MODELIZACION COMPUTACIONAL DE NANOESTRUCTURAS: INTRODUCCION A
LA ESPECTROSCOPIA TEORICA

ANEXOS DEL TFG
DE

ANDRES MARIA BELAZA
PROMOCION 2010-2014

20 DE JUNIO DE 2014

DIRECTOR:
DR. ALBERTO CASTRO

PONENTE:
DRr. JOsE Luis ALONSO

UNIVERSIDAD DE ZARAGOZA
FacuLTAD DE CIENCIAS
DEPARTAMENTO DE FisicaA TEORICA

Anexo A. Formula de Rabi para interacciones armoénicas.

0.1. Imagen de interaccién

Para poder demostrar facilmente la expresion de la formula de Rabi introducimos la imagen de inter-
accion. Supongamos que tenemos un Hamiltoniano de la forma siguiente:

H=Ho+ V() (1)

En una base de autoestados del Hamiltoniano sin perturbar, Ho. Y definimos la funcién de ondas |a)
en la imagen de interaccién a partir de la funcién de ondas en la imagen de Schrondinger |«) ¢ de la siguiente
manera, manteniendo unidades atémicas, h = 1:

)y = e |a) g (2)

La interpretacién es que la base de la interaccion es la base que evoluciona en el tiempo de la forma
que evolucionaria la base si no hubiera perturbaciéon. De esta forma, podemos reescribir la ecuacién de
Schondinger en la imagen de interaccién:

ot
= —HO . eiHot ‘a>S + eiHotHO |a>S + eiHotV |a>S

; o)
i— |y = —Hp - et |a) ¢ 4 eHot <z]a>s> =.. (3)

Pero el Hamiltoniano sin perturbar conmuta con su exponencial asi que:

iat ’ >T — iHotVefiHot ’a>1
.0
gen) = V' |a), (4)

Con V' = etfoty/e=Hot o] potencial en la imagen de interaccién. Con esto podemos ahora calcular como
varian las distintas componentes de una base a lo largo del tiempo.En general, cualquier funcién de Ondas
puede ser desarrollada en funcién de elementos de la base:

j@)p = ealt) n) ()

n

Y si aplicamos la ecuacién de Schondinger a estos coeficientes

ch) |n) = e’HotVe*ZHOthm) |m)
i én(t) |n) =NV (Z e~ Emt i) cm(t)>

n m

Si multiplico por la izquierda el autovector (n|

ity = (n| etHoty (Z e tEmt |m) cm(t)) = e tEnt (| V/ (Z e Emt |m) cm(t))

m

Obteniendo asi una expresiéon para la evolucion de los coeficientes

tn=—iy_ e EnTE (0] V |m) ey () (6)

m

0.2. Expresién de Rabi

Ahora estamos preparados para plantear nuestro problema de dos niveles. Vamos a resolverlo para
c1(t =0) =1, e2(t = 0) = 0 y para una interaccién del tipo. (1| V [1) = (2| V' |2) =0, (1| V |2) = Wit y
(2| V1) = ((1] V' |2))*. A partir de (6) obtenemos:

61 = —ie/BL Bt ety = T et (7)

éz = —Z'W12€_ZAt

Con A =w — (E2 — E). Si volvemos a derivar para ¢;

c1 = AWlQBZAtCQ + —ZW12€ZAt62 = A7 (—ZngezAtCQ) + —ZW12€ZAt (—ZW12€ ZAt) =1A¢é — W12261

&1 — iAé + Wie =0

Que presenta soluciones del tipo ¢; = Ae*! + Be*~t donde A\ y A_ son las soluciones del polinomio
caracteristico:

i LA
Ay = §(A:|:\/A2+4W122) :z(izlza)

Donde, para evitar arrastrar la raiz, hemos definido o = 4/ %2 + W122. Para calcular cs, basta con aplicar
(7), y derivando c;.

. . . . o e . [0
Si aplicamos las condiciones iniciales ¢; = 1, ¢co = 0, podemos obtenerA =

A A
2 yp = %3
2a Y 2c

Nuestro interés cae en la probabilidad de encontrar en el autoestado |2) a un tiempo T, es decir |y (T)|?,
por lo que primero calculamos ¢y (7))

1 sy a—% AL a+% AL i =i) A2 glat _ giat
62_W1262< AR R Pl C ol O T Wia \& T 1 2%

Insertando la definicién de « y sustituyendo la definicién de la funcion seno a partir de la exponencial

compleja:
—iW , A2
C2 = %ez%tsin (-t ngt) (8)
NERTARAN

Calculando su cuadrado, obtenemos la expresion de la formula de Rabi para este tipo de oscilacién.

W32 A2
Py = |co)? = ——12_gip? — + Wit 9
12 = |ca 5w, V2 i 9)

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Anexo B. Implementacion computacional en
codigo C.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <gsl/gsl_multimin.h>

#idefine SIZE 2
#define DT 0.00001
#define TMAX 20
#idefine PI 3.1415
#define CONTROL 1000

//La estructura numero complejo
struct complex
{ double re;
double im;
} typedef complex;

complex H[SIZE] [SIZE];

complex dHomega[SIZE] [SIZE]; //Derivadas respecto a las
variables

complex dHlam[SIZE] [SIZE];

complex H_O[SIZE] [SIZE];//Hamiltoniano Molecular

complex W[SIZE] [SIZE];//Perturbacion

complex U[SIZE] [SIZE];//Operador evolucion

complex Op[SIZE] [SIZE];//Operador a medir

complex PHICERO[SIZE];

complex I;

double MiF (double xparametros);

void MiDF (double xparametros, double xgradiente);
void actualiza (double *parametros, double tiempo);
void actualizaevolucion (void) ;

void actualizaevolucion2 (void) ;

complex multiplica (complex, complex);
complex conjugado (complex) ;

] [===mmmmm== ESTRUCTURAS PARA LA GSL. —-———————-—
//——NOTA: Las cambio de signo porque el algoritmo busca un
minimo, y nosotros buscamos un maximo.
double my_f (const gsl_vector *v, wvoid xparams)
{
double +*p;

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

p = (double x)malloc (2xsizeof (double)) ;

pl0] = gsl_vector_get(v, 0);
pll] = gsl_vector_get (v, 1);

return -MiF (p);
}
// The gradient of

fl

df = (df/dx,
void xparams,

void my_df (const gsl_vector v,

{

double xp;

double xgrad;
p = (double *)malloc (2xsizeof (double)) ;
grad = (double x)malloc (2xsizeof (double));

pl0] = gsl_vector_get (v, 0);

pll]

MiDF (p, grad) ;
grad[0]=-grad[0];
grad[l]=-grad[1l]

’

gsl_vector_set (df,
gsl_vector_set (df,
}

/* Compute both f and df together.
void my_fdf (const gsl_vector =xx,

gsl_vector xdf)
{

0,
1,

*f = my_f(x, params);
my_df (x, params, df);

}

//

int main ()

{

int i, 9;

I.re=0;
I.im=1;

//Inicializaciones de las matrices.
for (i=0; 1<SIZE; i++)

gsl_vector_get (v, 1);

grad[0]);
grad[1]);

gsl_vector =xdf)

void xparams, double «f,

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

110

111

113

114

116

117

119

120

122

123

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

{for (7=0; J<SIZE; j++)
{H[1]1[J].re=0;
H[i][J].im=0;
W[i][J].re=H_O0[i][]].re=0;
W[i] [§].im=H_0[i] [j].im=0;
Op[i][3].re=Op[i] [§].im=0;
dHomega [i] [j].re=dHlam[i] [
dHomega [i] [j] .im=dHlam[i] [
}

jl
jl

}

H_O0[0][0].re=0;
H_O0[1][1].re=1;
Opl[l][1l].re=1;
PHICERO([O] .re=1;
PHICERO[O] .im=0;
PHICERO[1] .re=0;
PHICERO[1].im=0;

L e e

printf ("EMPEZAMOS\n") ;
printf ("Empezamos con el calculo del
gsl_multimin_function_fdf my_func;

double p[l] = {0};

my_func.n = 2; /% number of function
my_func.f = &my_f£f;

my_func.df = &my_df;

my_func.fdf = &my_£fdf;
my_func.params = (void x)p;

int iter = 0;

int status;

const gsl multimin_ fdfminimizer_type
gsl _multimin_fdfminimizer =xs;
gsl_vector =xx;

/* Starting point, x = (0.001,0.9) x/
x = gsl_vector_alloc (2);
gsl_vector_set (x, 0, 0.01);
gsl_vector_set (x, 1, 0.8);

//Para escoger el Algoritmo de minimizacion entre los

multiples que permite GSL

.re=0;
.im=0;

maximo\n") ;

components

*T;

T = gsl_multimin_fdfminimizer_conjugate_fr;

*/

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

156

158

159

160

162

163

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

//T = gsl_multimin_fdfminimizer_vector_bfgs2;

// T = gsl_multimin_fdfminimizer_conjugate_pr;
// T = gsl_multimin_fdfminimizer_steepest_descent;
s = gsl_multimin_fdfminimizer_alloc (T, 2);
gsl_multimin_fdfminimizer_set (s, &my_func, x, 0.001, le-3)
4
do
{
iter++;
status = gsl_multimin_fdfminimizer_iterate (s);
printf ("\%5d \%.5f \%.5f \%10.5f\n", iter,
gsl_vector_get (s—>x, 0), gsl_vector_get (s-—>x, 1)
y—(s=>£));
if (status)
break;
status = gsl_multimin_test_gradient (s—->gradient, 1le-3)
if (status == GSL_SUCCESS)
{ printf ("Minimum found at:\n");
printf ("\%5d \%.5f \%.5f \%10.5f\n", iter,
gsl_vector_get (s—>x, 0), gsl_vector_get (s—>x,
1),s—>f);
}
}
while (status == GSL_CONTINUE && iter < 100);

gsl_multimin_fdfminimizer_

gsl_vector_free (x);
printf ("\n \t FIN\n");

return 0;

complex multiplica (complex a,
{complex tem;
tem.re=a.re*b.re—-a.imxb.im;
tem.im=a.rexb.imt+a.imxb.re;
return tem;

}

complex conjugado (complex a)
{complex tem;

tem.im=-a.im;

tem.re=a.re;

free (s);

complex b)

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

return tem;

//——— FUNCION QUE DETERMINA EL VALOR DEL OPERADOR A TRAVES DE
LA EVOLUCION
double MiF (double *parametros)
{ double solucion=0;
int 1, j, k;
complex tem,tem2;
complex phi[SIZE], phi2[SIZE];
double t;

for (i=0; 1<SIZE; i++)
{
phi[i] .re=PHICERO[1] .re;
phi[i] .im=PHICERO[i].im;

for (t=0; t<TMAX; t+=DT)
{
//Calculo el Hamiltoniano en el Instante t
actualiza (parametros,t+DT/2);

//Inicializo phi2 que son las cordenadas de la funcion
de Ondas, en el paso siguiente.
for (i=0; 1<SIZE; i++)
{
phi2[i].re=0;
phi2[i].im=0;
}

//Calculo el operador evolucion
actualizaevolucion();

//Y lo aplico
for (i=0;1<SIZE; i++)
{tem.re=0;
tem.im=0;
for (j=0; J<SIZE; j++)
{tem.re+=(multiplica (U[i][j]l,phi[]])) .re;
tem.im+=(multiplica(U[i][j],phi[]])) .1im;
t
phi2[i] .re=phi[i].re+tem.re;
phi2[i] .im=phi[i].im+tem.im;

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

//Colocamos la funcion de Ondas al principio del bucle
for (i=0; 1<SIZE; i++)

{

phi[i].re=phi2[i].re;

phi[i].im=phi2[i].im;

}

solucion=0;
for (i=0;1<SIZE; i++)
{
tem.re=0;
tem.im=0;
for (j=0; J<SIZE; j++)
{
tem.re+=multiplica (Op[i] [j],phi[]]) .re;
tem.im+=multiplica (Op[i][Jj],phi[7]) .im;
}
soluciont=multiplica (conjugado (phi[i]), tem) .re;

}

return solucion;

void MiDF (double xparametros, double xgradiente)
{ int 1, 3, k;

complex tem,tem2;

complex phi[SIZE], phi2[SIZE];

complex xi[SIZE], xi2[SIZE];

double t,acumulador;

for (i=0; 1<SIZE; i++)
gradiente[i]=0;

for (i=0; 1<SIZE; i++)

phi[i] .re=PHICERO[1] .re;
phi[i] .im=PHICERO[i].im;

for (t=0; t<TMAX; t+=DT)

{

//Calculo el Hamiltoniano en el Instante t

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

actualiza (parametros, t+
DT/2);

//Inicializo phi2 que son las cordenadas de la funcion
de Ondas, en el paso siguiente.
for (i=0; 1<SIZE; i++)
{
phi2[i].re=0;
phi2[i].im=0;
}

//Calculo el operador evolucion
actualizaevolucion();

//Y lo aplico
for (i=0;1<SIZE; i++)
{tem.re=0;
tem.im=0;
for (j=0; J<SIZE; j++)
{tem.re+=(multiplica(U[i][j],phi[3])) .re;
tem.im+=(multiplica(U[1i][j],phi[]])) .im;
}
phi2[i] .re=phi[i].re+tem.re;
phi2[i] .im=phi[i].im+tem.im;

}

//Colocamos la funcion de Ondas al principio del bucle
for (i=0; 1<SIZE; i++)

{

phi[i].re=phi2[i].re;

phi[i] .im=phi2[i].im;

}

//—-——— Calculo Xi en en instante T
for (i=0; 1<SIZE; i++)
{tem.re=0;
tem.im=0;
for (j=0; jJ<SIZE; j++)
{tem.re+=multiplica(Op[i] [j],phi[]]) .re;
tem.im+=multiplica (Op[i][Jj],phi[]]) .1im;

xi[i] .re=tem.re;
xi[i].im=tem.im;

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

for (t=TMAX; t>0;t—=DT)
{
//Calculo el Hamiltoniano en el Instante t
actualiza (parametros, t—
DT/2);

//Inicializo phi2 que son las cordenadas de la funcion
de Ondas, en el paso siguiente.
for (i=0; 1<SIZE; i++)
{
phi2[i] .re=0;
phi2[i].im=0;
xi2[1].re=0;
xi2[1i].im=0;

//Calculo el operador evolucion
actualizaevolucion2 () ;

//Y lo aplico
for (i=0;1<SIZE; i++)
{tem.re=0;
tem.im=0;
for (j=0; j<SIZE; j++)
{tem.re+=(multiplica(U[i] [j],phi[]j])) .re;
tem.im+=(multiplica(U[1i][j],phi[3])) .1im;
}
phi2[i] .re=phi[i].ret+tem.re;
phi2[i] .im=phi[i] .im+tem.im;

}
//Lo mismo para xi

for (1i=0; 1<SIZE; i++)
{tem.re=0;
tem.im=0;
for (j=0; J<SIZE; j++)

{tem.re+=(multiplica(U[i] [j],xi[]J])) .re;
tem.im+=(multiplica(U[i][j],xi[3])) .im;
}

xi2[i] .re=xi[i] .re+tem.re;

xi2[i] .im=xi[i].im+tem.im;

}

//Colocamos la funcion de Ondas al principio del bucle
for (i=0; 1<SIZE; i++)

{

phi[i].re=phi2[i].re;

phi[i] .im=phi2[i] .im;

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

xi[i] .re=xi2[i] .re;
x1[i] .im=xi2[i] .im;

//————-ACUMULAMOS PARA CALCULAR LA INTEGRAL
acumulador=0;
for (i=0;1<SIZE; i++)
{
tem.re=0;
tem.im=0;
for (j=0; j<SIZE; j++)
{tem.re+=multiplica(dHlam([i] [j],phi[]]) .re;
tem.im+=multiplica(dHlam([i][j],phi[]]) .im;
}

acumulador+=multiplica (conjugado (xi[i]),tem) .im;

gradiente[0] +=acumulador;

acumulador=0;
for (i=0;1<SIZE; i++)
{
tem.re=0;
tem.im=0;
for (j=0; J<SIZE; j++)
{tem.re+=multiplica (dHomegal[i] [J],phi[]]) .re;
tem.im+=multiplica (dHomega[i] [j],phi[]]) .im;
}

acumulador+=multiplica (conjugado(xi[i]),tem) .im;

gradiente[l]+=acumulador;

for (i=0;i<2;i++)
{gradiente[i]=-2%xDTxgradiente[i];}

[/ eeeeann.. ACTUALIZADOR DE LOS OPERADORES AL INSTANTE T

void actualiza (double *parametros, double t)
{int 1, j;

double LAM=parametros[0];

double OMEGA=parametros[l];

W[O0][1] .re=cos (OMEGAxt) xLAM;

426

427

428

429

430

431

432

433

434

435

436

437

438

439

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

W[O0][1] .im=sin (OMEGAxt) +LAM;
W[1][0] .re=cos (OMEGAxt) xLAM;
W[1][0].im=-sin (OMEGAxt) xLAM;

//Actualizo las derivadas para el gradiente

dHomega [0] [1] .re=-sin (OMEGAxt) *LAMxt;
dHomega [0] [1] .im=cos (OMEGAx*t) *LAMx*t;
dHomega [1l] [0] .re=-sin (OMEGAxt) *xLAM«*t;
dHomega [1] [0] . im=-cos (OMEGA*t) *LAMxt;
dHlam[0] [1] .re=cos (OMEGA*t) ;
dHlam[O0] [1] .im=sin (OMEGA«*t) ;
dHlam[1] [0] .re=cos (OMEGAx*t) ;
dHlam[1] [0] .im=-sin (OMEGA=*t) ;

for (i=0; 1<SIZE; i++)
{for (3=0; J<SIZE; j++)
{
H{1][J].re=H_O[1i][J].re+W[i][]]
H{i][3].im=H_O[i][3J].im+W[i] []]

[/, ACTUALIZA EL OPERADOR EVOLUCION
void actualizaevolucion (void)
{int 1, 3j,k;

complex tem[SIZE] [SIZE],tem2[SIZE] [SIZE];

complex sum;

for (i=0; 1<SIZE;i++)

for (j=0; j<SIZE; j++)
{

U[i][J].re=0;
U[i] []].im=0;
tem[i] [j] .re=0;
tem[1][]j].im=0;
tem[1i][]].re=0;
tem[i] [F].1im=0;

//Calculo el termino lineal y se lo a ado al operador

evolucion
for (i=0; 1<SIZE;i++)

10

.re;
.im;

475

476

471

478

479

480

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

for (j=0; j<SIZE; j++)
{

tem[i] [j] .re=—(multiplica (H[i][J],I)) .rexDT;
tem[1i] [j].im=-(multiplica (H[i][J],I)) .imxDT;

}

for (i=0; i<SIZE;i++)
for (j=0; J<SIZE; j++)
Ulil[Jl=tem[i][]];

//Calculo el termino de orden 2 y se lo a ado al operadoe

Evolucion:

for (i=0;1<SIZE; i++)
for (j=0; j<SIZE; j++)
{
sum.re=0;
sum.im=0;
for (k=0;k<SIZE; k++)
{

sum.re+=tem([i] [k].re*xH[k] [J].re«DT;
sum.im+=tem[i] [k].im*xH[k] [J].imxDT;

}

tem2[1i] [j] .re=—(multiplica(sum,I)) .rex0.
tem2[i] [J].im=- (multiplica(sum,I)) .imx*0.

for (i=0; i<SIZE; i++)
for (7=0; J<SIZE; j++)
{
U[i][]] .ret=tem2[i][]].re;
U[i][J].im+=tem2[i] [J].1im;

//Orden 3

for (i=0; i<SIZE; i++)
for (j=0; J<SIZE; j++)
{
sum.re=0;
sum.im=0;
for (k=0;k<SIZE; k++)
{

sum.ret=tem2[1] [k] .rexH[k][JF].
sum.im+=tem2 [i] [k].im*H[k] [J].

}

tem[i] [J].re=—(multiplica (sum, I)
tem[i] [Jj].im=-(multiplica (sum, I)

11

rexDT;
im*DT;

re/3;
im/3;

524 for (i=0; i<SIZE;i++)

525 for (j=0; J<SIZE; j++)

526 {

527 U[i][]].re+t=tem[i] []].re;
528 U[i][J].im+=tem[i] [F].im;
529 }

530

531 //Orden 4

532
533 for (i=0; 1<SIZE; i++)

534 for (j=0; J<SIZE; j++)

535 {

536 sum.re=0;

537 sum.im=0;

538 for (k=0; k<SIZE; k++)

539 {

540 sum.re+=tem[i] [k].rexH[k] [j].rexDT;

541 sum.im+=tem([i] [k].im*H[k] [J].im«DT;

542 }

543 tem2[1i] [J].re=—(multiplica(sum,I)).re/4;

544 tem2[1] [J].im=— (multiplica(sum,I)).im/4;

545 }

546

547 for (i=0; 1<SIZE;i++)

548 for (j=0; J<SIZE; j++)

549 {

550 U[i][]].re+t=tem2([i] []J].re;

551 U[i][J] .im+=tem2[i][]] .im;

552 }

553 }

554

555

556 [/ i ACTUALIZA EL OPERADOR DE EVOLUCION TEMPORAL HACIA
ATRAS.......

557
558 void actualizaevolucion?2 (void)
559 {int i, J,%k;

560 complex tem[SIZE] [SIZE],tem2[SIZE] [SIZE];
s61 complex sum;

562 for (i=0;i<SIZE;i++)

563 for (j=0; J<SIZE; j++)
564 {

565 Uli][3].re=0;
566 U[i][3].1im=0;

567 tem[1i][]].re=0;
568 tem[i] [F].1im=0;
569 tem[i] [j] .re=0;
570 tem[1i][]].im=0;
571 }

572

12

573
574

575

576

577

578

579

580

581

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

//Calculo el termino lineal y se lo a ado al operador
evolucion
for (i=0;1i<SIZE; i++)
for (j=0; j<SIZE; j++)
{
tem[i] [J] .re=—(multiplica (H[i][]J],I)) .rex(-DT);
tem[i] [j].im=—(multiplica (H[i][J],I)) .imx (-DT);

for (i=0; 1<SIZE;i++)
for (j=0; J<SIZE; j++)
Uli][Jl=tem[i] [J];

//Calculo el termino de orden 2 y se lo a ado al operadoe

Evolucion:

for (i=0; i<SIZE;i++)
for (j=0; J<SIZE; j++)
{
sum.re=0;
sum.im=0;
for (k=0;k<SIZE; k++)
{
sum.re+=tem([1i] [k] .rexH[k] [J].rex (-DT);
sum.im+=tem[i] [k].im*H[k] [J].im* (-DT);
}
tem2[i] [Jj].re=—(multiplica(sum,I)).rex0.5;
tem2[1i] [j].im=-(multiplica(sum,I)).im*x0.5;

for (i=0; 1<SIZE;i++)
for (j=0; J<SIZE; j++)
{
U[i][J].re+t=tem2[i] []].re;
Uli][3].im+=tem2[i][7].im;

//Orden 3

for (i=0; 1<SIZE;i++)
for (j=0; J<SIZE; j++)
{

sum.re=0;

sum.im=0;

for (k=0; k<SIZE; k++)

{

sum.re+=tem2[i] [k] .rexH[k] [j] .rex (-DT);
sum.im+=tem2 [i] [k] .im*xH[k] [J].imx (-DT) ;

13

621

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

}
tem[i] [Jj].re=—(multiplica (sum,I)) .re/3;
tem[i] [j].im=- (multiplica (sum,I)) .im/3;

for (i=0; 1<SIZE;i++)
for (j=0; J<SIZE; j++)
{
U[i][J].re+t=tem[i] []].re;
U[i][Jj].im+=tem[i] [J].im;

//Orden 4

for (i=0; 1<SIZE; i++)
for (j=0; J<SIZE; j++)
{
sum.re=0;
sum.im=0;
for (k=0; k<SIZE; k++)
{
sum.re+=tem[i] [k] .rexH[k] [J].rex (-DT);
sum.im+=tem[1i] [k] .imxH[k] [J].im* (-DT);
}
tem2[i] [J].re=—(multiplica(sum,I)).re/4;
tem2[1i] [J].im=—(multiplica (sum,I)).im/4;

for (i=0;i<SIZE; i++)
for (j=0; J<SIZE; j++)
{
U[i][J].ret=tem2[1i] [J].re;
U[i][J] .im+=tem2[i] [J].im;

14

