000149901 001__ 149901 000149901 005__ 20251017144644.0 000149901 0247_ $$2doi$$a10.1109/JPHOTOV.2019.2942487 000149901 0248_ $$2sideral$$a141531 000149901 037__ $$aART-2019-141531 000149901 041__ $$aeng 000149901 100__ $$0(orcid)0000-0002-3448-9831$$aCalvo-Almazán, Irene 000149901 245__ $$aStrain mapping of CdTe grains in photovoltaic devices 000149901 260__ $$c2019 000149901 5060_ $$aAccess copy available to the general public$$fUnrestricted 000149901 5203_ $$aStrain within grains and at grain boundaries (GBs) in polycrystalline thin-film absorber layers limits the overall performance because of higher defect concentrations and band fluctuations. However, the nanoscale strain distribution in operational devices is not easily accessible using standard methods. X-ray nanodiffraction offers the unique possibility to evaluate the strain or lattice spacing at nanoscale resolution. Furthermore, the combination of nanodiffraction with additional techniques in the framework of multimodal scanning X-ray microscopy enables the direct correlation of the strain with material and device parameters such as the elemental distribution or local performance. This approach is applied for the investigation of the strain distribution in CdTe grains in fully operational photovoltaic solar cells. It is found that the lattice spacing in the (111) direction remains fairly constant in the grain cores but systematically decreases at the GBs. The lower strain at GBs is accompanied by an increase of the total tilt. These observations are both compatible with the inhomogeneous incorporation of smaller atoms into the lattice, and local stress induced by neighboring grains. 000149901 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000149901 590__ $$a3.052$$b2019 000149901 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b133 / 314 = 0.424$$c2019$$dQ2$$eT2 000149901 591__ $$aPHYSICS, APPLIED$$b50 / 154 = 0.325$$c2019$$dQ2$$eT1 000149901 591__ $$aENERGY & FUELS$$b59 / 112 = 0.527$$c2019$$dQ3$$eT2 000149901 592__ $$a0.997$$b2019 000149901 593__ $$aCondensed Matter Physics$$c2019$$dQ1 000149901 593__ $$aElectronic, Optical and Magnetic Materials$$c2019$$dQ1 000149901 593__ $$aElectrical and Electronic Engineering$$c2019$$dQ1 000149901 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000149901 700__ $$aUlvestad, A. 000149901 700__ $$aColegrove, E. 000149901 700__ $$aAblekim, T. 000149901 700__ $$aHolt, M. V. 000149901 700__ $$aMaddali, S. 000149901 700__ $$aLauhon, L. J. 000149901 700__ $$aBertoni, M. I. 000149901 700__ $$aYan, H. 000149901 700__ $$aNazaretski, E. 000149901 700__ $$aChu, Y. S. 000149901 700__ $$aHruszkewycz, S. O. 000149901 700__ $$aStuckelberger, M. E. 000149901 773__ $$g9, 6 (2019), 1790-1799$$pIEEE j. photovolt.$$tIEEE journal of photovoltaics$$x2156-3381 000149901 8564_ $$s9199090$$uhttps://zaguan.unizar.es/record/149901/files/texto_completo.pdf$$yPostprint 000149901 8564_ $$s3769782$$uhttps://zaguan.unizar.es/record/149901/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000149901 909CO $$ooai:zaguan.unizar.es:149901$$particulos$$pdriver 000149901 951__ $$a2025-10-17-14:33:17 000149901 980__ $$aARTICLE