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3 CIBER de Bioingenieŕıa, Biomateriales y Nanomedicina (CIBER–BBN), c/Poeta Mariano Esquillor s/n,
Edificio I+D, 50018 Zaragoza, Spain

4 Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK

Correspondence should be addressed to M. D. Peláez-Coca; mdpelaez@unizar.es
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A methodology that combines information from several nonstationary biological signals is presented. This methodology is based
on time-frequency coherence, that quantifies the similarity of two signals in the time-frequency domain. A cross time-frequency
analysismethod, based onquadratic time-frequency distribution, has beenused for combining information of several nonstationary
biomedical signals. In order to evaluate this methodology, the respiratory rate from the photoplethysmographic (PPG) signal is
estimated. The respiration provokes simultaneous changes in the pulse interval, amplitude, and width of the PPG signal. This
suggests that the combination of information from these sources will improve the accuracy of the estimation of the respiratory
rate. Another target of this paper is to implement an algorithm which provides a robust estimation. Therefore, respiratory rate was
estimated only in those intervalswhere the features extracted from the PPG signals are linearly coupled. In 38 spontaneous breathing
subjects, among which 7 were characterized by a respiratory rate lower than 0.15 Hz, this methodology provided accurate estimates,
with the median error {0.00; 0.98}mHz ({0.00; 0.31}%) and the interquartile range error {4.88; 6.59}mHz ({1.60; 1.92}%). The
estimation error of the presented methodology was largely lower than the estimation error obtained without combining different
PPG features related to respiration.

1. Introduction

Biomedical signals convey information about biological sys-
tems and can be recorded from different sources. For
the study of a functional system or facing a clinical prob-
lem different biomedical signals and processing methods
may be of interest. For instance, cardiovascular system activ-
ity is reflected in signals of such varied origins as elec-
trical (ECG), optical (photoplethysmographic signal), or
mechanical (blood pressure). Biomedical signals processing
tools are typically applied on only one signal at a time and
with limited knowledge of the interrelationships with other

signals influenced by the same system. However, an analysis
which takes into account multiple signals could signifi-
cantly improve the results. Combining information from
different physiological interactions increases the accuracy
and offers more robust estimates [1]. Spectral coherence-
based methods quantify the similarity of the frequency
content of two signals. A peak in the coherence magnitude
means that a common frequency is present in two signals,
without specifying whether this common oscillation appears
in both signals at the same time. These methods do not
give any information about the temporal structure of the
signal, and require signals to be stationary. Stationarity is
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a rare exception rather than the rule in biomedical signals.
Most of the non-stationary methods for the analysis of
biomedical signals interactions are based on time-varying
autoregressive models [2]. The performance of these meth-
ods is related to the goodness of fit with the underlying
model, and in extremely non-stationary conditions they have
been shown to perform less accurately than nonparametric
methods [3]. Coherence estimators based on nonparametric
methods have the advantage of not requiring any assump-
tion on the time-frequency (TF) structure of the signals,
and they are relatively easy to estimate. TF nonparamet-
ric methods are based on multitaper spectrogram [4, 5],
wavelet transform [6, 7], empirical mode decomposition [8,
9], and quadratic TF distributions (QTFD) [10, 11]. QTFD
provides TF representations of the signal power spectra and
spectral coherence with fine joint TF resolution. In this
paper, we present a cross TF analysis method for combining
information of several non-stationary biomedical signals.
The proposed methodology is applied to indirectly estimate
the respiratory rate from the photoplethysmographic (PPG)
signal. The underlying hypothesis of this methodology is
that respiration provokes simultaneous changes in the pulse
interval, amplitude, and width of the PPG pulses [12]. PPG
signal has been applied inmany different clinical settings [13],
including the monitoring of blood oxygen saturation, heart
rate [14], blood pressure, cardiac output, and respiration [15].
Given its simplicity, low-cost, and that it is widely used in the
clinical routine, it is desirable to maximize the PPG potential
by exploring additional measurements that can be derived
from it. It is worth noting that oximetry systems can provide
multiple information using only one sensor, making its use
simpler, more comfortable, and cheaper than multiple sensor
devices.

Severalmethods for estimating respiratory rate fromPPG
have been proposed [12, 15–18]. Most of them are based on
spectral analysis of PPG signal and do not combine respira-
tory information from different sources except [12], in which
pulse rate, amplitude, andwidthwere already used to estimate
respiratory rate. The underlying idea of that study was to
merge respiratory information which may be apparent in
some of the derived signals but not in the others.The focus of
the present paper is different since the methodology has been
specifically designed to provide respiratory rate estimates
only when respiratory information is present in more than
one signal. The proposed methodology has been specially
designed to provide robust estimates. To this end, coherence
analysis is used with a twofold objective: to perform a sort
of control of the accuracy of the estimates and to localize
signal-dependent TF regions from which respiratory rate is
extracted.

Note that part of the results presented in this paper has
been previously presented in a short conference paper [19].

2. Materials

In this study we used two databases; the first one includes
healthy adults and the second one includes children with
sleep-disordered breathing.

2.1. Database: Healthy Adults. Seventeen healthy subjects
(age 28.5 ± 2.8 years, 11 males) underwent a tilt table test
with the following protocol: 4min in early supine position,
5min head-up tilted to an angle of 70 degrees, and 4min
back to later supine position [14, 20]. The automatic bed
took about 18 s to move from 0 to 70 degrees. No subject
had cardiorespiratory pathologies. Among the spontaneous
breathing subjects, 7 breathed at a frequency rate of less than
0.15Hz for at least one min, while 5 did that during the entire
test.The PPG signal was recorded from index finger using the
Biopacs PPG100C amplifier with the TSD200 transducerwith
a sampling rate of 250Hz, whereas standard lead V4 ECG
signal was recorded using the Biopacs ECG100C amplifier
with a sampling rate of 1 KHz.The respiratory signal, 𝑟(𝑡), was
recorded through a strain gauge transducer with a sampling
rate of 125Hz.

2.2. Database: Children. This study uses the collection of
polysomnography recordings of 21 children that were ac-
quired over all-night-long sessions, as described in detail in
[21].The children (age 4.47±2.04 years, 11 boys) were referred
to the Miguel Servet Children’s Hospital in Zaragoza for
suspected sleep-disordered breathing.

PPG signal was continuously measured using a pulse
oximeter (COSMOETCO2/Spo2MonitorNovametrix,Med-
ical Systems). Recordings were stored with a sample rate
of 100Hz. The respiratory signal, 𝑟(𝑡), was recorded by a
digital polygraph (BITMED EGP800) through abdominal
respiratory efforts.

3. Methods

As shown in the block diagram of Figure 1, the methodology
applies to the variability of given features of the PPG signals,
called 𝑥

𝑖
(𝑡), which are affected by respiration. The algorithm

is composed of the following main parts:

(1) extraction of respiration-related features, 𝑥
𝑖
(𝑡), from

the PPG signal;

(2) estimation of the auto and cross TF spectra, 𝑆𝑖𝑗
𝑘
(𝑡,

𝑓), and coherence, 𝛾𝑖𝑗
𝑘
(𝑡, 𝑓), between features {𝑥

𝑖
(𝑡),

𝑥
𝑗
(𝑡)}
𝑘
, with (𝑖, 𝑗) ∈ {1, . . . , 𝑁} and 𝑘 ∈ {1, . . . , (𝑁 −

1)𝑁/2}, where 𝑁 is the total number of features and
𝑘 is the index numbering the cross TF spectra and
coherence;

(3) estimation of the instantaneous frequency,𝑓𝑖𝑗
𝑘
(𝑡), with

𝑖 ̸= 𝑗, of the respiration-related component of 𝑆𝑖𝑗
𝑘
(𝑡, 𝑓);

(4) combination of 𝑓𝑖𝑗
𝑘
(𝑡) to obtain a robust estimate of

the respiratory rate 𝑓
𝑅
(𝑡).

In this study, 𝑥
𝑖
(𝑡) are the pulse interval variability (𝑖 =

PIV), pulse amplitude variability (𝑖 = PAV), and pulse width
variability (𝑖 = PWV). Mean duration of polysomnographic
recordings is as high as 8 hours so they were split into 90-
seconds-length segments due to the high computational load
of QTFD.
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Figure 1: Block diagram of the algorithm. 𝑥
𝑖
(𝑡) and 𝑥

𝑗
(𝑡) represent

signals derived from the PPG signal which are affected by respira-
tion.

3.1. Extraction of Respiration-Related Features from the PPG
Signal. Respiration represents an external perturbation of the
cardiovascular system. As a consequence, oscillations syn-
chronous with respiration are present in the heart rate, blood
pressure, and other cardiovascular variables at the same time.
The PPG signal contains at least three features which are
affected by the respiration: the pulse interval, amplitude, and
width.

The pulses in the PPG signal were detected by following
the procedure described in [14]. Briefly, the PPG signal was
resampled at 1 KHz, and the 𝑛th pulse was localized as the
maximum in an interval going from 150ms after the 𝑛th
QRS to the (𝑛 + 1)th QRS in the ECG signal. It has been
established that PPG measurements are quite sensitive to
patient and/or probe tissue movement artifact. Detection
of these artifacts represents a nontrivial signal processing
problem [13]. To address this issue, an artifact detector based
on Hjorth parameters was applied. The principle behind the
detector is that when the PPG signal differs largely from an
oscillatory signal, it is very likely an artifact. Hjorth param-
eters have been proposed as an estimation of the central
frequency of a signal and as half of the bandwidth. Further
details of used artifact removal procedure are explained in
[22].

From the temporal location of the 𝑛th pulse wave, 𝑡
𝑃
𝑛

, the
pulse interval signal was obtained by interpolating at 4Hz
with 5th order splines the pairs (𝑡

𝑃
𝑛

, 𝑡
𝑃
𝑛

− 𝑡
𝑃
𝑛−1

). The effect of
abnormal beats in the pulse interval was corrected by apply-
ing a methodology based on the integral pulse frequency
modulation model [23], and the pulse interval variability
(PIV) signal was obtained by high pass filtering with a cut-
off frequency of 0.03Hz.

Thepulse amplitude variability (PAV) signal was obtained
by first interpolating at 4Hz the series 𝑥PPG(𝑡𝑃

𝑛

), where
𝑥PPG(𝑡) represents the resampled PPG signal, and by subse-
quently high pass filteringwith a cut-off frequency of 0.03Hz.
The pulse width variability (PWV)was obtained from𝑥PPG(𝑡)
by following the procedure describe in [12].

3.2. Cross Time-Frequency Analysis. A QTFD belonging to
the Cohen’s class was used to estimate TF spectra and coher-
ence functions. The TF spectra between {𝑥

𝑖
(𝑡), 𝑥
𝑗
(𝑡)}
𝑘
, 𝑆𝑖𝑗
𝑘
(𝑡,

𝑓), were obtained by taking the Fourier transform of the

product between the ambiguity function 𝐴𝑖𝑗
𝑘
(𝜏, ]) and an

elliptical exponential kernel Φ(𝜏, ]) [24]:

𝑆
𝑖𝑗

𝑘
(𝑡, 𝑓) = ∫∫

∞

−∞

Φ (𝜏, ]) 𝐴
𝑖𝑗

𝑘
(𝜏, ]) 𝑒𝑗2𝜋(𝑡]−𝜏𝑓)𝑑] 𝑑𝜏,

𝐴
𝑖𝑗

𝑘
(𝜏, ]) = ∫

∞

−∞

𝑥
𝑖
(𝑡 +

𝜏

2
) 𝑥
∗

𝑗
(𝑡 −

𝜏

2
) 𝑒
−𝑗2]𝜋𝑡

𝑑𝑡,

Φ (𝜏, ]) = exp{−𝜋[( ]

]
0

)

2

+ (
𝜏

𝜏
0

)

2

]

2𝜆

} .

(1)

The isocontours of Φ(𝜏, ]) are ellipses whose eccentricity
depends on parameters ]

0
and 𝜏
0
[24]. Parameters ]

0
and 𝜏
0

are used to change the length of the ellipse axes aligned along
] (i.e., the degree of time filtering) and 𝜏 (i.e., the degree of
frequency filtering), respectively.Theparameter𝜆 sets the roll
off of the filter. TF coherence, which measures the degree of
local coupling between two signals, is also estimated. In order
to estimate the TF coherence, the filtering provided byΦ(𝜏, ])
should completely suppress the interference terms, since they
may cause coherence estimates to take values outside the
range [0, 1], thus losing their physical interpretation. As long
as the degree of TF filtering is strong enough, TF coherence
by QTFD is obtained as [24]

𝛾
𝑖𝑗

𝑘
(𝑡, 𝑓) =

󵄨󵄨󵄨󵄨󵄨
𝑆
𝑖𝑗

𝑘
(𝑡, 𝑓)

󵄨󵄨󵄨󵄨󵄨

√𝑆𝑖𝑖
𝑘
(𝑡, 𝑓) 𝑆

𝑗𝑗

𝑘
(𝑡, 𝑓)

. (2)

The degree of TF filtering necessary to get 𝛾(𝑡, 𝑓) ∈

[0, 1] was determined as described in [10]. Briefly, the search
strategy consists in fixing an initial fine TF resolution and
iteratively modifying parameters {𝜏

0
, ]
0
} in a way in which

TF filtering increases evenly at each step. Among those com-
binations of {𝜏

0
, ]
0
} which provide low filtering and 𝛾(𝑡, 𝑓) ∈

[0, 1], the most appropriate one is chosen depending on
whether in a given application it is preferable to have better
time or frequency resolution. In this study, resolution was
{12 s, 41mHz}. These values correspond to the widening of
spectral components which are ideally perfectly concentrated
along a line in time or frequency direction [24]. The TF
domain was discretized in steps of 0.25 s and 1mHz.

The TF regions where the local coupling is significant
are localized by a hypothesis test. The test is based on the
comparison of 𝛾𝑖𝑗

𝑘
(𝑡, 𝑓)with a threshold function 𝛾TH(𝑡, 𝑓; 𝛼),

obtained as the (1 − 𝛼)th percentile of the statistical distribu-
tion Γ(𝑡, 𝑓) = {𝛾𝑤𝑤

1
(𝑡, 𝑓), . . . , 𝛾

𝑤𝑤

𝑘
(𝑡, 𝑓), . . .} where 𝛾𝑤𝑤

𝑘
(𝑡, 𝑓)

is the TF coherence between the 𝑘th realization of two white
Gaussian noises, which is a simple technique, not computa-
tionally demanding, and has been previously validated [24].
The significance level 𝛼 represents the probability of wrongly
detecting local coupling between two signals.Thus, the lower
𝛼, the higher 𝛾TH(𝑡, 𝑓; 𝛼).

3.3. Estimation of Respiratory Rate. Respiratory rate is esti-
mated in two steps: first, the instantaneous frequencies of the
respiration-related spectral component are estimated from
the cross TF spectra; second, these estimates are combined
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together. For every couple of signals {𝑥
𝑖
(𝑡), 𝑥
𝑗
(𝑡)}
𝑘
, the instan-

taneous frequency of the respiration-related components is
estimated in a signal-dependent region Ω𝜆

𝑖𝑗,𝑘
of the cross TF

spectra, whose lower bound is 𝑓
𝑀
. HRV exhibits frequency

components from 0 to 0.4Hz. The frequency components
between 0.15 and 0.4Hz represent the vagal tone and are
closely related to respiration. Frequencies from 0.04 to
0.15Hz manifest the activation of both parasympathetic and
sympathetic nervous systems. These frequency components
are also reflected in the PPG signal [14]. Usually both
frequency components are separated but, when respiratory
rate is low, they can overlap and produce a monocomponent
frequency spectrum. Taking into account this physiological
phenomenon, we propose an algorithm to adaptively deter-
mine𝑓

𝑀
based on the TF structure of all PIV, PAV, and PWV.

The lower bound 𝑓
𝑀
is estimated as follows.

(1) Estimate 𝛾(𝑓) = ∏
𝑘
𝛾
𝑖𝑗

𝑘
(𝑓), where 𝛾𝑖𝑗

𝑘
(𝑓) is the tempo-

ral mean of 𝛾𝑖𝑗
𝑘
(𝑓).

(2) Locate all spectral peaks of the function 𝛾(𝑓).
(3) If 𝛾(𝑓) is characterized by more than one spectral

peak, 𝑓
𝑀

is estimated as the frequency which corre-
sponds to the minimum in between the two spectral
peaks of greater amplitude, whenever the amplitude
of the peakwith lower frequency is less than 1.25 times
the amplitude of the second peak.

(4) If 𝛾(𝑓) has only one spectral peak, 𝑓
𝑀
= 0.05Hz.

The region Ω𝛼
𝑖𝑗,𝑘

is defined as that portion of the TF domain
in which 𝑓 ∈ [𝑓

𝑀
, 0.5]Hz and the coherence is significant:

Ω
𝛼

𝑖𝑗,𝑘

= {(𝑡, 𝑓) ∈ (R
+
, [𝑓
𝑀
, 0.5Hz]) | 𝛾𝑖𝑗

𝑘
(𝑡, 𝑓) > 𝛾TH(𝑡, 𝑓; 𝛼)} .

(3)

For every couple of signals {𝑥
𝑖
(𝑡), 𝑥
𝑗
(𝑡)}
𝑘
, the instantaneous

frequency 𝑓𝑖𝑗
𝑘
(𝑡), with 𝑘 ∈ 1, . . . , (𝑁 − 1)𝑁/2, is preliminary

estimated as the maximum of the spectral peaks in 𝑆𝑖𝑗
𝑘
(𝑡, 𝑓),

with (𝑡, 𝑓) ∈ Ω𝛼
𝑖𝑗,𝑘

.
In some time intervals the estimate of the respiratory rate

presents an abrupt change.This change is due to the presence
of a peak in the spectrum that is greater than the peak caused
by respiratory signal. The next algorithm was implemented
in order to correct these preliminary estimations in these
intervals.

(1) Localize intervals [𝑡(𝑏)
𝑛
, 𝑡
(𝑒)

𝑛
], during which an abrupt

change, (𝑑/𝑑𝑡)𝑓𝑖𝑗
𝑘
(𝑡) > ±Δ𝑓, followed in less than

Δ𝑡 by another abrupt change of opposite sign, (𝑑/
𝑑𝑡)𝑓
𝑖𝑗

𝑘
(𝑡) > ∓Δ𝑓, occurs. In this study we used Δ𝑓 =

0.04Hz and Δ𝑡 = 10 s.
(2) For all 𝑡 ∈ [𝑡(𝑏)

𝑛
, 𝑡
(𝑒)

𝑛
], consider all the local maxima, or

inflection points, of 𝑆𝑖𝑗
𝑘
(𝑡, 𝑓) inside Ω𝛼

𝑖𝑗,𝑘
, whose fre-

quencies are called 𝑓
𝑙
. The 𝑓

𝑙
which minimizes |𝑓

𝑙
−

𝑓
𝑚
| is called 𝑓

𝑙,𝑚
, where 𝑓𝑚 is the median value of

𝑓
𝑖𝑗

𝑘
(𝑡), estimated in a 2min temporalwindow centered

in 𝑡.
(3) The instantaneous frequency of the respiration-

related component from the 𝑘 cross TF spectrum is
estimated as

𝑓
𝑖𝑗

𝑘
(𝑡) =

{{{{

{{{{

{

𝑓
𝑙,𝑚
, if 󵄨󵄨󵄨󵄨𝑓𝑙,𝑚 − 𝑓

𝑚󵄨󵄨󵄨󵄨 < Δ𝑓,

𝑓
𝑖𝑗

𝑘
(𝑡) , if 󵄨󵄨󵄨󵄨𝑓𝑙,𝑚 − 𝑓

𝑚󵄨󵄨󵄨󵄨 ∈ [Δ𝑓, 2Δ𝑓] ,

0, if 󵄨󵄨󵄨󵄨𝑓𝑙,𝑚 − 𝑓
𝑚󵄨󵄨󵄨󵄨 > 2Δ𝑓,

(4)

when 𝑡 ∈ [𝑡(𝑏)
𝑛
, 𝑡
(𝑒)

𝑛
] and 0 stands for empty set.

Outside these intervals with abrupt changes, the estima-
tion is set as its preliminary version 𝑓𝑖𝑗

𝑘
(𝑡):

𝑓
𝑖𝑗

𝑘
(𝑡) = 𝑓

𝑖𝑗

𝑘
(𝑡) , ∀𝑡 ∉ [𝑡

(𝑏)

𝑛
, 𝑡
(𝑒)

𝑛
] . (5)

The combined estimated respiratory rate is the median of
𝑓
𝑖𝑗

𝑘
(𝑡):

𝑓
𝑅 (𝑡) = median

𝑘∈[1,(𝑁−1)𝑁/2]

𝑓
𝑖𝑗

𝑘
(𝑡) . (6)

3.4. Evaluation Scheme. The same methodology described
in this work (Section 3.3) was used to estimate the respi-
ratory rate of reference 𝑓

𝑅
(𝑡) from the 𝑟(𝑡) signal. In this

case, autospectra 𝑆𝑖𝑖(𝑡, 𝑓) were used instead of cross-spectra
𝑆
𝑖𝑗

𝑘
(𝑡, 𝑓), and steps involving TF coherence were omitted.
For a given subject 𝑠, the estimation error was estimated

in mHz, as 𝐸
𝑠
(𝑡) = (𝑓

𝑅
(𝑡; 𝑠) − 𝑓

𝑅
(𝑡; 𝑠)) ⋅ 1000, and in relative

unites, as 𝐸
𝑠
(𝑡) = (𝑓

𝑅
(𝑡; 𝑠) − 𝑓

𝑅
(𝑡; 𝑠))/𝑓

𝑅
(𝑡; 𝑠). Global results

are given in tables as

𝐸MED

= {median
𝑠

(median
𝑡

(𝐸
𝑠 (𝑡))) , iqr

𝑠

(median
𝑡

(𝐸
𝑠 (𝑡)))} ,

𝐸IQR = {median
𝑠

(iqr
𝑡

(𝐸
𝑠 (𝑡))) , iqr

𝑠

(iqr
𝑡

(𝐸
𝑠 (𝑡)))} ,

(7)

where median and IQR stand for median and interquartile
range, and they are first estimated across time and then across
subjects.

4. Results

An illustrative example of the proposed algorithm is shown in
Figures 2 and 3. Figure 2 depicts the magnitude of the cross
TF spectra, |𝑆𝑖𝑗

𝑘
(𝑡, 𝑓)|, where the instantaneous frequency of

the respiration-related component,𝑓𝑖𝑗
𝑘
(𝑡), is reported in black

line. Regions Ω𝛼
𝑖𝑗,𝑘

, with 𝛼 = 5%, are encircled by black con-
tours and were bounded by 𝑓

𝑀
= 0.13Hz. In the TF regions

in which the local coupling was not statistically significant,
𝑓
𝑖𝑗

𝑘
(𝑡) was not estimated. Figure 3 shows that, although in

the considered intervals the respiratory rate was highly non-
stationary, 𝑓

𝑅
(𝑡) followed 𝑓

𝑅
(𝑡) (respiratory rate estimated
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Figure 2: Cross TF spectra between: (a) PIV—PAV signals, (b) PIV—PWV signals, (c) PAV—PWV signals. Instantaneous frequencies 𝑓𝑖𝑗
𝑘
(𝑡)

are reported in black lines. Black contours encircle the TF regions of the respiration-related component Ω𝛼
𝑖𝑗,𝑘
. Horizontal lines represent 𝑓

𝑀
.
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(b) Respiratory rate estimates

Figure 3: (a) Instantaneous frequencies 𝑓𝑖𝑗
𝑘
(𝑡) estimated in Figure 2. (b) Respiratory rate, 𝑓

𝑅
(𝑡), and estimated respiratory rate 𝑓

𝑅
(𝑡).

directly from the respiratory signal 𝑟(𝑡)) with extremely low
estimation error, whose {median, interquartile} range was
{0.00, 4.88}mHz.

The estimation error is shown in Tables 1, 2, and 3
according to the specifications given in Section 3.4. InTables 1
and 2, the amount of time during which the respiratory rate
was not estimated (NE), that is, 𝑓

𝑅
(𝑡) = 0, is also reported.

As expected, by decreasing 𝛼, the estimation error decreased
andNE increased. Table 1 refers to the healthy adults database
and Table 2 refers to the children-polysomnography one. In
these tables we can see that themedian of the estimate error is
always zero and the interquartile range is very small. Table 3
shows the results obtained when using the respiration-related
features of the PIV, or of the PAV, of the PWV, separately.
Comparing these results with those of Tables 1 and 2, we see
that the median of the estimation error for PIV and PAV is
greater than zero, and although the error in the estimation
of respiratory rate performed with PWV has median zero,
the interquartile range is much greater than that when we
combine the information from the PIV, PAV, and PWV.

Table 1: Error in the estimation of the 𝑓
𝑅
(𝑡) using the combination

of 𝑓𝑖𝑗
𝑘
(𝑡) in the database of healthy adults. NE: intervals where 𝑓

𝑅
(𝑡)

was not estimated.

𝛼 = 10% 𝛼 = 5% 𝛼 = 1%
med/iqr med/iqr med/iqr

𝐸med [mHz] 0.00/0.98 0.00/0.24 0.00/0.98
𝐸iqr [mHz] 7.81/6.35 7.81/5.12 6.83/3.39
𝐸med [%] 0.00/0.29 0.00/0.06 0.00/0.29
𝐸iqr [%] 3.62/3.90 3.11/4.10 2.49/3.80
NE [%] 0.92/4.01 2.38/8.34 11.44/19.50

5. Discussion

In this paper a new methodology has been presented whose
peculiarities are (i) the possibility to combine several biomed-
ical signals, in non-stationary conditions, in order to estimate
a common target signal; (ii) the use of TF analysis with
high TF resolution; (iii) the use of TF coherence analysis to
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Table 2: Error in the estimation of the 𝑓
𝑅
(𝑡) using the combination

of 𝑓𝑖𝑗
𝑘
(𝑡) in the database of children. NE: intervals where 𝑓

𝑅
(𝑡) was

not estimated.

𝛼 = 10% 𝛼 = 5% 𝛼 = 1%
med/iqr med/iqr med/iqr

𝐸med [mHz] 0.00/0.98 0.00/0.98 0.00/0.98
𝐸iqr [mHz] 4.88/7.81 4.88/6.59 3.91/4.88
𝐸med [%] 0.00/0.30 0.00/0.31 0.00/0.29
𝐸iqr [%] 1.69/2.16 1.60/1.92 1.45/1.51
NE [%] 1.88/6.19 3.88/10.83 9.63/21.29

increase the accuracy in the localization of the specific time-
varying spectral bands within the target signal is estimated.

In order to evaluate the proposed methodology, the
estimation of respiratory rate from the PPG signal was per-
formed due to its clinical applications. In recent years, much
effort has been put in the design of methods to indirectly
estimate the respiratory rate from the PPG signal [15]. The
presented methodology provides a continuous tracking of
non-stationary respiratory rate with very high accuracy. It
is worth noting that, although in this paper we used as
respiration-related features the PIV, PAV, and PWV signals,
the presented framework is a general one and it offers the
possibility of including more respiration-related features. In
this framework, the parameters which determine the signifi-
cance level of coherence, 𝛼, and the TF resolution,Δ

𝑡
andΔ

𝑓
,

control the trade-off between the accuracy of the estimation
and percentage of unyielded estimates, that is, the amount
of time during which the algorithm provides 𝑓

𝑅
(𝑡) = 0.

For instance, in those situations in which higher accuracy is
more important than obtaining continuous estimates, 𝛼 =

1% can be used. Another important characteristic of the
algorithm is the possibility of estimating respiratory rate
for 𝑓
𝑅
(𝑡) < 0.15Hz (7 subjects in the database of healthy

subjects had 𝑓
𝑅
(𝑡) < 0.15Hz for at least one minute). The

indirect estimation of respiratory rate for 𝑓
𝑅
(𝑡) < 0.15Hz

is particularly challenging since in this case the spectral
range of the respiratory signal overlaps with that of other
cardiovascular mechanisms (as Mayer wave). Although low
respiratory breathing is a common physiological condition,
many methods for the indirect estimation of the respiratory
rate from the PPG were not tested at these frequencies [15].
In this methodology, accurate estimate of 𝑓

𝑅
(𝑡) was obtained

also for low respiratory rate owing to coherence analysis
and to the signal-dependent definition of the time-varying
respiratory-dependent spectral bandsΩ𝛼

𝑖𝑗,𝑘
.

In contrast to other studies [15], the respiratory rate
was estimated in spontaneous breathing subjects during
periods of time in which the breathing rate could present
alterations. One of the databases used was recorded during
an autonomic test which induces quick changes in the cardio-
vascular variability and the other was recorded over all-night-
long sessions in children with suspected sleep-disordered
breathing. This is one of the most challenging conditions,
since both the respiratory rate and the PPG signal are highly
non-stationary.

The children database is larger than database of healthy
adults because recording for each of the 21 subjects was
carried out for 8 hours. This gives at this database more
robustness against specific abnormalities in the records. This
may be the reason why 𝐸iqr is lower in this database and 𝐸med
is the same for the three values of 𝛼. Regarding the robustness
of the proposed method, it is interesting to note that the
percentage of intervals where respiratory rate has not been
estimated is similar in both databases, although children had
anomalous states in breathing during the test.

Table 3 shows that the combination of different PPG fea-
tures related to respiration, as described in this study, largely
improved the estimation of the respiratory rate in comparison
to methodologies based on the analysis of a single PPG
feature. Among the three PPG features considered in this
study, PWV gave better estimates of respiratory rate than PIV
and PAV. This may be due to the fact that PWV is expected
to closely correlate with the stroke volume, which in turn is
strictly related to respiration due to intrathoracic pressure
changes. On the other hand, the relationship between PIV,
a surrogate of heart rate variability [14], and respiration is
mediated by the autonomic nervous system and their cou-
pling, which is affected by parasympathetic activity, may be
weak. A lower correlation between PAV and the respiratory
rate is also expected because PAVmay be affected by artifacts
and variations on the signal offsets unrelated to respira-
tion. As previously discussed, the underlying hypothesis of
this methodology is that respiration provokes simultaneous
changes in the pulse interval, amplitude, and width of the
PPG pulses. Our results show that the combination of infor-
mation from these sources offers a more robust estimation
of the respiratory rate of isolated sources and increases the
accuracy of such estimation. These results improve in terms
of accuracy (smaller median error) and consistency (smaller
interquartile range of the median value) those {−0.37, 0.66%}
({med, iqr}) obtained in [12]. This improvement is due to
the use of the time-frequency coherence function to localize
those regions of the time-frequency domain where useful
information about the respiratory rate is present in at least
two signals. This increases the robustness of the estimation
but, on the other hand, decreases the percentage of time
where an estimate is given. On the contrary, a respiratory rate
estimate was provided at every instant in [12].

PPG signal is provided by a very simple sensor called
pulse oximeter, which basically consists of a light emitter and
a light detector. In addition, pulse oximeter provides infor-
mation about arterial oxygen saturation. Therefore, deriving
respiratory information from PPG signals is very interesting
from the point of view of ambulatory scenarios.

A possible application could be the sleep apnea screen-
ing. Overnight polysomnography, which is the current gold
standard, represents an expensive procedure. Furthermore,
the use of many signals implies the use of many sensors
over the patient and that may affect the physiological sleep.
Obtaining respiratory information from the pulse oximeter
could allow us to dispense with specific respiration sensors.
Pulse oximeter is much more convenient than these specific
respiration sensors in sleep studies context, since the comfort
it offers to the patient.
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Table 3: Error in the estimation of the 𝑓
𝑅
(𝑡) using only the respiration-related features of the PIV, or of the PAV, or of the PWV, in both

databases.
Healthy adults DB [med/iqr] Children DB [med/iqr]

PIV PAV PWV PIV PAV PWV
𝐸med [mHz] −2.92/185.05 −43.95/204.10 0.00/3.17 −1.95/46.14 −63.48/207.030 −0.98/3.91
𝐸iqr [mHz] 57.62/131.83 72.27/87.65 5.86/56.40 103.52/186.46 119.63/177.49 9.77/97.84
𝐸med [%] −1.38/62.51 −36.36/69.13 0.00/1.10 −0.65/14.70 −32.87/69.31 −0.25/1.18
𝐸iqr [%] 19.04/48.98 18.54/42.48 6.87/34.06 35.75/64.89 35.20/62.04 3.25/33.78

Another possible application could be the extraction of
respiratory rate from a smartphone device. This kind of
devices can record PPG signals based on light emitted by
flash and received by camera [25]. Smartphones are very
interesting devices in ambulatory scenarios, since the spec-
tacular improvement of their computational power and their
wireless communications makes the transference of infor-
mation really simple [26]. Obtaining respiratory rate from
smartphone devices may open several applications, such as
anxiety, fatigue, or stress level monitoring. However, PPG
signals recorded by smartphones are in general more noisy
and their sampling rate is lower, so further study is necessary
in order to test the accuracy of the presented methods under
these conditions.

6. Conclusion

In this paper, amethodology that combines information from
several biological signals, in non-stationary conditions, by
time-frequency analysis is presented. In this methodology,
several signals were combined with the aim of increasing the
estimation accuracy. A second objective was to prioritize the
robustness of the algorithm so that an estimate of the signal
is provided only when the local coupling between signals was
sufficiently high. To evaluate this methodology, we combined
information from the pulse interval, amplitude, and width of
the PPG signal by cross time-frequency analysis to obtain an
estimate of the respiratory rate. The algorithm was evaluated
in two databases including subjects that exhibit alterations
in respiratory rate (til-test and sleep-disordered breathing),
spontaneous respiration, and intervals in which respiratory
rate was below 0.15Hz. We can conclude that during non-
stationary conditions the describedmethodology gave robust
and accurate estimation by combining information of several
sources.
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