000149889 001__ 149889
000149889 005__ 20251017144635.0
000149889 0247_ $$2doi$$a10.1088/2057-1976/ab2d11
000149889 0248_ $$2sideral$$a133051
000149889 037__ $$aART-2019-133051
000149889 041__ $$aeng
000149889 100__ $$0(orcid)0000-0002-3194-7796$$aPerez-Zabalza, M.$$uUniversidad de Zaragoza
000149889 245__ $$aAnalysis of heart rate variability in children during high flow nasal cannula therapy
000149889 260__ $$c2019
000149889 5203_ $$aObjective: Heart rate variability (HRV) is a non-invasive measure of the interaction between the autonomic nervous system (ANS) and the cardiovascular system and an indicator of physiologic stress. HRV is proposed as an alternative biomarker to the effect of high flow nasal cannula (HFNC) therapy, a non-invasive ventilation mode, in children with severe respiratory disease. Approach: Seven children with severe acute respiratory disease were included in this pilot study. All of them received HFNC treatment. Standard physiological variables, such as heart rate (HR), breathing rate (BR) and blood oxygen saturation (SpO2) were analyzed during HFNC therapy. HRV, which includes the time domain parameters defined by the mean of RR intervals (avRR), the standard deviation of RR intervals (stdRR), the root mean square of differences between adjacent RR intervals (rmsSD), and the frequency domain parameters defined by spectral powers of low frequency (LF, 0.04 Hz–0.15 Hz) and high frequency (HF, 0.15 Hz–0.4 Hz) bands was also analysed during therapy. Main results: Only the time domain parameter rmsSD showed a significant increase (from 0.03 to 0.08 s, p < 0.05) between the middle and the end of the therapy. No significant changes were observed in HR, BR and SpO2 throughout the therapy. Of these three variables, only HR and BR showed a high and statistically significant positive correlation. Significance: HRV analysis seems to be a promising alternative biomarker to monitor the effect of HFNC therapy on children with severe respiratory disease.
000149889 540__ $$9info:eu-repo/semantics/closedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000149889 592__ $$a0.317$$b2019
000149889 593__ $$aBioengineering$$c2019$$dQ3
000149889 593__ $$aBiophysics$$c2019$$dQ3
000149889 593__ $$aHealth Informatics$$c2019$$dQ3
000149889 593__ $$aBiomedical Engineering$$c2019$$dQ3
000149889 593__ $$aRadiology, Nuclear Medicine and Imaging$$c2019$$dQ3
000149889 593__ $$aComputer Science Applications$$c2019$$dQ3
000149889 593__ $$aPhysiology$$c2019$$dQ4
000149889 593__ $$aBiomaterials$$c2019$$dQ4
000149889 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000149889 700__ $$aHagmeijer, R.
000149889 700__ $$aThio, B. J.
000149889 700__ $$aBors, J.
000149889 700__ $$aHoppenbrouwer, X.
000149889 700__ $$aGarde, A.
000149889 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000149889 773__ $$g5, 4 (2019), 045028 [8 pp.]$$tBiomedical Physics and Engineering Express$$x2057-1976
000149889 8564_ $$s822540$$uhttps://zaguan.unizar.es/record/149889/files/texto_completo.pdf$$yVersión publicada
000149889 8564_ $$s660732$$uhttps://zaguan.unizar.es/record/149889/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000149889 909CO $$ooai:zaguan.unizar.es:149889$$particulos$$pdriver
000149889 951__ $$a2025-10-17-14:28:41
000149889 980__ $$aARTICLE