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Anexo A. Formula de Rabi para interacciones armoénicas.

0.1. Imagen de interaccién

Para poder demostrar facilmente la expresion de la formula de Rabi introducimos la imagen de inter-
accion. Supongamos que tenemos un Hamiltoniano de la forma siguiente:

H=Ho+ V() (1)

En una base de autoestados del Hamiltoniano sin perturbar, Ho. Y definimos la funcién de ondas |a)
en la imagen de interaccién a partir de la funcién de ondas en la imagen de Schrondinger |«) ¢ de la siguiente
manera, manteniendo unidades atémicas, h = 1:

)y = e |a) g (2)

La interpretacién es que la base de la interaccion es la base que evoluciona en el tiempo de la forma
que evolucionaria la base si no hubiera perturbaciéon. De esta forma, podemos reescribir la ecuacién de
Schondinger en la imagen de interaccién:

ot
= —HO . eiHot ‘a>S + eiHotHO |a>S + eiHotV |a>S

; o)
i— |y = —Hp - et |a) ¢ 4 eHot <z ]a>s> =.. (3)

Pero el Hamiltoniano sin perturbar conmuta con su exponencial asi que:

iat ’ >T — iHotVefiHot ’a>1
.0
gen ) = V' |a), (4)

Con V' = etfoty/e=Hot o] potencial en la imagen de interaccién. Con esto podemos ahora calcular como
varian las distintas componentes de una base a lo largo del tiempo.En general, cualquier funcién de Ondas
puede ser desarrollada en funcién de elementos de la base:

j@)p = ealt) n) ()

n

Y si aplicamos la ecuacién de Schondinger a estos coeficientes

ch ) |n) = e’HotVe*ZHOthm ) |m)
i én(t) |n) =NV (Z e~ Emt i) cm(t)>

n m

Si multiplico por la izquierda el autovector (n|



ity = (n| etHoty (Z e tEmt |m) cm(t)) = e tEnt (| V/ (Z e Emt |m) cm(t))

m

Obteniendo asi una expresiéon para la evolucion de los coeficientes

tn=—iy_ e EnTE (0] V |m) ey () (6)

m

0.2. Expresién de Rabi

Ahora estamos preparados para plantear nuestro problema de dos niveles. Vamos a resolverlo para
c1(t =0) =1, e2(t = 0) = 0 y para una interaccién del tipo. (1| V [1) = (2| V' |2) =0, (1| V |2) = Wit y
(2| V1) = ((1] V' |2))*. A partir de (6) obtenemos:

61 = —ie/BL Bt ety = T et (7)

éz = —Z'W12€_ZAt

Con A =w — (E2 — E). Si volvemos a derivar para ¢;

c1 = AWlQBZAtCQ + —ZW12€ZAt62 = A7 (—ZngezAtCQ) + —ZW12€ZAt (—ZW12€ ZAt) =1A¢é — W12261

&1 — iAé + Wie =0

Que presenta soluciones del tipo ¢; = Ae*! + Be*~t donde A\ y A_ son las soluciones del polinomio
caracteristico:

i LA
Ay = §(A:|:\/A2+4W122) :z(izlza)

Donde, para evitar arrastrar la raiz, hemos definido o = 4/ %2 + W122. Para calcular cs, basta con aplicar
(7), y derivando c;.

. . . . o e . [0
Si aplicamos las condiciones iniciales ¢; = 1, ¢co = 0, podemos obtenerA =

A A
2 yp = %3
2a Y 2c

Nuestro interés cae en la probabilidad de encontrar en el autoestado |2) a un tiempo T, es decir |y (T)|?,
por lo que primero calculamos ¢y (7))

1 sy a—% AL a+% AL i =i ) A2 glat _ giat
62_W1262< AR R Pl C ol O T Wia \& T 1 2%




Insertando la definicién de « y sustituyendo la definicién de la funcion seno a partir de la exponencial

compleja:
—iW , A2
C2 = %ez%tsin ( -t ngt) (8)
NERTARAN

Calculando su cuadrado, obtenemos la expresion de la formula de Rabi para este tipo de oscilacién.

W32 A2
Py = |co)? = ——12_gip? — + Wit 9
12 = |ca 5w, V2 i 9)
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Anexo B. Implementacion computacional en
codigo C.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <gsl/gsl_multimin.h>

#idefine SIZE 2
#define DT 0.00001
#define TMAX 20
#idefine PI 3.1415
#define CONTROL 1000

//La estructura numero complejo
struct complex
{ double re;
double im;
} typedef complex;

complex H[SIZE] [SIZE];

complex dHomega[SIZE] [SIZE]; //Derivadas respecto a las
variables

complex dHlam[SIZE] [SIZE];

complex H_O[SIZE] [SIZE];//Hamiltoniano Molecular

complex W[SIZE] [SIZE];//Perturbacion

complex U[SIZE] [SIZE];//Operador evolucion

complex Op[SIZE] [SIZE];//Operador a medir

complex PHICERO[SIZE];

complex I;

double MiF (double xparametros);

void MiDF (double xparametros, double xgradiente);
void actualiza (double *parametros, double tiempo);
void actualizaevolucion (void) ;

void actualizaevolucion2 (void) ;

complex multiplica (complex, complex);
complex conjugado (complex) ;

] [ ===mmmmm== ESTRUCTURAS PARA LA GSL. —-———————-—
//——NOTA: Las cambio de signo porque el algoritmo busca un
minimo, y nosotros buscamos un maximo.
double my_f (const gsl_vector *v, wvoid xparams)
{
double +*p;
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p = (double x)malloc (2xsizeof (double)) ;

pl0] = gsl_vector_get(v, 0);
pll] = gsl_vector_get (v, 1);

return -MiF (p);
}
// The gradient of

fl

df = (df/dx,
void xparams,

void my_df (const gsl_vector v,

{

double xp;

double xgrad;
p = (double *)malloc (2xsizeof (double)) ;
grad = (double x)malloc (2xsizeof (double));

pl0] = gsl_vector_get (v, 0);

pll]

MiDF (p, grad) ;
grad[0]=-grad[0];
grad[l]=-grad[1l]

’

gsl_vector_set (df,
gsl_vector_set (df,
}

/* Compute both f and df together.
void my_fdf (const gsl_vector =xx,

gsl_vector xdf)
{

0,
1,

*f = my_f(x, params);
my_df (x, params, df);

}

//

int main ()

{

int i, 9;

I.re=0;
I.im=1;

//Inicializaciones de las matrices.
for (i=0; 1<SIZE; i++)

gsl_vector_get (v, 1);

grad[0]);
grad[1]);

gsl_vector =xdf)

void xparams, double «f,
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{for (7=0; J<SIZE; j++)
{H[1]1[J].re=0;
H[i][J].im=0;
W[i][J].re=H_O0[i][]].re=0;
W[i] [§].im=H_0[i] [j].im=0;
Op[i][3].re=Op[i] [§].im=0;
dHomega [i] [j].re=dHlam[i] [
dHomega [i] [j] .im=dHlam[i] [
}

jl
jl

}

H_O0[0][0].re=0;
H_O0[1][1].re=1;
Opl[l][1l].re=1;
PHICERO([O] .re=1;
PHICERO[O] .im=0;
PHICERO[1] .re=0;
PHICERO[1].im=0;

L e e

printf ("EMPEZAMOS\n") ;
printf ("Empezamos con el calculo del
gsl_multimin_function_fdf my_func;

double p[l] = {0};

my_func.n = 2; /% number of function
my_func.f = &my_f£f;

my_func.df = &my_df;

my_func.fdf = &my_£fdf;
my_func.params = (void x)p;

int iter = 0;

int status;

const gsl multimin_ fdfminimizer_type
gsl _multimin_fdfminimizer =xs;
gsl_vector =xx;

/* Starting point, x = (0.001,0.9) x/
x = gsl_vector_alloc (2);
gsl_vector_set (x, 0, 0.01);
gsl_vector_set (x, 1, 0.8);

//Para escoger el Algoritmo de minimizacion entre los

multiples que permite GSL

.re=0;
.im=0;

maximo\n") ;

components

*T;

T = gsl_multimin_fdfminimizer_conjugate_fr;

*/
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//T = gsl_multimin_fdfminimizer_vector_bfgs2;

// T = gsl_multimin_fdfminimizer_conjugate_pr;
// T = gsl_multimin_fdfminimizer_steepest_descent;
s = gsl_multimin_fdfminimizer_alloc (T, 2);
gsl_multimin_fdfminimizer_set (s, &my_func, x, 0.001, le-3)
4
do
{
iter++;
status = gsl_multimin_fdfminimizer_iterate (s);
printf ("\%5d \%.5f \%.5f \%10.5f\n", iter,
gsl_vector_get (s—>x, 0), gsl_vector_get (s-—>x, 1)
y—(s=>£));
if (status)
break;
status = gsl_multimin_test_gradient (s—->gradient, 1le-3)
if (status == GSL_SUCCESS)
{ printf ("Minimum found at:\n");
printf ("\%5d \%.5f \%.5f \%10.5f\n", iter,
gsl_vector_get (s—>x, 0), gsl_vector_get (s—>x,
1),s—>f);
}
}
while (status == GSL_CONTINUE && iter < 100);

gsl_multimin_fdfminimizer_

gsl_vector_free (x);
printf ("\n \t FIN\n");

return 0;

complex multiplica (complex a,
{complex tem;
tem.re=a.re*b.re—-a.imxb.im;
tem.im=a.rexb.imt+a.imxb.re;
return tem;

}

complex conjugado (complex a)
{complex tem;

tem.im=-a.im;

tem.re=a.re;

free (s);

complex b)
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return tem;

//——— FUNCION QUE DETERMINA EL VALOR DEL OPERADOR A TRAVES DE
LA EVOLUCION
double MiF (double *parametros)
{ double solucion=0;
int 1, j, k;
complex tem,tem2;
complex phi[SIZE], phi2[SIZE];
double t;

for (i=0; 1<SIZE; i++)
{
phi[i] .re=PHICERO[1] .re;
phi[i] .im=PHICERO[i].im;

for (t=0; t<TMAX; t+=DT)
{
//Calculo el Hamiltoniano en el Instante t
actualiza (parametros,t+DT/2);

//Inicializo phi2 que son las cordenadas de la funcion
de Ondas, en el paso siguiente.
for (i=0; 1<SIZE; i++)
{
phi2[i].re=0;
phi2[i].im=0;
}

//Calculo el operador evolucion
actualizaevolucion();

//Y lo aplico
for (i=0;1<SIZE; i++)
{tem.re=0;
tem.im=0;
for (j=0; J<SIZE; j++)
{tem.re+=(multiplica (U[i][j]l,phi[]])) .re;
tem.im+=(multiplica(U[i][j],phi[]])) .1im;
t
phi2[i] .re=phi[i].re+tem.re;
phi2[i] .im=phi[i].im+tem.im;
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//Colocamos la funcion de Ondas al principio del bucle
for (i=0; 1<SIZE; i++)

{

phi[i].re=phi2[i].re;

phi[i].im=phi2[i].im;

}

solucion=0;
for (i=0;1<SIZE; i++)
{
tem.re=0;
tem.im=0;
for (j=0; J<SIZE; j++)
{
tem.re+=multiplica (Op[i] [j],phi[]]) .re;
tem.im+=multiplica (Op[i][Jj],phi[7]) .im;
}
soluciont=multiplica (conjugado (phi[i]), tem) .re;

}

return solucion;

void MiDF (double xparametros, double xgradiente)
{ int 1, 3, k;

complex tem,tem2;

complex phi[SIZE], phi2[SIZE];

complex xi[SIZE], xi2[SIZE];

double t,acumulador;

for (i=0; 1<SIZE; i++)
gradiente[i]=0;

for (i=0; 1<SIZE; i++)

phi[i] .re=PHICERO[1] .re;
phi[i] .im=PHICERO[i].im;

for (t=0; t<TMAX; t+=DT)

{

//Calculo el Hamiltoniano en el Instante t
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actualiza (parametros, t+
DT/2);

//Inicializo phi2 que son las cordenadas de la funcion
de Ondas, en el paso siguiente.
for (i=0; 1<SIZE; i++)
{
phi2[i].re=0;
phi2[i].im=0;
}

//Calculo el operador evolucion
actualizaevolucion();

//Y lo aplico
for (i=0;1<SIZE; i++)
{tem.re=0;
tem.im=0;
for (j=0; J<SIZE; j++)
{tem.re+=(multiplica(U[i][j],phi[3])) .re;
tem.im+=(multiplica(U[1i][j],phi[]])) .im;
}
phi2[i] .re=phi[i].re+tem.re;
phi2[i] .im=phi[i].im+tem.im;

}

//Colocamos la funcion de Ondas al principio del bucle
for (i=0; 1<SIZE; i++)

{

phi[i].re=phi2[i].re;

phi[i] .im=phi2[i].im;

}

//—-——— Calculo Xi en en instante T
for (i=0; 1<SIZE; i++)
{tem.re=0;
tem.im=0;
for (j=0; jJ<SIZE; j++)
{tem.re+=multiplica(Op[i] [j],phi[]]) .re;
tem.im+=multiplica (Op[i][Jj],phi[]]) .1im;

xi[i] .re=tem.re;
xi[i].im=tem.im;
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for (t=TMAX; t>0;t—=DT)
{
//Calculo el Hamiltoniano en el Instante t
actualiza (parametros, t—
DT/2);

//Inicializo phi2 que son las cordenadas de la funcion
de Ondas, en el paso siguiente.
for (i=0; 1<SIZE; i++)
{
phi2[i] .re=0;
phi2[i].im=0;
xi2[1].re=0;
xi2[1i].im=0;

//Calculo el operador evolucion
actualizaevolucion2 () ;

//Y lo aplico
for (i=0;1<SIZE; i++)
{tem.re=0;
tem.im=0;
for (j=0; j<SIZE; j++)
{tem.re+=(multiplica(U[i] [j],phi[]j])) .re;
tem.im+=(multiplica(U[1i][j],phi[3])) .1im;
}
phi2[i] .re=phi[i].ret+tem.re;
phi2[i] .im=phi[i] .im+tem.im;

}
//Lo mismo para xi

for (1i=0; 1<SIZE; i++)
{tem.re=0;
tem.im=0;
for (j=0; J<SIZE; j++)

{tem.re+=(multiplica(U[i] [j],xi[]J])) .re;
tem.im+=(multiplica(U[i][j],xi[3])) .im;
}

xi2[i] .re=xi[i] .re+tem.re;

xi2[i] .im=xi[i].im+tem.im;

}

//Colocamos la funcion de Ondas al principio del bucle
for (i=0; 1<SIZE; i++)

{

phi[i].re=phi2[i].re;

phi[i] .im=phi2[i] .im;
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xi[i] .re=xi2[i] .re;
x1[i] .im=xi2[i] .im;

//————-ACUMULAMOS PARA CALCULAR LA INTEGRAL
acumulador=0;
for (i=0;1<SIZE; i++)
{
tem.re=0;
tem.im=0;
for (j=0; j<SIZE; j++)
{tem.re+=multiplica(dHlam([i] [j],phi[]]) .re;
tem.im+=multiplica(dHlam([i][j],phi[]]) .im;
}

acumulador+=multiplica (conjugado (xi[i]),tem) .im;

gradiente[0] +=acumulador;

acumulador=0;
for (i=0;1<SIZE; i++)
{
tem.re=0;
tem.im=0;
for (j=0; J<SIZE; j++)
{tem.re+=multiplica (dHomegal[i] [J],phi[]]) .re;
tem.im+=multiplica (dHomega[i] [j],phi[]]) .im;
}

acumulador+=multiplica (conjugado(xi[i]),tem) .im;

gradiente[l]+=acumulador;

for (i=0;i<2;i++)
{gradiente[i]=-2%xDTxgradiente[i];}

[/ eeeeann.. ACTUALIZADOR DE LOS OPERADORES AL INSTANTE T

void actualiza (double *parametros, double t)
{int 1, j;

double LAM=parametros[0];

double OMEGA=parametros[l];

W[O0][1] .re=cos (OMEGAxt) xLAM;
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W[O0][1] .im=sin (OMEGAxt) +LAM;
W[1][0] .re=cos (OMEGAxt) xLAM;
W[1][0].im=-sin (OMEGAxt) xLAM;

//Actualizo las derivadas para el gradiente

dHomega [0] [1] .re=-sin (OMEGAxt) *LAMxt;
dHomega [0] [1] .im=cos (OMEGAx*t) *LAMx*t;
dHomega [1l] [0] .re=-sin (OMEGAxt) *xLAM«*t;
dHomega [1] [0] . im=-cos (OMEGA*t) *LAMxt;
dHlam[0] [1] .re=cos (OMEGA*t) ;
dHlam[O0] [1] .im=sin (OMEGA«*t) ;
dHlam[1] [0] .re=cos (OMEGAx*t) ;
dHlam[1] [0] .im=-sin (OMEGA=*t) ;

for (i=0; 1<SIZE; i++)
{for (3=0; J<SIZE; j++)
{
H{1][J].re=H_O[1i][J].re+W[i][]]
H{i][3].im=H_O[i][3J].im+W[i] []]

[/, ACTUALIZA EL OPERADOR EVOLUCION
void actualizaevolucion (void)
{int 1, 3j,k;

complex tem[SIZE] [SIZE],tem2[SIZE] [SIZE];

complex sum;

for (i=0; 1<SIZE;i++)

for (j=0; j<SIZE; j++)
{

U[i][J].re=0;
U[i] []].im=0;
tem[i] [j] .re=0;
tem[1][]j].im=0;
tem[1i][]].re=0;
tem[i] [F].1im=0;

//Calculo el termino lineal y se lo a ado al operador

evolucion
for (i=0; 1<SIZE;i++)

10

.re;
.im;



475

476

471

478

479

480

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

for (j=0; j<SIZE; j++)
{

tem[i] [j] .re=—(multiplica (H[i][J],I)) .rexDT;
tem[1i] [j].im=-(multiplica (H[i][J],I)) .imxDT;

}

for (i=0; i<SIZE;i++)
for (j=0; J<SIZE; j++)
Ulil[Jl=tem[i][]];

//Calculo el termino de orden 2 y se lo a ado al operadoe

Evolucion:

for (i=0;1<SIZE; i++)
for (j=0; j<SIZE; j++)
{
sum.re=0;
sum.im=0;
for (k=0;k<SIZE; k++)
{

sum.re+=tem([i] [k].re*xH[k] [J].re«DT;
sum.im+=tem[i] [k].im*xH[k] [J].imxDT;

}

tem2[1i] [j] .re=—(multiplica(sum,I)) .rex0.
tem2[i] [J].im=- (multiplica(sum,I)) .imx*0.

for (i=0; i<SIZE; i++)
for (7=0; J<SIZE; j++)
{
U[i][]] .ret=tem2[i][]].re;
U[i][J].im+=tem2[i] [J].1im;

//Orden 3

for (i=0; i<SIZE; i++)
for (j=0; J<SIZE; j++)
{
sum.re=0;
sum.im=0;
for (k=0;k<SIZE; k++)
{

sum.ret=tem2[1] [k] .rexH[k][JF].
sum.im+=tem2 [i] [k].im*H[k] [J].

}

tem[i] [J].re=—(multiplica (sum, I)
tem[i] [Jj].im=-(multiplica (sum, I)

11

rexDT;
im*DT;

re/3;
im/3;



524 for (i=0; i<SIZE;i++)

525 for (j=0; J<SIZE; j++)

526 {

527 U[i][]].re+t=tem[i] []].re;
528 U[i][J].im+=tem[i] [F].im;
529 }

530

531 //Orden 4

532
533 for (i=0; 1<SIZE; i++)

534 for (j=0; J<SIZE; j++)

535 {

536 sum.re=0;

537 sum.im=0;

538 for (k=0; k<SIZE; k++)

539 {

540 sum.re+=tem[i] [k].rexH[k] [j].rexDT;

541 sum.im+=tem([i] [k].im*H[k] [J].im«DT;

542 }

543 tem2[1i] [J].re=—(multiplica(sum,I)).re/4;

544 tem2[1] [J].im=— (multiplica(sum,I)).im/4;

545 }

546

547 for (i=0; 1<SIZE;i++)

548 for (j=0; J<SIZE; j++)

549 {

550 U[i][]].re+t=tem2([i] []J].re;

551 U[i][J] .im+=tem2[i][]] .im;

552 }

553 }

554

555

556 [/ i ACTUALIZA EL OPERADOR DE EVOLUCION TEMPORAL HACIA
ATRAS.......

557
558 void actualizaevolucion?2 (void)
559 {int i, J,%k;

560 complex tem[SIZE] [SIZE],tem2[SIZE] [SIZE];
s61 complex sum;

562 for (i=0;i<SIZE;i++)

563 for (j=0; J<SIZE; j++)
564 {

565 Uli][3].re=0;
566 U[i][3].1im=0;

567 tem[1i][]].re=0;
568 tem[i] [F].1im=0;
569 tem[i] [j] .re=0;
570 tem[1i][]].im=0;
571 }

572

12



573
574

575

576

577

578

579

580

581

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

//Calculo el termino lineal y se lo a ado al operador
evolucion
for (i=0;1i<SIZE; i++)
for (j=0; j<SIZE; j++)
{
tem[i] [J] .re=—(multiplica (H[i][]J],I)) .rex(-DT);
tem[i] [j].im=—(multiplica (H[i][J],I)) .imx (-DT);

for (i=0; 1<SIZE;i++)
for (j=0; J<SIZE; j++)
Uli][Jl=tem[i] [J];

//Calculo el termino de orden 2 y se lo a ado al operadoe

Evolucion:

for (i=0; i<SIZE;i++)
for (j=0; J<SIZE; j++)
{
sum.re=0;
sum.im=0;
for (k=0;k<SIZE; k++)
{
sum.re+=tem([1i] [k] .rexH[k] [J].rex (-DT);
sum.im+=tem[i] [k].im*H[k] [J].im* (-DT);
}
tem2[i] [Jj].re=—(multiplica(sum,I)).rex0.5;
tem2[1i] [j].im=-(multiplica(sum,I)).im*x0.5;

for (i=0; 1<SIZE;i++)
for (j=0; J<SIZE; j++)
{
U[i][J].re+t=tem2[i] []].re;
Uli][3].im+=tem2[i][7].im;

//Orden 3

for (i=0; 1<SIZE;i++)
for (j=0; J<SIZE; j++)
{

sum.re=0;

sum.im=0;

for (k=0; k<SIZE; k++)

{

sum.re+=tem2[i] [k] .rexH[k] [j] .rex (-DT);
sum.im+=tem2 [i] [k] .im*xH[k] [J].imx (-DT) ;
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621

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

}
tem[i] [Jj].re=—(multiplica (sum,I)) .re/3;
tem[i] [j].im=- (multiplica (sum,I)) .im/3;

for (i=0; 1<SIZE;i++)
for (j=0; J<SIZE; j++)
{
U[i][J].re+t=tem[i] []].re;
U[i][Jj].im+=tem[i] [J].im;

//Orden 4

for (i=0; 1<SIZE; i++)
for (j=0; J<SIZE; j++)
{
sum.re=0;
sum.im=0;
for (k=0; k<SIZE; k++)
{
sum.re+=tem[i] [k] .rexH[k] [J].rex (-DT);
sum.im+=tem[1i] [k] .imxH[k] [J].im* (-DT);
}
tem2[i] [J].re=—(multiplica(sum,I)).re/4;
tem2[1i] [J].im=—(multiplica (sum,I)).im/4;

for (i=0;i<SIZE; i++)
for (j=0; J<SIZE; j++)
{
U[i][J].ret=tem2[1i] [J].re;
U[i][J] .im+=tem2[i] [J].im;
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