000149901 001__ 149901
000149901 005__ 20251017144644.0
000149901 0247_ $$2doi$$a10.1109/JPHOTOV.2019.2942487
000149901 0248_ $$2sideral$$a141531
000149901 037__ $$aART-2019-141531
000149901 041__ $$aeng
000149901 100__ $$0(orcid)0000-0002-3448-9831$$aCalvo-Almazán, Irene
000149901 245__ $$aStrain mapping of CdTe grains in photovoltaic devices
000149901 260__ $$c2019
000149901 5060_ $$aAccess copy available to the general public$$fUnrestricted
000149901 5203_ $$aStrain within grains and at grain boundaries (GBs) in polycrystalline thin-film absorber layers limits the overall performance because of higher defect concentrations and band fluctuations. However, the nanoscale strain distribution in operational devices is not easily accessible using standard methods. X-ray nanodiffraction offers the unique possibility to evaluate the strain or lattice spacing at nanoscale resolution. Furthermore, the combination of nanodiffraction with additional techniques in the framework of multimodal scanning X-ray microscopy enables the direct correlation of the strain with material and device parameters such as the elemental distribution or local performance. This approach is applied for the investigation of the strain distribution in CdTe grains in fully operational photovoltaic solar cells. It is found that the lattice spacing in the (111) direction remains fairly constant in the grain cores but systematically decreases at the GBs. The lower strain at GBs is accompanied by an increase of the total tilt. These observations are both compatible with the inhomogeneous incorporation of smaller atoms into the lattice, and local stress induced by neighboring grains.
000149901 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000149901 590__ $$a3.052$$b2019
000149901 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b133 / 314 = 0.424$$c2019$$dQ2$$eT2
000149901 591__ $$aPHYSICS, APPLIED$$b50 / 154 = 0.325$$c2019$$dQ2$$eT1
000149901 591__ $$aENERGY & FUELS$$b59 / 112 = 0.527$$c2019$$dQ3$$eT2
000149901 592__ $$a0.997$$b2019
000149901 593__ $$aCondensed Matter Physics$$c2019$$dQ1
000149901 593__ $$aElectronic, Optical and Magnetic Materials$$c2019$$dQ1
000149901 593__ $$aElectrical and Electronic Engineering$$c2019$$dQ1
000149901 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000149901 700__ $$aUlvestad, A.
000149901 700__ $$aColegrove, E.
000149901 700__ $$aAblekim, T.
000149901 700__ $$aHolt, M. V.
000149901 700__ $$aMaddali, S.
000149901 700__ $$aLauhon, L. J.
000149901 700__ $$aBertoni, M. I.
000149901 700__ $$aYan, H.
000149901 700__ $$aNazaretski, E.
000149901 700__ $$aChu, Y. S.
000149901 700__ $$aHruszkewycz, S. O.
000149901 700__ $$aStuckelberger, M. E.
000149901 773__ $$g9, 6 (2019), 1790-1799$$pIEEE j. photovolt.$$tIEEE journal of photovoltaics$$x2156-3381
000149901 8564_ $$s9199090$$uhttps://zaguan.unizar.es/record/149901/files/texto_completo.pdf$$yPostprint
000149901 8564_ $$s3769782$$uhttps://zaguan.unizar.es/record/149901/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000149901 909CO $$ooai:zaguan.unizar.es:149901$$particulos$$pdriver
000149901 951__ $$a2025-10-17-14:33:17
000149901 980__ $$aARTICLE