000149885 001__ 149885
000149885 005__ 20250128160611.0
000149885 0247_ $$2doi$$a10.1113/JP279476
000149885 0248_ $$2sideral$$a133050
000149885 037__ $$aART-2020-133050
000149885 041__ $$aeng
000149885 100__ $$0(orcid)0000-0002-3194-7796$$aPerez-Zabalza, Maria$$uUniversidad de Zaragoza
000149885 245__ $$aModulation of cortical slow oscillatory rhythm by GABAB receptors: an in vitro experimental and computational study
000149885 260__ $$c2020
000149885 5060_ $$aAccess copy available to the general public$$fUnrestricted
000149885 5203_ $$aSlow wave oscillations (SWOs) dominate cortical activity during deep sleep, anaesthesia and in some brain lesions. SWOs are composed of periods of activity (Up states) interspersed with periods of silence (Down states). The rhythmicity expressed during SWOs integrates neuronal and connectivity properties of the network and is often altered under pathological conditions. Adaptation mechanisms as well as synaptic inhibition mediated by GABAB receptors (GABAB-Rs) have been proposed as mechanisms governing the termination of Up states. The interplay between these two mechanisms is not well understood, and the role of GABAB-Rs controlling the whole cycle of the SWO has not been described. Here we contribute to its understanding by combining in vitro experiments on spontaneously active cortical slices and computational techniques. GABAB-R blockade modified the whole SWO cycle, not only elongating Up states, but also affecting the subsequent Down state duration. Furthermore, while adaptation tends to yield a rather regular behaviour, we demonstrate that GABAB-R activation desynchronizes the SWOs. Interestingly, variability changes could be accomplished in two different ways: by either shortening or lengthening the duration of Down states. Even when the most common observation following GABAB-Rs blocking is the lengthening of Down states, both changes are expressed experimentally and also in numerical simulations. Our simulations suggest that the sluggishness of GABAB-Rs to follow the excitatory fluctuations of the cortical network can explain these different network dynamics modulated by GABAB-Rs.
000149885 536__ $$9info:eu-repo/grantAgreement/EC/H2020/945539/EU/Human Brain Project Specific Grant Agreement 3$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 945539-HBP-SGA3$$9info:eu-repo/grantAgreement/ES/MINECO/BFU2017-85048-R
000149885 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000149885 590__ $$a5.182$$b2020
000149885 591__ $$aPHYSIOLOGY$$b12 / 81 = 0.148$$c2020$$dQ1$$eT1
000149885 591__ $$aNEUROSCIENCES$$b76 / 273 = 0.278$$c2020$$dQ2$$eT1
000149885 592__ $$a1.802$$b2020
000149885 593__ $$aSports Science$$c2020$$dQ1
000149885 593__ $$aPhysiology$$c2020$$dQ1
000149885 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000149885 700__ $$aReig, Ramon
000149885 700__ $$aManrique, Jesus
000149885 700__ $$aJercog, Daniel
000149885 700__ $$aWinograd, Milena
000149885 700__ $$aParga, Nestor
000149885 700__ $$aSanchez-Vives, Maria V.
000149885 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000149885 773__ $$g598, 16 (2020), 3439-3457$$pJ. physiol.$$tJOURNAL OF PHYSIOLOGY-LONDON$$x0022-3751
000149885 8564_ $$s5750303$$uhttps://zaguan.unizar.es/record/149885/files/texto_completo.pdf$$yVersión publicada
000149885 8564_ $$s2612261$$uhttps://zaguan.unizar.es/record/149885/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000149885 909CO $$ooai:zaguan.unizar.es:149885$$particulos$$pdriver
000149885 951__ $$a2025-01-28-14:58:00
000149885 980__ $$aARTICLE