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Abstract. Air quality and traffic monitoring and prediction are critical
problems in urban areas. Therefore, in the context of smart cities, many
relevant conceptual models and ontologies have already been proposed.
However, the lack of standardized solutions boost development costs and
hinder data integration between different cities and with other applica-
tion domains. This paper proposes a classification of existing models and
ontologies related to Earth observation and modeling and smart cities in
four levels of abstraction, which range from completely general-purpose
frameworks to application-specific solutions. Based on such classification
and requirements extracted from a comprehensive set of state-of-the-art
applications, TAQE, a new data modeling framework for air quality and
traffic data, is defined. The effectiveness of TAQE is evaluated both by
comparing its expressiveness with the state-of-the-art of the same appli-
cation domain and by its application in the “TRAFAIR – Understanding
traffic flows to improve air quality” EU project.

Keywords: Conceptual Modeling · Smart City · Environmental Data ·
Air Quality Data · Traffic Data.

1 Introduction

In urban areas, traffic-related pollution is a crucial problem with high envi-
ronmental impact since more than 40% of emissions of nitrogen oxides come
from traffic. As air pollution entails damages on ecosystems, reducing pollutant
emissions to the atmosphere is imperative. Environmental decision making in
smart cities has to be based on sophisticated traffic and air quality monitoring
and modeling infrastructures, which generate large amounts of data, which are
complex both in structure and also in semantics [26].

Many specific data modeling solutions and ontologies are being used in dif-
ferent applications to represent such data in smart cities. The lack of a common
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standardized data modeling framework adds a critical barrier to the data in-
tegration [30,31] required for cross-city decision-making. Besides, and more im-
portantly, it does not foster the reuse of conceptual modeling structures. Knowl-
edge and data model reuse reduce development time and resources required for
projects. They also facilitate communication among the people involved in the
information systems development process and in their maintenance. Further-
more, it has been shown that although a higher level of abstraction increases
reusability, specific models are more usable [18].

Based on the above, this paper defines TAQE, a conceptual modeling frame-
work for the representation of air quality and traffic data generated by related
smart city monitoring and modeling infrastructures. TAQE is embedded in an
information architecture with four levels of abstraction, which is based on inter-
national standards of the Open Geospatial Consortium (OGC), the International
Organization for Standardization (ISO) and the World Wide Web Consortium
(W3C). The design of TAQE is based on a collection of requirements extracted
from a comprehensive set of applications. The effectiveness of its data representa-
tion capabilities has been tested by two different means. First, TAQE and all the
already existing models of a similar level of abstraction found in the literature
were analyzed to check the fulfillment of the identified requirements. Second,
TAQE was specialized to design the data model needed by the “TRAFAIR –
Understanding traffic flows to improve air quality” EU project, to support the
representation of its air quality, traffic observation and modeling data.

The paper is organized as follows. Section 2 analyzes well-known data models
and ontologies useful in this context, defines the four-level information architec-
ture considered in this proposal, and analyzes different use cases. Section 3 de-
scribes the set of requirements that air quality models and traffic models should
meet. Section 4 and Section 5 are devoted to the definition of the proposed
data modeling framework. The results of the evaluation of TAQE are shown in
Section 6. Finally, some conclusions are presented in Section 7.

2 Data Models for Environmental Data and Smart Cities

Data models and semantics are a key aspect of the representation and enhance-
ment of environmental and smart city data. This section classifies available data
models into four levels of abstraction, starting from generic frameworks and data
models and reaching specific applications.

2.1 Level 1: Data Modeling

A great amount of data infrastructures on the Web are based on Linked Open
Data (LOD) best practices [9] and Resource Description Framework (RDF)4

to facilitate information data integration and interoperability. The vocabularies
used in RDF statements to identify objects and properties may also be defined

4 W3C RDF Prime: http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
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in RDF with RDF Schema5 primitives. The expressiveness of RDF Schema to
define vocabularies is extended by the Web Ontology Language (OWL)6.

So, at this level, several well-known general ontologies, such as the W3C
Provenance Ontology (PROV-O), are considered relevant for traffic and air qual-
ity applications in smart cities. PROV-O allows for representing provenance in-
formation (i.e., information about entities or organizations, activities and people
involved in producing data), which can be used to form assessments about the
quality, reliability or trustworthiness of the data produced in a variety of appli-
cation domains by using the PROV Data Model7, which has a modular design
and three main entities: Entity, Activity and Agent. PROV Data Model consid-
ers entities and activities, and the time at which they were created, used, or
ended; derivations of entities from other entities; and agents bearing responsi-
bility for entities that were generated and activities that happened. Agents can
form logical structures for their members.

2.2 Level 2: Earth Observation and Modeling and Smart Cities

Regarding sensor data widely used in Earth observation, the most popular on-
tology is the W3C Semantic Sensor Network Ontology (SSN) [10], which defines
a vocabulary to describe sensors and their observations, including both observed
values and required metadata of features of interest, observed properties, etc.
SSN may be used to annotate sensors and observations, in a way aligned com-
pletely to the OGC and ISO Observations and Measurements (O&M) [11] stan-
dard, which provides a conceptual schema to represent the results of observation
processes and the metadata of these processes, of the entities that are sampled
by them (Features of Interest), and of the observation results obtained. More-
over, SSN is also aligned to the Extensible Observation Ontology (OBOE), and
PROV Data Model considered in level 1 [21]. The lightweight core of SSN is the
SOSA (Sensor Observation, Sample and Actuator) ontology. The core concepts
or entities of SOSA are Procedure, Sensor, ObservableProperty, Observation, Fea-
tureOfInterest and Result.

2.3 Level 3: Application Domains

At this level, we focus our attention on two related domains: Air Quality and
Traffic Data.

Air Quality Urban air pollution information is usually processed by special-
ists to monitor, predict, and study air pollution sources within the urban area.
Several platforms display statistics or semi-real time air quality measures, like
World’s Air Pollution: Real-time Air Quality Index8 and Air quality statistics by

5 W3C RDF Schema: http://www.w3.org/TR/rdf-schema/.
6 W3C OWL 2: https://www.w3.org/TR/owl2-overview/.
7 PROV Data Model: https://www.w3.org/TR/prov-dm/.
8 Real-time Air Quality Index: https://waqi.info/

http://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/prov-dm/
https://waqi.info/
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European Environmental Agency(EEA)9. Air quality (AQ) monitoring is usually
done using professional AQ monitoring stations; Environmental Agencies are in
charge of analyzing AQ conditions and reporting the violations of the concen-
trations limits. In recent years, it has been explored the potential of low-cost
environmental sensors for urban air pollution monitoring. Low-cost sensors can
be placed in fixed positions or on vehicles or drones. Thus, they can provide gases
concentration in a location, on a path or in a 3D environment. Different studies
have taken advantage of a variety of satellites to estimate different air emissions.
In addition, air quality models are studied for the representation of observation
data in the scope of air quality prediction applications. Air pollution modeling is
a complex subject and is linked to 3D city models, meteorological elements, and
air tainting information. 3D air pollution models and the associated simulation
systems are those that aim at “reconstructing” the environment, its properties,
and governing physical laws.

Several ontologies have been defined in a specific context to enrich the air
quality measurements and simulations semantically. AIR POLLUTION Onto
ontology [27] has been conceived for air pollution analysis and control in two case
studies. Airbase is the European air quality dataset maintained by the EEA [17].
QBOAirbase, a provenance-augmented version of the Airbase dataset, is multi-
dimensional dataset linked to the Semantic Web. hackAIR ontology has been
created within the ”hackAIR - Collective awareness platform for outdoor air
pollution” EU project [32]. It can store observations from sensors, monitoring
stations, AQ related values from fused or forecasted data, or from sky-depicted
images, etc.

Models that are used for the study of air quality at an urban scale make use
of a grid-based spatial resolution. An ontology of air quality models is defined
in [25]. It is linked to 3D city models and other models related to sustainable
development ad urban planning. This ontology is devoted to representing pollu-
tant dispersion in urban street canyons, a particular phenomenon that happens
in some street bordered by buildings in a specific configuration.

Traffic Data Traffic data plays a key role in a smart city, since enabling efficient
transportation and sustainable mobility are important goals that allow enhanc-
ing the quality of life of citizens. Therefore, modeling traffic and sharing traffic
data is very relevant for many cities [36,13]. Thanks to the collection and model-
ing of traffic data, public administrations can make informed decisions regarding
mobility policies. Besides, offering traffic information to citizens can also help to
raise awareness about the importance of choosing suitable mobility options to
increase their well-being and reduce pollution. A wide range of different types of
sensors can be used to measure traffic [20], such as inductive loops, microwave
radars, and video image detection. Moreover, traffic models are studied in order
to simulate and predict traffic flows.

9 Air quality statistics by EEA: https://www.eea.europa.eu/data-and-maps/

dashboards/air-quality-statistics

https://www.eea.europa.eu/data-and-maps/dashboards/air-quality-statistics
https://www.eea.europa.eu/data-and-maps/dashboards/air-quality-statistics
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The Vocabulary to Represent Data About Traffic10 has been proposed for
the representation of the situation of traffic in a city. This vocabulary extends
SSN [10] to represent the intensity of traffic in the different road segments of a
city. In particular, it is used to represent road segments, traffic observations, sen-
sor or sensing systems used to obtain a specific measurement, the results of obser-
vations (which have values and are produced by a specific sensor or sensing sys-
tem), and finally instances that represent the type of properties being measured.
Authors of this work recommend using this vocabulary in conjunction with the
vocabulary available on http://vocab.linkeddata.es/datosabiertos/def/

urbanismo-infraestructuras/callejero in order to represent city road maps.
An Ontology Layer for Intelligent Transportation Systems in order to increase

the traffic safety and improve the comfort of drivers is proposed in [16]. The
ontology layer is composed of three groups of interrelated concepts: concepts
related to vehicles, concepts related to roads, and concepts related to sensors.
The concepts related to vehicles describe a taxonomy of vehicles of different
types and also allow representing information about their routes and locations.
The concepts related to the infrastructure include a taxonomy of different types
of roads as well as the representation of other parts of the infrastructure, such
as the road segments, traffic lights and traffic signs, lanes, road markings (e.g.,
painted arrows), tunnels, parking slots, roundabouts, bridges, gas stations, and
toll stations). Finally, the concepts related to sensors are based on the use of the
SSN ontology. The previous work focuses on long-life elements of the roads, such
as traffic signs or road segments, while in the open511 specification11 and the
Road Accident Ontology12, special situations in roads, such as accidents, special
events (e.g., a celebration of a sport event) or particular weather conditions and
road conditions (e.g., snow, ice, or fire on the road), are considered.

2.4 Level 4: Use-case specific applications

Several projects have exploited drones for AQ monitoring. Drones can quickly
cover vast industrial or rural areas obtaining a complete and detailed pollution
map of the target region [33]. From gases concentrations measured by drones
real-time AQI maps in both 2D and 3D areas can be produced that describe the
AQ conditions of an urban environment.

Sensors can also be placed on vehicles such as taxis or public transport vehi-
cles. Sensors are anchored on top of vehicles, to create a mobile sensor network
to increase the number of urban sites monitored. Graphs and heat maps to show
an overview of the gasses levels on the taxis/bus routes can be created [22].

Satellite remote sensing of air quality has evolved drastically over the last
decade. The satellite retrieved trace gases are useful in analyzing and forecasting
events that affect air quality, and they can be used to the inference of surface
air quality. Aerosol optical depth (AOD) derived from satellite remote sensing

10 http://vocab.linkeddata.es/datosabiertos/def/transporte/trafico
11 open511 specification: http://www.open511.org/
12 Road Accident Ontology: https://www.w3.org/2012/06/rao.html

http://vocab.linkeddata.es/datosabiertos/def/urbanismo-infraestructuras/callejero
http://vocab.linkeddata.es/datosabiertos/def/urbanismo-infraestructuras/callejero
http://www.open511.org/
https://www.w3.org/2012/06/rao.html
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is widely used to estimate surface PM 2.5 concentrations. The satellite provides
the total concentration of gases on the column between the surface and the top
of the troposphere [23]. To provide an idea of their Spatio-temporal coverage,
the ESA Sentinel-5P satellite has an orbital cycle of 16 days. Therefore, it can
produce one value every 16 days for each location, around two values per month.
Spatial resolution is quite low, above 5km, to be used at an urban scale.

The traditional methods used by public administrations for traffic monitoring
are fixed measurement devices (such as inductive loop detectors, radars, video
cameras, etc.) that collect data like vehicle presence, vehicle speed, vehicle length
and class, lane occupancy. However, these devices can only collect data on the
specific section of the road where they are installed. The last few years have seen
a dramatic increase in the presence of mobile or aerial devices. These devices have
the capability to detect detailed and accurate data over space and time and to
cover a dynamic area. Smartphones are deemed valid for traffic sensing purposes
since as long as there is a sufficient penetration rate, they will provide accurate
measurements of the traffic flow (the number of users with traffic sensors should
be at least 2–3% over the total cars which entered the target road). Smartphones
can provide location, altitude, and speed [24]. If the reported data from several
users in each road segment at a specific time interval are combined, a reasonable
estimation of the traffic conditions can be obtained. Drones are used to monitor
real-time traffic and also to detect speeding violations or congestion events [15].
They can identify the number of speeding violations, the average duration of the
detected speeding violations, the number of congestion events: congestion events
and the average period of the detected congestion events.Traffic models provide
a representation of the road network in terms of the capacity it gives and the
volume of traffic using it.

Traffic models are used to estimate the real traffic conditions in a city and to
forecast the impact of policies that modify the viability or also forecast traffic
predictions. A traffic model considers data coming from sensors and the traffic
demand that can be represented through an Origin-Destination matrix for a
different period (e.g., morning and evening peak hours). The output of a traffic
model depends on the kind of model [14,19]. For macroscopic models, we have
the density (or concentration), the flow (number of vehicles in an interval of
time), and the speed. These parameters are expressed using average values.

3 Requirements for a Level 3 Air Quality and Traffic
Data Modeling Framework

From the analysis of several specific applications, reported in section 2.4, the
following requirements for modeling air quality and traffic emerged.

A generic air quality data model has to provide support for:

A1 in-situ fixed devices (e.g. air quality station). An in-situ sensor collects data
at a distance comparable or smaller than any linear dimension of the sensor.
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A2 in-situ removable devices (e.g. low-cost air quality sensor). These devices can
be moved in different locations, but they can measure at this point once they
are in a static position.

A3 remote sensing infrastructures (e.g. those on-board of satellites). Remote
sensing is the process of detecting and monitoring characteristics of an area
by measuring them at a distance (typically from satellite or aircraft).

A4 ground mobile devices (e.g., AQ devices on buses, always at the same eleva-
tion). These devices provide in-situ data along a route.

A5 airborne mobile devices. They provide in-situ data through a 3D trajectory.
A6 in-situ sensors installed at various heights (e.g., application of sensors in-

stalled externally on a building on different floors).
A7 static models. Static models do not vary over time; they may be viewed as

a ”snapshot” of an ecosystem at a particular moment. An example of static
air quality models are the interpolated real-time air quality maps that are
created by interpolating sensor measurements.

A8 dynamic models. Dynamic models provide means of simulating the time-
dependent behavior of systems. Atmospheric dispersion models are dynamic
models that use mathematical algorithms to simulate how pollutants disperse
in the atmosphere and, in some cases, how they react.

The requirements for traffic data modelling aim at supporting:

T1 in-situ traffic observation. Similarly to A1 and A2, these are traffic sensors
located in a specific position.

T2 remote traffic observation at specific locations. Similarly to A3, these sensors
may observe traffic at various locations at each time instant.

T3 static traffic models. Similarly to A7, a static model gives a snapshot of
reality.

T4 dynamic traffic models. Similarly to A8, dynamic traffic models estimate the
evolution concerning the time of traffic variables (flow intensity, occupancy,
etc.) during a period.

4 Air quality Model

The air quality data representation capabilities of the TAQE model are described
below. The model specializes in the level 2 OGC O&M data model (grey color
classes in subsequent figures) with feature (entity) and process types. The data
types used to represent the geospatial characteristics of the involved entities
are based on those proposed by OGC standards, including feature geometric
data types13 and temporal, spatial and spatio-temporal coverages14. The part
of the model that represents the observed entities (features of interest in O&M
notation) is depicted in Figure 1.

13 OGC Simple Feature Access: https://www.opengeospatial.org/standards/sfa
14 OGC Coverage Implementation Schema: http://docs.opengeospatial.org/is/

09-146r6/09-146r6.html

https://www.opengeospatial.org/standards/sfa
http://docs.opengeospatial.org/is/09-146r6/09-146r6.html
http://docs.opengeospatial.org/is/09-146r6/09-146r6.html
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FeatureOfInterest

+geoSpatialExtension: Geometry[0..1]
+verticalExtension: VerticalPrimitive[0..1]

City

+geoSpatialExtension: Polygon
+verticalExtension: VerticalInterval[0..1]

AdministrativeDivision

+geoSpatialExtension: Polygon

0..1

SamplingFeature

+geoSpatialExtension: Geometry[0..1]
+verticalExtension: VerticalPrimitive[0..1]

0..*

ModelGrid

+geoSpatialExtension: Rectangle
+verticalExtension: VerticalInterval[0..1]

RemoteSensingGridOutput

+geoSpatialExtension: Rectangle
+phenomenonTime: TimeInstant
+result: SpatialCoverage

GroundStationFeature

+geoSpatialExtension: Point
+verticalExtension: VerticalPoint[0..1]

Trajectory

+geoSpatialExtension: Linestring
+verticalExtension: VerticalInterval

GroundMobileStationOutput

+geoSpatialExtension: Point
+phenomenonTime: TimeInstant
+observedProperties...

Observation

GroundStation

+name: String

1..*

Fig. 1. Air quality feature of interest types in TAQE (Grey background used to show
types of the Level 2 OGC O&M data model).

Two subtypes of O&M FeatureOfInterest are considered, namely, City and
AdministrativeDivision, to include respectively urban scale applications (smart
city scope) and also applications at regional, national and international scale.
Estimated properties are often generated at specific samples of the feature of
interest (SamplingFeature). Various types of sampling features of interest in air
quality observation and modeling are shown in Figure 1, including locations of
static and mobile ground stations, trajectories of flying platforms like drones
and raster grids used by models and remote sensing platforms. Some sampling
features are predefined, whereas others are generated by the observation or mod-
eling processes; at the same time, they generate the observed property estima-
tions. This is the case of ground mobile station features and remote sensing
grids, which record both sampling features and property estimations, and there-
fore they inherit from both O&M SamplingFeature and O&M Observation.The
remainder classes of the air quality model, i.e., those related to the represen-
tation of observation and modeling processes (O&M Process) and relevant out-
puts (O&M observation) are shown in Figure 2. Data generation processes are
classified according to whether they observe or model properties. Based on the
characteristics of their outputs, air quality models are further subdivided into
static (AQStaticModel) and dynamic (AQDynamicModel). The former generates
spatial coverages that estimate the observed properties at a specific time element
(often real-time). In contrast, the latter provides spatio-temporal coverages that
determine the evolution of those properties over a period of time. Air quality
observation processes are also subdivided into in-situ (they observe in the sur-
roundings of the process location) and remote sensing (they remotely observe all
the places of an output spatial coverage at each time instant). In-situ processes
are further classified into mobile ground stations (air quality stations installed in
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Process AirQualityProcess

AirQualityModel

AirQualityObservationProcess

AQStaticModel AQDynamicModel

AQDynamicModelOutput

+resultTime: TimeInstant
+phenomenonTime: TimePeriod
+result: SpatiotemporalCoverage

0..*

AQStaticModelOutput

+phenomenonTime: TimeInstant
+restult: SpatialCoverage

0..*

RemoteSensingProcess
InSituProcess

RemoteSensingGridOutput

+geoSpatialExtension: Rectangle
+phenomenonTime: TimeInstant
+result: SpatialCoverage

0..*

ModelGrid

+geoSpatialExtension: Rectangle
+verticalExtension: VerticalInterval[0..1]

0..*

GroundStaticStationGroundMobileStation AirboneStation

GroundMobileStationOutput

+geoSpatialExtension: Point
+phenomenonTime: TimeInstant
+observedProperties...

0..*

Trajectory

+geoSpatialExtension: Linestring
+verticalExtension: VerticalInterval

0..*

AirboneStationOutput

+samplingGeometry: Point
+verticalOffset: VerticalPoint
+phenomenonTime: TimeInstant
+observedProperties...

1..*

Observation

GroundFixedStation

GroundRemovableStationGroundStaticStationOutput

+phenomenonTime: TimeInstant
+observedProperties...

0..*

GroundRemovableStationFOI

+temporalExtent: TimePeriod

0..*

GroundStationFeature

+geoSpatialExtension: Point
+verticalExtension: VerticalPoint[0..1]

0..1

0..*

Fig. 2. Air quality process types in TAQE (Grey background used to show types of
the Level 2 OGC O&M data model. TAQE feature of interest types, already depicted
in Fig. 1, are shown here in light-grey).
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land vehicles), airborne stations (mounted on board of flying platforms such as
drones) and ground static platforms, which are either air quality stations with a
fixed location or air quality stations that may be installed at different locations
during their lifetime.

FeatureOfInterest

+geoSpatialExtension: Geometry[0..1]
+verticalExtension: VerticalPrimitive[0..1]

RoadSection

+geoSpatialExtension: LineString

SamplingFeature

+geoSpatialExtension: Geometry[0..1]
+verticalExtension: VerticalPrimitive[0..1]

*

TrafficObservationStation

+geoSpatialExtension: Point

TrafficSensor

TrafficProcess

TrafficModel

0..*

StaticTrafficModelFOI

+temporalExtent: TimePeriod

0..1

1..*

StaticTrafficModelOutput

+phenomenonTime: TimeInstant
+observedProperties...

0..*

StaticTrafficModel

DynamicTrafficModel

DynamicTrafficModelFOI

+temporalExtent: TimePeriod

1..*

0..1

DynamicTrafficModelOutput

+resultTime: TimeInstant
+phenomenonTime: TimePeriod
+reult: temporalCoverage

0..*

TrafficSensorOutput

+phenomenonTime: TimeInstant
+observedProperties...

0..*

Process

Observation

Observation

Fig. 3. Traffic data structures in TAQE (Grey background used to show types of the
Level 2 OGC O&M data model).

5 Traffic Model

The data structures that enable TAQE to represent the results of traffic obser-
vation and modeling processes are graphically depicted in Figure 3. Traffic data
properties such as traffic speed, traffic flow intensity, and traffic occupancy are
associated with sections of the road network in TAQE. Traffic models are used to
provide estimations (real-time estimations, future predictions, etc.) of the prop-
erties for a whole road section, whereas observation processes (TrafficSensor)
are used to perform their measures at specific sampling locations (TrafficObser-
vationStation). As in the case of air quality, traffic models may be either static
or dynamic (depending on whether they generate estimations for a specific tem-
poral element or they generate an evolution concerning the time of the relevant
properties).
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6 Models Evaluation

The TAQE data modeling framework has been evaluated, both by testing its use
in a specific application and by comparing its capabilities with already existing
solutions of a similar level of abstraction.

6.1 Use Case

The “TRAFAIR - Understanding traffic flows to improve air quality” EU project
(2017-EU-IA-0167)[29] , funded by the Innovation and Networks Executive Agency
under its Connecting Europe Facility program , aims at building an urban scale
air quality observation and modeling infrastructure at six cities of Italy and
Spain. The main components of the infrastructure are: i) an air quality observa-
tion infrastructure based on low-cost sensors, ii) an air quality forecast service
based on a lagrangian pollutant dispersion model, iii) a public open data infras-
tructure based on both OGC and W3C standards, connected to the European
Data Portal through the involved public administrations and iv) specific web
and mobile applications for public administrations and citizens.

sensor_calibrated_observation

+no: Measurement
+no2: Measurement
+co: Measurement
+o3: Measurement

sensor_calibration

+id: int
+note: String
+dateTime: TimeInstant

sensor_low_cost

+id: int
+model: String
+trademark: String
+sensor_box_code: String

0..10..*

sensor_calibration_algorithm

+id: int
+model_name: String
+hyper_parameters: String
+training_start: TimeInstant
+training_end: TimeInstant
+regression_variables: String
+note: String
+library: String

aq_legal_station

+id: int
+name: string

+no

+co

+o3

+no2

GroundFixedStation
(from AirQualityModel)

GroundRemovableStation
(from AirQualityModel)

GroundStationFeature
(from AirQualityModel)

+geoSpatialExtension: Point
+verticalExtension: VerticalPoint[0..1]

0..1

GroundRemovableStationFOI
(from AirQualityModel)

+temporalExtent: TimePeriod

0..*

0..*

GroundStaticStationOutput
(from AirQualityModel)

+phenomenonTime: TimeInstant
+observedProperties...

sensor_low_cost_feature

+id: int
+code: String
+location: String
+note: text

sensor_low_cost_status

+id: int
+operator: String
+status: String
+note: text

1..*

Fig. 4. Illustration of the specialization of TAQE in the TRAFAIR project (TAQE
types shown in grey background).

To achieve the TRAFAIR objectives, both air quality and traffic have to be
observed and modeled, and the relevant data has to be stored and published.
Traffic sensors provide traffic flow intensity, average traffic speed, and traffic
occupancy at specific locations of the road networks[3,4,12]. Erroneous measure-
ments are detected and filtered out from the big data streams generated with
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appropriate techniques in near real-time [6,7]. Then, the observed traffic flow
intensity is used as input by a static traffic flow model to estimate, in near
real-time, the traffic flow intensity at each section of a subset of the city road
network[2,5,28].

Regarding air quality, a network of removable low-cost sensors is used to
perform measures at specific locations in each city[1,34,35]. Due to the charac-
teristics of these low-cost devices, the quality of their measures disables their
direct application. Intelligent regression models (sensor calibrations) are gen-
erated for each sensor, using the available ISO certified air quality stations as
the ground truth. Those calibrations are next used to transform the voltages
generated by the low-cost sensors to specific gas concentrations, enabling the
use of these low-cost sensors at points where ISO stations are not located. In
addition to the air quality observation, the traffic intensity at each road sec-
tion, the meteorological conditions, and the city geometry (buildings) are used
as input by a dynamic air quality model to generate 48-hour air quality fore-
casts every day[8]. The use of TAQE to model all the above air quality and
traffic data has been successfully tested. A short example of this testing is il-
lustrated in Figure 4, which shows how TAQE classes are specialized to model
the air quality data generated by sensor calibrations. In particular, it is shown
how TAQE GroundStationFeature is used to model both ISO certified air quality
station locations (aq legal station) and removable low cost sensor locations (sen-
sor low cost feature). TAQE GroundRemovableStation is specialized to model
both air quality sensors (sensor low cost) and sensor calibration models (sen-
sor calibration). Similarly, TAQE GroundFixedStation is specialized to model
the set of devices installed in ISO certified air quality stations (aq legal station).
Evolution concerning the time of the removable sensor locations and their status
is modeled with a specialization of TAQE GroundRemovableStationFOI. Finally,
the observations generated by sensor calibration models are represented by sen-
sor calibrated observation, which inherits from TAQE GroundStaticStationOut-
put. All details of mappings between all the other TRAFAIR data structures and
their TAQE abstract concepts are not given here due to space limitations.

6.2 Qualitative evaluation

TAQE and previously proposed models for air quality and traffic representation
defined in section 2.3 have been evaluated w.r.t. the list of requirements defined
in Section 3. Table 1 provide an overview of each model in level 3 related to air
quality wrt requirements. While in Table 2 traffic models have been compared.

AIR POLLUTION Onto supports in-situ and remote observations, but not
models. QBOAirbase extends this view by also adding provenance; this might
allow users to store static model outputs. Ontology of air quality models is
devoted to representing only air quality models, while the hackAIR ontology
integrates sensor measurements and air quality, models.

The model considered in the Vocabulary to Represent Data about Traffic sup-
ports in-situ and remote observations, but not models. Nevertheless, a snapshot
of traffic in a city can be obtained if it is used in conjunction with vocabularies to
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Model A1 A2 A3 A4 A5 A6 A7 A8

AIR POLLUTION Onto [27] x x x

QBOAirbase [17] x x x x

Ontology of air quality models [25] x x

hackAIR ontology [32] x x x x x

TAQE model x x x x x x x x

Table 1. Evaluation of the AQ models with respect to the requirements

Model T1 T2 T3 T4

Vocabulary to Represent Data About Traffic x x x

Ontology Layer for Intelligent Transportation [16] x x

open511 specification

Road Accident Ontology

TAQE model p x x

Table 2. Evaluation of the traffic models with respect to the requirements (p = par-
tially, x= completely).

represent city road maps. In [16], sensors can be located into vehicles or as part
of an infrastructure element of the roads, but remote sensing is not considered.
Besides, a road agent can provide information on the road in only three particu-
lar cases: short-term, long-term, or anticipatory; but does not support dynamic
traffic models. open511 and Road Accident Ontology provide information about
road events (traffic or road accidents in Road Accident Ontology) that can be
considered observable properties or features of interest of road sections but do
not support either traffic models or data models for sensing.

TAQE fulfills all the requirements. Regarding traffic data, it supports in-situ
data only partially since only fixed stations are supported. Remote sensing de-
vices and other observation mechanisms that support the observation of various
locations at the same time are not supported yet.

7 Conclusions

This paper presented a data modeling framework, called TAQE, for the represen-
tation of observation and modeled data in the air quality and traffic application
domains. The model is integrated into level 3 of the information architecture of
four levels of abstraction, which is based on the extensive use of reputed interna-
tional standards. Both TAQE and all the other models found in the literature for
air quality and traffic data were evaluated concerning a collection of requirements
extracted from a comprehensive set of applications. Besides, the application of
TAQE to a real use case in the scope of the TRAFAIR EU project was also
undertaken, showing the utility of the model and its potential to both reduce
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development costs and to ease semantic data integration between different areas
in the same application domain, but also between different application domains,
enabling this way the implementation of tools of a more general purpose. Future
work is related to the extension of the traffic model to support removable in-situ
devices and remote sensing.
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