000150140 001__ 150140
000150140 005__ 20251017144638.0
000150140 0247_ $$2doi$$a10.1002/ejic.202400511
000150140 0248_ $$2sideral$$a142434
000150140 037__ $$aART-2024-142434
000150140 041__ $$aeng
000150140 100__ $$aPantoja-Romero, Wenndy
000150140 245__ $$aAndrographolide Encapsulation in Metal-Organic Frameworks (MOFs) via Solvent-Free Process at High Pressure
000150140 260__ $$c2024
000150140 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150140 5203_ $$aAndrographolide (ADG) encapsulation was carried out on MOFs MIL‐53(Al) and ZIF‐8 by high‐pressure (0.3 GPa) contact. This methodology is not only environment‐friendly but also energy/time‐saving and gives rise to ADG‐MOFs with physical features equivalent to those of materials obtained by common liquid phase encapsulation. The loaded MOFs were characterized through TEM, SEM, XRD, TGA, FT‐IR, BET, and NMR. The observed decrease in the intensity of ADG XRD peaks is due to the adsorption of ADG into the MOFs. TGA showed the decomposition step of ADG in the range of 200–300 °C in both loaded MOFs. FT‐IR also showed intense signals of the ADG in the synthesized materials. The dissolution profile of ADG in MIL‐53(Al) in PBS (pH=7.4) was carried out showing that the drug was released up to 96 % after 75 h. Solid‐state NMR confirmed the interactions between ADG molecules and ZIF‐8 groups and the formation of a hydrogen bond between the carboxylic group of ADG and the hydroxyl group of MIL‐53(Al). Coefficient partition studies determined that both MOFs did not improve the hydrophilicity of the ADG, due to the loading of the drug preferably occurring by interactions in the hydrophobic areas within the pores of the MOFs.
000150140 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T68-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-138582OB-I00
000150140 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000150140 590__ $$a2.0$$b2024
000150140 592__ $$a0.459$$b2024
000150140 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b24 / 42 = 0.571$$c2024$$dQ3$$eT2
000150140 593__ $$aInorganic Chemistry$$c2024$$dQ2
000150140 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000150140 700__ $$aAysa-Martínez, Yolanda
000150140 700__ $$aLavín-Flores, Alexis
000150140 700__ $$aMedina-Berrios, Nataniel
000150140 700__ $$aBayro, Marvin J.
000150140 700__ $$aMorell, Gerardo
000150140 700__ $$aWeiner, Brad R.
000150140 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas, Joaquín$$uUniversidad de Zaragoza
000150140 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000150140 773__ $$g27, 36 (2024), e202400511 [8 pp.]$$pEur. j. inorg. chem.$$tEuropean Journal of Inorganic Chemistry$$x1434-1948
000150140 8564_ $$s1630321$$uhttps://zaguan.unizar.es/record/150140/files/texto_completo.pdf$$yVersión publicada
000150140 8564_ $$s2861466$$uhttps://zaguan.unizar.es/record/150140/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000150140 909CO $$ooai:zaguan.unizar.es:150140$$particulos$$pdriver
000150140 951__ $$a2025-10-17-14:30:37
000150140 980__ $$aARTICLE