |c2|2 =
W 2

12
∆2

4 +W 2
12

sin2

(√
∆2

4
+W 2

12t

)
(9)

3

Anexo B. Implementación computacional en
codigo C.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <math.h>
4 #include <gsl/gsl_multimin.h>
5

6 #define SIZE 2
7 #define DT 0.00001
8 #define TMAX 20
9 #define PI 3.1415

10 #define CONTROL 1000
11

12 //La estructura numero complejo
13 struct complex
14 { double re;
15 double im;
16 } typedef complex;
17

18

19 complex H[SIZE][SIZE];
20 complex dHomega[SIZE][SIZE]; //Derivadas respecto a las

variables
21 complex dHlam[SIZE][SIZE];
22 complex H_0[SIZE][SIZE];//Hamiltoniano Molecular
23 complex W[SIZE][SIZE];//Perturbacion
24 complex U[SIZE][SIZE];//Operador evolucion
25 complex Op[SIZE][SIZE];//Operador a medir
26 complex PHICERO[SIZE];
27

28 complex I;
29

30 double MiF(double *parametros);
31 void MiDF(double *parametros, double *gradiente);
32 void actualiza(double *parametros, double tiempo);
33 void actualizaevolucion(void);
34 void actualizaevolucion2(void);
35

36 complex multiplica (complex, complex);
37 complex conjugado(complex);
38

39 //----------ESTRUCTURAS PARA LA GSL. ---------
40 //--NOTA: Las cambio de signo porque el algoritmo busca un

minimo, y nosotros buscamos un maximo.
41 double my_f (const gsl_vector *v, void *params)
42 {
43 double *p;

1

44

45 p = (double *)malloc(2*sizeof(double));
46

47 p[0] = gsl_vector_get(v, 0);
48 p[1] = gsl_vector_get(v, 1);
49 return -MiF(p);
50 }
51 // The gradient of f, df = (df/dx, df/dy).
52 void my_df (const gsl_vector *v, void *params, gsl_vector *df)
53 {
54 double *p;
55 double *grad;
56 p = (double *)malloc(2*sizeof(double));
57 grad = (double *)malloc(2*sizeof(double));
58

59 p[0] = gsl_vector_get(v, 0);
60 p[1] = gsl_vector_get(v, 1);
61

62 MiDF(p,grad);
63 grad[0]=-grad[0];
64 grad[1]=-grad[1];
65

66 gsl_vector_set(df, 0, grad[0]);
67 gsl_vector_set(df, 1, grad[1]);
68 }
69

70

71 /* Compute both f and df together. */
72 void my_fdf (const gsl_vector *x, void *params, double *f,

gsl_vector *df)
73 {
74 *f = my_f(x, params);
75 my_df(x, params, df);
76 }
77

78

79 //

80

81

82 int main()
83 {
84 int i,j;
85

86 I.re=0;
87 I.im=1;
88

89 //Inicializaciones de las matrices.
90 for(i=0;i<SIZE;i++)

2

91 {for(j=0;j<SIZE;j++)
92 {H[i][j].re=0;
93 H[i][j].im=0;
94 W[i][j].re=H_0[i][j].re=0;
95 W[i][j].im=H_0[i][j].im=0;
96 Op[i][j].re=Op[i][j].im=0;
97 dHomega[i][j].re=dHlam[i][j].re=0;
98 dHomega[i][j].im=dHlam[i][j].im=0;
99 }

100 }
101 H_0[0][0].re=0;
102 H_0[1][1].re=1;
103 Op[1][1].re=1;
104

105 PHICERO[0].re=1;
106 PHICERO[0].im=0;
107 PHICERO[1].re=0;
108 PHICERO[1].im=0;
109

110 //.....................
111 printf("EMPEZAMOS\n");
112

113 printf("Empezamos con el calculo del maximo\n");
114

115 gsl_multimin_function_fdf my_func;
116

117 double p[1] = {0};
118 my_func.n = 2; /* number of function components */
119 my_func.f = &my_f;
120 my_func.df = &my_df;
121 my_func.fdf = &my_fdf;
122 my_func.params = (void *)p;
123

124 int iter = 0;
125 int status;
126 const gsl_multimin_fdfminimizer_type *T;
127 gsl_multimin_fdfminimizer *s;
128 gsl_vector *x;
129

130

131 /* Starting point, x = (0.001,0.9) */
132 x = gsl_vector_alloc (2);
133 gsl_vector_set (x, 0, 0.01);
134 gsl_vector_set (x, 1, 0.8);
135

136

137 //Para escoger el Algoritmo de minimizacion entre los
multiples que permite GSL

138

139 T = gsl_multimin_fdfminimizer_conjugate_fr;

3

140 //T = gsl_multimin_fdfminimizer_vector_bfgs2;
141 // T = gsl_multimin_fdfminimizer_conjugate_pr;
142 // T = gsl_multimin_fdfminimizer_steepest_descent;
143

144 s = gsl_multimin_fdfminimizer_alloc (T, 2);
145

146 gsl_multimin_fdfminimizer_set (s, &my_func, x, 0.001, 1e-3)
;

147

148 do
149 {
150 iter++;
151 status = gsl_multimin_fdfminimizer_iterate (s);
152 printf ("\%5d \%.5f \%.5f \%10.5f\n", iter,

gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1)
,-(s->f));

153 if (status)
154 break;
155 status = gsl_multimin_test_gradient (s->gradient, 1e-3)

;
156 if (status == GSL_SUCCESS)
157 { printf ("Minimum found at:\n");
158 printf ("\%5d \%.5f \%.5f \%10.5f\n", iter,

gsl_vector_get (s->x, 0), gsl_vector_get (s->x,
1),s->f);

159 }
160 }
161 while (status == GSL_CONTINUE && iter < 100);
162

163 gsl_multimin_fdfminimizer_free (s);
164 gsl_vector_free (x);
165 printf("\n \t FIN\n");
166

167

168 return 0;
169 }
170

171 //...................FUNCIONES AUXILIARES
..........................

172 complex multiplica(complex a, complex b)
173 {complex tem;
174 tem.re=a.re*b.re-a.im*b.im;
175 tem.im=a.re*b.im+a.im*b.re;
176 return tem;
177 }
178

179 complex conjugado(complex a)
180 {complex tem;
181 tem.im=-a.im;
182 tem.re=a.re;

4

183 return tem;
184 }
185

186 //--- FUNCION QUE DETERMINA EL VALOR DEL OPERADOR A TRAVES DE
LA EVOLUCION

187 double MiF(double *parametros)
188 { double solucion=0;
189 int i, j, k;
190 complex tem,tem2;
191 complex phi[SIZE], phi2[SIZE];
192 double t;
193

194

195 for(i=0;i<SIZE;i++)
196 {
197 phi[i].re=PHICERO[i].re;
198 phi[i].im=PHICERO[i].im;
199 }
200

201

202

203 for(t=0;t<TMAX;t+=DT)
204 {
205 //Calculo el Hamiltoniano en el Instante t
206 actualiza(parametros,t+DT/2);
207

208 //Inicializo phi2 que son las cordenadas de la funcion
de Ondas, en el paso siguiente.

209 for(i=0;i<SIZE;i++)
210 {
211 phi2[i].re=0;
212 phi2[i].im=0;
213 }
214

215 //Calculo el operador evolucion
216

217 actualizaevolucion();
218

219 //Y lo aplico
220 for(i=0;i<SIZE;i++)
221 {tem.re=0;
222 tem.im=0;
223 for(j=0;j<SIZE;j++)
224 {tem.re+=(multiplica(U[i][j],phi[j])).re;
225 tem.im+=(multiplica(U[i][j],phi[j])).im;
226 }
227 phi2[i].re=phi[i].re+tem.re;
228 phi2[i].im=phi[i].im+tem.im;
229 }
230

5

231 //Colocamos la funcion de Ondas al principio del bucle
232 for(i=0;i<SIZE;i++)
233 {
234 phi[i].re=phi2[i].re;
235 phi[i].im=phi2[i].im;
236 }
237

238 }
239

240 solucion=0;
241 for(i=0;i<SIZE;i++)
242 {
243 tem.re=0;
244 tem.im=0;
245 for(j=0;j<SIZE;j++)
246 {
247 tem.re+=multiplica(Op[i][j],phi[j]).re;
248 tem.im+=multiplica(Op[i][j],phi[j]).im;
249 }
250 solucion+=multiplica(conjugado(phi[i]),tem).re;
251 }
252 return solucion;
253 }
254

255 //............FUNCION QUE CALCULA EL GRADIENTE
...

256

257

258 void MiDF(double *parametros, double *gradiente)
259 { int i, j, k;
260 complex tem,tem2;
261 complex phi[SIZE], phi2[SIZE];
262 complex xi[SIZE], xi2[SIZE];
263 double t,acumulador;
264

265 for(i=0;i<SIZE;i++)
266 gradiente[i]=0;
267

268

269 for(i=0;i<SIZE;i++)
270 {
271 phi[i].re=PHICERO[i].re;
272 phi[i].im=PHICERO[i].im;
273 }
274

275

276

277 for(t=0;t<TMAX;t+=DT)
278 {
279 //Calculo el Hamiltoniano en el Instante t

6

280 actualiza(parametros,t+
DT/2);

281

282 //Inicializo phi2 que son las cordenadas de la funcion
de Ondas, en el paso siguiente.

283 for(i=0;i<SIZE;i++)
284 {
285 phi2[i].re=0;
286 phi2[i].im=0;
287 }
288

289 //Calculo el operador evolucion
290

291 actualizaevolucion();
292

293 //Y lo aplico
294 for(i=0;i<SIZE;i++)
295 {tem.re=0;
296 tem.im=0;
297 for(j=0;j<SIZE;j++)
298 {tem.re+=(multiplica(U[i][j],phi[j])).re;
299 tem.im+=(multiplica(U[i][j],phi[j])).im;
300 }
301 phi2[i].re=phi[i].re+tem.re;
302 phi2[i].im=phi[i].im+tem.im;
303 }
304

305 //Colocamos la funcion de Ondas al principio del bucle
306 for(i=0;i<SIZE;i++)
307 {
308 phi[i].re=phi2[i].re;
309 phi[i].im=phi2[i].im;
310 }
311

312 }
313

314

315 //---- Calculo Xi en en instante T
316 for(i=0;i<SIZE;i++)
317 {tem.re=0;
318 tem.im=0;
319 for(j=0;j<SIZE;j++)
320 {tem.re+=multiplica(Op[i][j],phi[j]).re;
321 tem.im+=multiplica(Op[i][j],phi[j]).im;
322 }
323 xi[i].re=tem.re;
324 xi[i].im=tem.im;
325 }
326

327

7

328 for(t=TMAX;t>0;t-=DT)
329 {
330 //Calculo el Hamiltoniano en el Instante t
331 actualiza(parametros,t-

DT/2);
332

333 //Inicializo phi2 que son las cordenadas de la funcion
de Ondas, en el paso siguiente.

334 for(i=0;i<SIZE;i++)
335 {
336 phi2[i].re=0;
337 phi2[i].im=0;
338 xi2[i].re=0;
339 xi2[i].im=0;
340 }
341

342 //Calculo el operador evolucion
343

344 actualizaevolucion2();
345

346 //Y lo aplico
347 for(i=0;i<SIZE;i++)
348 {tem.re=0;
349 tem.im=0;
350 for(j=0;j<SIZE;j++)
351 {tem.re+=(multiplica(U[i][j],phi[j])).re;
352 tem.im+=(multiplica(U[i][j],phi[j])).im;
353 }
354 phi2[i].re=phi[i].re+tem.re;
355 phi2[i].im=phi[i].im+tem.im;
356 }
357

358 //Lo mismo para xi
359

360 for(i=0;i<SIZE;i++)
361 {tem.re=0;
362 tem.im=0;
363 for(j=0;j<SIZE;j++)
364 {tem.re+=(multiplica(U[i][j],xi[j])).re;
365 tem.im+=(multiplica(U[i][j],xi[j])).im;
366 }
367 xi2[i].re=xi[i].re+tem.re;
368 xi2[i].im=xi[i].im+tem.im;
369 }
370

371 //Colocamos la funcion de Ondas al principio del bucle
372 for(i=0;i<SIZE;i++)
373 {
374 phi[i].re=phi2[i].re;
375 phi[i].im=phi2[i].im;

8

376 xi[i].re=xi2[i].re;
377 xi[i].im=xi2[i].im;
378 }
379

380

381 //----ACUMULAMOS PARA CALCULAR LA INTEGRAL
382 acumulador=0;
383 for(i=0;i<SIZE;i++)
384 {
385 tem.re=0;
386 tem.im=0;
387 for(j=0;j<SIZE;j++)
388 {tem.re+=multiplica(dHlam[i][j],phi[j]).re;
389 tem.im+=multiplica(dHlam[i][j],phi[j]).im;
390 }
391 acumulador+=multiplica(conjugado(xi[i]),tem).im;
392 }
393

394 gradiente[0]+=acumulador;
395

396 acumulador=0;
397 for(i=0;i<SIZE;i++)
398 {
399 tem.re=0;
400 tem.im=0;
401 for(j=0;j<SIZE;j++)
402 {tem.re+=multiplica(dHomega[i][j],phi[j]).re;
403 tem.im+=multiplica(dHomega[i][j],phi[j]).im;
404 }
405 acumulador+=multiplica(conjugado(xi[i]),tem).im;
406 }
407

408 gradiente[1]+=acumulador;
409

410

411 }
412

413 for(i=0;i<2;i++)
414 {gradiente[i]=-2*DT*gradiente[i];}
415

416

417 }
418

419 //.........ACTUALIZADOR DE LOS OPERADORES AL INSTANTE T
420

421 void actualiza(double *parametros, double t)
422 {int i,j;
423 double LAM=parametros[0];
424 double OMEGA=parametros[1];
425 W[0][1].re=cos(OMEGA*t)*LAM;

9

426 W[0][1].im=sin(OMEGA*t)*LAM;
427 W[1][0].re=cos(OMEGA*t)*LAM;
428 W[1][0].im=-sin(OMEGA*t)*LAM;
429

430 //Actualizo las derivadas para el gradiente
431

432 dHomega[0][1].re=-sin(OMEGA*t)*LAM*t;
433 dHomega[0][1].im=cos(OMEGA*t)*LAM*t;
434 dHomega[1][0].re=-sin(OMEGA*t)*LAM*t;
435 dHomega[1][0].im=-cos(OMEGA*t)*LAM*t;
436

437 dHlam[0][1].re=cos(OMEGA*t);
438 dHlam[0][1].im=sin(OMEGA*t);
439 dHlam[1][0].re=cos(OMEGA*t);
440 dHlam[1][0].im=-sin(OMEGA*t);
441

442

443 for(i=0;i<SIZE;i++)
444 {for(j=0;j<SIZE;j++)
445 {
446 H[i][j].re=H_0[i][j].re+W[i][j].re;
447 H[i][j].im=H_0[i][j].im+W[i][j].im;
448 }
449 }
450

451

452 }
453

454

455 //.......ACTUALIZA EL OPERADOR EVOLUCION
456 void actualizaevolucion(void)
457 {int i, j,k;
458 complex tem[SIZE][SIZE],tem2[SIZE][SIZE];
459 complex sum;
460 for(i=0;i<SIZE;i++)
461 for(j=0;j<SIZE;j++)
462 {
463 U[i][j].re=0;
464 U[i][j].im=0;
465 tem[i][j].re=0;
466 tem[i][j].im=0;
467 tem[i][j].re=0;
468 tem[i][j].im=0;
469 }
470

471

472

473 //Calculo el termino lineal y se lo a ado al operador
evolucion

474 for(i=0;i<SIZE;i++)

10

475 for(j=0;j<SIZE;j++)
476 {
477 tem[i][j].re=-(multiplica(H[i][j],I)).re*DT;
478 tem[i][j].im=-(multiplica(H[i][j],I)).im*DT;
479 }
480

481 for(i=0;i<SIZE;i++)
482 for(j=0;j<SIZE;j++)
483 U[i][j]=tem[i][j];
484

485 //Calculo el termino de orden 2 y se lo a ado al operadoe
Evolucion:

486

487 for(i=0;i<SIZE;i++)
488 for(j=0;j<SIZE;j++)
489 {
490 sum.re=0;
491 sum.im=0;
492 for(k=0;k<SIZE;k++)
493 {
494 sum.re+=tem[i][k].re*H[k][j].re*DT;
495 sum.im+=tem[i][k].im*H[k][j].im*DT;
496 }
497 tem2[i][j].re=-(multiplica(sum,I)).re*0.5;
498 tem2[i][j].im=-(multiplica(sum,I)).im*0.5;
499 }
500

501 for(i=0;i<SIZE;i++)
502 for(j=0;j<SIZE;j++)
503 {
504 U[i][j].re+=tem2[i][j].re;
505 U[i][j].im+=tem2[i][j].im;
506 }
507

508 //Orden 3
509

510 for(i=0;i<SIZE;i++)
511 for(j=0;j<SIZE;j++)
512 {
513 sum.re=0;
514 sum.im=0;
515 for(k=0;k<SIZE;k++)
516 {
517 sum.re+=tem2[i][k].re*H[k][j].re*DT;
518 sum.im+=tem2[i][k].im*H[k][j].im*DT;
519 }
520 tem[i][j].re=-(multiplica(sum,I)).re/3;
521 tem[i][j].im=-(multiplica(sum,I)).im/3;
522 }
523

11

524 for(i=0;i<SIZE;i++)
525 for(j=0;j<SIZE;j++)
526 {
527 U[i][j].re+=tem[i][j].re;
528 U[i][j].im+=tem[i][j].im;
529 }
530

531 //Orden 4
532

533 for(i=0;i<SIZE;i++)
534 for(j=0;j<SIZE;j++)
535 {
536 sum.re=0;
537 sum.im=0;
538 for(k=0;k<SIZE;k++)
539 {
540 sum.re+=tem[i][k].re*H[k][j].re*DT;
541 sum.im+=tem[i][k].im*H[k][j].im*DT;
542 }
543 tem2[i][j].re=-(multiplica(sum,I)).re/4;
544 tem2[i][j].im=-(multiplica(sum,I)).im/4;
545 }
546

547 for(i=0;i<SIZE;i++)
548 for(j=0;j<SIZE;j++)
549 {
550 U[i][j].re+=tem2[i][j].re;
551 U[i][j].im+=tem2[i][j].im;
552 }
553 }
554

555

556 //..........ACTUALIZA EL OPERADOR DE EVOLUCION TEMPORAL HACIA
ATRAS.......

557

558 void actualizaevolucion2(void)
559 {int i, j,k;
560 complex tem[SIZE][SIZE],tem2[SIZE][SIZE];
561 complex sum;
562 for(i=0;i<SIZE;i++)
563 for(j=0;j<SIZE;j++)
564 {
565 U[i][j].re=0;
566 U[i][j].im=0;
567 tem[i][j].re=0;
568 tem[i][j].im=0;
569 tem[i][j].re=0;
570 tem[i][j].im=0;
571 }
572

12

573

574

575 //Calculo el termino lineal y se lo a ado al operador
evolucion

576 for(i=0;i<SIZE;i++)
577 for(j=0;j<SIZE;j++)
578 {
579 tem[i][j].re=-(multiplica(H[i][j],I)).re*(-DT);
580 tem[i][j].im=-(multiplica(H[i][j],I)).im*(-DT);
581 }
582

583 for(i=0;i<SIZE;i++)
584 for(j=0;j<SIZE;j++)
585 U[i][j]=tem[i][j];
586

587 //Calculo el termino de orden 2 y se lo a ado al operadoe
Evolucion:

588

589 for(i=0;i<SIZE;i++)
590 for(j=0;j<SIZE;j++)
591 {
592 sum.re=0;
593 sum.im=0;
594 for(k=0;k<SIZE;k++)
595 {
596 sum.re+=tem[i][k].re*H[k][j].re*(-DT);
597 sum.im+=tem[i][k].im*H[k][j].im*(-DT);
598 }
599 tem2[i][j].re=-(multiplica(sum,I)).re*0.5;
600 tem2[i][j].im=-(multiplica(sum,I)).im*0.5;
601 }
602

603 for(i=0;i<SIZE;i++)
604 for(j=0;j<SIZE;j++)
605 {
606 U[i][j].re+=tem2[i][j].re;
607 U[i][j].im+=tem2[i][j].im;
608 }
609

610 //Orden 3
611

612 for(i=0;i<SIZE;i++)
613 for(j=0;j<SIZE;j++)
614 {
615 sum.re=0;
616 sum.im=0;
617 for(k=0;k<SIZE;k++)
618 {
619 sum.re+=tem2[i][k].re*H[k][j].re*(-DT);
620 sum.im+=tem2[i][k].im*H[k][j].im*(-DT);

13

621 }
622 tem[i][j].re=-(multiplica(sum,I)).re/3;
623 tem[i][j].im=-(multiplica(sum,I)).im/3;
624 }
625

626 for(i=0;i<SIZE;i++)
627 for(j=0;j<SIZE;j++)
628 {
629 U[i][j].re+=tem[i][j].re;
630 U[i][j].im+=tem[i][j].im;
631 }
632

633 //Orden 4
634

635 for(i=0;i<SIZE;i++)
636 for(j=0;j<SIZE;j++)
637 {
638 sum.re=0;
639 sum.im=0;
640 for(k=0;k<SIZE;k++)
641 {
642 sum.re+=tem[i][k].re*H[k][j].re*(-DT);
643 sum.im+=tem[i][k].im*H[k][j].im*(-DT);
644 }
645 tem2[i][j].re=-(multiplica(sum,I)).re/4;
646 tem2[i][j].im=-(multiplica(sum,I)).im/4;
647 }
648

649 for(i=0;i<SIZE;i++)
650 for(j=0;j<SIZE;j++)
651 {
652 U[i][j].re+=tem2[i][j].re;
653 U[i][j].im+=tem2[i][j].im;
654 }
655 }

14

