

Long-term effects of whole-body vibration in trained adolescent swimmers. Does it increase strength, power or swimming performance?

Journal:	International Journal of Sports Physiology and Performance
Manuscript ID	IJSPP.2019-0282.R1
Manuscript Type:	Original Investigation
Date Submitted by the Author:	n/a
Complete List of Authors:	Muniz-Pardos, Borja; University of Zaragoza, Physiatry and Nursing; GENUD (Growth Exercise NUtrition and Development) Research Group, Gomez-Bruton, Alejandro; University of Zaragoza, Physiatry and Nursing; GENUD (Growth Exercise NUtrition and Development) Research Group, ; Centro de Investigacion Biomedica en Red Fisiopatologia de la Obesidad y Nutricion; Instituto Agroalimentario de Aragón Matute-Llorente, Ángel; University of Zaragoza, Physiatry and Nursing; GENUD (Growth Exercise NUtrition and Development) Research Group, ; Centro de Investigacion Biomedica en Red Fisiopatologia de la Obesidad y Nutricion; Instituto Agroalimentario de Aragón González-Agüero, Alex; University of Zaragoza, Physiatry and Nursing; GENUD (Growth Exercise NUtrition and Development) Research Group, ; Centro de Investigacion Biomedica en Red Fisiopatologia de la Obesidad y Nutricion; Instituto Agroalimentario de Aragón González-Agüero, Alex; University of Zaragoza, Physiatry and Nursing; GENUD (Growth Exercise NUtrition and Development) Research Group, ; Centro de Investigacion Biomedica en Red Fisiopatologia de la Obesidad y Nutricion; Instituto Agroalimentario de Aragón Gómez-Cabello, Alba; Centro Universitario de la Defensa Zaragoza; GENUD (Growth Exercise NUtrition and Development) Research Group, ; Centro de Investigacion Biomedica en Red Fisiopatologia de la Obesidad y Nutricion; Instituto Agroalimentario de Aragón Casajus, Jose; University of Zaragoza, Physiatry and Nursing; GENUD (Growth Exercise NUtrition and Development) Research Group, ; Centro de Investigacion Biomedica en Red Fisiopatologia de la Obesidad y Nutricion; Instituto Agroalimentario de Aragón Vicente-Rodríguez, German; University of Zaragoza, Physiatry and Nursing; GENUD (Growth Exercise NUtrition and Development) Research Group, ; Centro de Investigacion Biomedica en Red Fisiopatologia de la Obesidad y Nutricion; Instituto Agroalimentario de Aragón
Keywords:	athletic performance, dry-land strength, dry-land power, adolescence, vibratory stimulus, chronic effect

- 1 Title: Long-term effects of whole-body vibration in trained adolescent swimmers. Does
- 2 it increase strength, power and swimming performance?
- 3
- 4 Running head: Whole-Body Vibration training in swimmers

to per perez

5 Abstract

6

7	Purpose: To examine the effects of a 6-month whole-body vibration (WBV) training on
8	lower-body strength (LBS), lower-body power (LBP) and swimming performance in
9	adolescent trained swimmers. <i>Methods</i> : Thirty-seven swimmers (23 males, 14 females;
10	14.8 ± 1.3 y) were randomly assigned to the WBV (n=20) or the control group (n=17).
11	Isometric LBS (knee extension and half-squat) and LBP (vertical and horizontal jumps
12	and 30 m sprint) tests were performed before and after the intervention period.
13	Swimming performance times in 100 m were collected from official competitions.
14	Since time x sex interaction was not found for any variable ($p > 0.05$), males and
15	females were analysed as a whole. <i>Results</i> : Within-group analyses showed a <i>most likely</i>
16	<i>beneficial</i> moderate effect of WBV on isometric knee extension [effect size (ES)=
17	0.63], 30 m sprint test (ES= 0.62) and 100 m performance (ES= 0.25), although these
18	were corresponded with comparable small to moderate effects in the control group (ES=
19	0.73, 0.71 and 0.20, respectively). The control group obtained a small possibly
20	beneficial effect of swimming-only training on vertical jump performance, whereas no
21	effect was observed in the WBV group. Unclear effects were observed for the rest of
22	the variables assessed. Between-group analyses revealed unclear effects of WBV
23	training when compared to the control condition in all studied variables. Conclusions:
24	There is no current evidence to support the use of WBV training and therefore coaches
25	and sports specialists should select other methods of training when the aim is to increase
26	LBS, LBP or swimming performance.
27	

27

28 *Keywords*: vibratory stimulus, athletic performance, dry-land strength, dry-land power,

29 adolescence, chronic effect

30 Introduction

31	Whole-body vibration (WBV) is an oscillatory training method widely used in
32	sports centers ¹ . This protocol has been described as the sinusoidal oscillations produced
33	by industrial machines which are transmitted to the human body, enhancing the tonic
34	vibration reflex that stimulates reflex muscle contraction ² , which can potentially
35	improve the neuromuscular function ¹ . The seminal research into the stress produced by
36	WBV was focused on the health-related risks construction workers were exposed to ^{3,4} .
37	From the late 90s, the study of this stimulus began to gain popularity in the field of
38	sports science since a number of pioneering publications proposed WBV as an effective
39	training method to increase lower-body strength (LBS) and lower-body explosive power
40	(LBP) and, potentially, athletic performance $5-8$.
41	The influence of LBP in short-distance swimming performance is well
42	documented 9-12. The instants when the swimmer has access to ground reaction forces
43	(i.e., dive and turn phases) play a decisive role in overall swimming performance. Lyttle
44	and Benjanuvatra stated that start performance can potentially account for as much as
45	~15% of the race time over a 100 m competition 13 , highlighting the importance of
46	maximizing LBP during the block start performance. A previous meta-analysis revealed
47	positive chronic effects of WBV on LBP through both countermovement jump (CMJ)
48	and squat jump performance, especially when the WBV intervention was longer than 12
49	weeks, with high frequencies (>30 Hz) and high amplitudes (>3 mm) applied 1 .
50	Delechuse et al. compared the effects of a WBV training protocol with a conventional
51	resistance training routine and, despite witnessing comparable effects on both dynamic
52	and isometric LBS, the authors reported greater effects of the WBV group on LBP
53	(CMJ height) in healthy adults ¹⁴ . Previous authors suggested that the physiological
54	mechanisms behind these improvements might be due to neuromuscular adaptations,

55	leading to improvements in motor unit firing and synchronization, synergist muscle
56	contraction, antagonist muscle inhibition and adaptation of the reflex response ^{6,15} .
57	Hortobagyi et al. ¹⁶ performed a further meta-analytical study of the acute and
58	chronic effects of WBV on both LBP and athletic performance in competitive athletes
59	of a wide range of ages representing different sports such as long distance running,
60	rugby or sprinting. However, only one of the included studies examining long-term
61	effects involved adolescent athletes (basketball players), which would be an important
62	novelty of the present study given the limited research focusing on adolescents.
63	Presumably, WBV training could increase LBP and it is worth noting that the
64	contribution of this capability varies depending on the studied sport (i.e., different
65	physiological needs) ¹⁷ . Consequently, it might be reasonable to argue that the benefit of
66	WBV training on sports performance depends on the LBP demands during specific
00	
67	sport actions. The authors of this meta-analysis reported small chronic effects of WBV
67	sport actions. The authors of this meta-analysis reported small chronic effects of WBV
67 68	sport actions. The authors of this meta-analysis reported small chronic effects of WBV training on maximal force (effect size (ES)= 0.44), power (ES= 0.42) and athletic
67 68 69	sport actions. The authors of this meta-analysis reported small chronic effects of WBV training on maximal force (effect size (ES)= 0.44), power (ES= 0.42) and athletic performance (ES= 0.45). However, there is no previous evidence examining the effects
67 68 69 70	sport actions. The authors of this meta-analysis reported small chronic effects of WBV training on maximal force (effect size (ES)= 0.44), power (ES= 0.42) and athletic performance (ES= 0.45). However, there is no previous evidence examining the effects of WBV on swimming performance, which could potentially produce a greater transfer
67 68 69 70 71	sport actions. The authors of this meta-analysis reported small chronic effects of WBV training on maximal force (effect size (ES)= 0.44), power (ES= 0.42) and athletic performance (ES= 0.45). However, there is no previous evidence examining the effects of WBV on swimming performance, which could potentially produce a greater transfer to the sports-specific action given the remarkable importance of the LBP capacity in
 67 68 69 70 71 72 	sport actions. The authors of this meta-analysis reported small chronic effects of WBV training on maximal force (effect size (ES)= 0.44), power (ES= 0.42) and athletic performance (ES= 0.45). However, there is no previous evidence examining the effects of WBV on swimming performance, which could potentially produce a greater transfer to the sports-specific action given the remarkable importance of the LBP capacity in overall short-distance swimming performance. Thus, the main aim of this randomized
 67 68 69 70 71 72 73 	sport actions. The authors of this meta-analysis reported small chronic effects of WBV training on maximal force (effect size (ES)= 0.44), power (ES= 0.42) and athletic performance (ES= 0.45). However, there is no previous evidence examining the effects of WBV on swimming performance, which could potentially produce a greater transfer to the sports-specific action given the remarkable importance of the LBP capacity in overall short-distance swimming performance. Thus, the main aim of this randomized control trial was to determine the effects of a 6-month WBV training on LBS and LBP
 67 68 69 70 71 72 73 74 	sport actions. The authors of this meta-analysis reported small chronic effects of WBV training on maximal force (effect size (ES)= 0.44), power (ES= 0.42) and athletic performance (ES= 0.45). However, there is no previous evidence examining the effects of WBV on swimming performance, which could potentially produce a greater transfer to the sports-specific action given the remarkable importance of the LBP capacity in overall short-distance swimming performance. Thus, the main aim of this randomized control trial was to determine the effects of a 6-month WBV training on LBS and LBP development, as well as swimming performance in trained adolescent swimmers. We

78 Methods

79 Subjects

80	Thirty-seven swimmers from four different swimming clubs of Zaragoza
81	(Aragon, Spain) were finally included in the present study, in the framework of the
82	RENACIMIENTO project ¹⁸ . The randomized allocation of these swimmers into the
83	control and intervention groups was initially performed in SPSS with the whole sample
84	(n= 98) included in the project. For this study, the following inclusion criteria
85	determined the eligibility of the participants: swimmers between the ages of 12.5 and
86	17.5 years, Caucasian, healthy and free of injuries. The included athletes had swum
87	more than 6 hours per week for at least 3 years and competed in regional to national
88	level events, without practicing an additional sport simultaneously. Swimmers had to be
89	involved in a 100 m official competition within 15 days near the testing sessions.
90	Swimmers had a mean performance time 68.02±7.8 s in 100 m freestyle events,
91	corresponding to a ~78% of the Spanish record for the same age-group swimmers.
92	
93	Anthropometric measurements and general information
94	All participants had basic anthropometric measurements taken (body mass,
95	weight, height). Participants were measured while wearing minimal clothing and
96	without shoes to the nearest 0.1 cm (SECA 225, SECA, Hamburg, Germany) and
97	weighted to the nearest 0.1 kg (SECA 861, SECA). Body mass index (BMI) was then
98	calculated by dividing weight (kg) by squared height (m ²). An ad-hoc structured
99	questionnaire was completed by all participants which included information related to
100	swimming experience, swimming volume, in addition to medical history, previous
101	injuries, evaluation of pubertal stage proposed by Tanner ¹⁹ and other personal data.
102	All procedures were approved by the Ethics Committee of Clinical Research
103	from the Government of Aragón (C.I.PI11/0034; CEICA; SPAIN), and followed the
104	international rules for research with humans, following the declaration of Helsinki

105 (1964) as revised in 2000 in Edinburgh. Parents or a legal guardian provided written 106 consent and verbal assent from the participants was obtained. This study is part of a 107 Randomized Controlled Trial¹⁸ which is registered in a public database 108 (www.clinicaltrials.gov) with the following register number: NCT02380664. 109 110 Lower-body strength and power assessments and Swimming performance times 111 Dry-land assessments and swimming performance records were collected before 112 and after the 6-month intervention period. Participants performed a total of 2 LBS 113 isometric tests (half squat and leg extension) and 3 LBP dynamic tests (30 m sprint test, 114 horizontal jump and CMJ) with special emphasis in the assessment of the stretch and 115 shortening cycle in the lower extremities. 116 Regarding the LBS isometric tests, maximum isometric strength (MIS) from the 117

half-squat position was measured using a force platform (Kistler type 9260AA, Kistler 118 instruments Ltd., Hampshire, UK). Participants were placed in a 90° half-squat position 119 standing on the platform, performing 2 repetitions at MIS against a fixed bar with only 120 the best repetition recorded. Two repetitions were allowed for this exercise instead of 121 the 3 permitted for other exercises to prevent from any potential back injury during this 122 maximal isometric test. A researcher supervised and encouraged the participant to push 123 the bar as strong and quick as possible, always maintaining an adequate technique. In 124 addition, MIS of the knee extensor muscles was measured using a strain gauge 125 (MuscleLab, Force Sensor, Norway). The participant was sited with an anchorage 126 placed on the distal third of the tibia. This anchorage was connected to the strain gauge, 127 registering force data during the 6 s that the participant had to perform the maximum 128 knee extension. Two attempts were permitted for each leg, with the best performance

129 recorded.

130 Regarding the LBP dynamic assessments, participants performed a 30 m sprint 131 running test, which consisted of two maximal efforts of 30 m running sprint with a \sim 3 132 min rest in between. Timing gates (Byomedic photoelectric cells, Spain, Barcelona) 133 were placed along an indoor sports court separated by 30 m. The best performance was 134 recorded. Although this is a non-specific test for a swimmer, the maximum acceleration 135 during a short sprint has shown to be a reliable method to measure maximum LBP²⁰. 136 Additionally, horizontal jump test allowed to further assess explosive leg power. The 137 participant stood behind the starting line with the legs slightly apart, jumping as far as 138 possible allowing to swing his/her arms and bend his/her knees to aid the jump. Three 139 attempts were performed, with the best performance recorded for further analyses. 140 Finally, participants completed the CMJ test on a portable force platform (Kistler type 141 9260AA, Kistler instruments Ltd., Hampshire, UK). Participants stood with both hands 142 on their hips to isolate the lower limb action, and performed a vertical jump with an 143 earlier fast countermovement. Three attempts were permitted and the best performance 144 was recorded for further analysis. The raw data from each jump was introduced in an 145 Excel macro²¹ to determine CMJ height (CMJ_{HT}). Firstly, take-off velocity (TOV) was calculated from the mechanical impulse and the time to reach this mechanical impulse. 146 147 Then, jump height was calculated as follows:

148

 $CMJ_{HT} = (TOV^2)/(2 \cdot G)$, where G is gravity.

The most recent performance times in 100 m freestyle swimming (performed up to 15 days near to the testing sessions, in a 25-m swimming pool) were collected from official competitions (reported by the regional swimming federation) and converted to the well-established International Swimming Federation (FINA) points ²² in order to standardize between swimming strokes and thus allow the comparison.

154

155 Whole Body Vibration procedures

156 The participants included in the WBV group performed both static and dynamic 157 lower-body exercises on a vertical and synchronous vibration platform (Power Plate® 158 Pro5; PowerPlate, Amsterdam, Netherlands) whereas the participants allocated in the 159 control group were asked to maintain their habitual training routine throughout the 160 intervention period. Participants included in the WBV group performed 3 sessions per 161 week during a total of 24 weeks. Each training session was composed of 2 sets of 5 162 exercises (displayed in Figure 1), which were performed in the following order: 1) half 163 squatting (bent knees at 120°) on the platform; 2) squat 90°; 3) dynamic squat from 120° 164 - 90° bent knees at a range of 2 s up 2 s down; 4) static lunge with right foot in front; 165 and 5) static lunge with left foot in front. This protocol was repeated twice during each 166 session, taking around 15 min to complete the whole training session. A researcher 167 supervised all training sessions throughout the 6-month WBV period to ensure the swimmer performed each session in a safe and appropriate manner. The training volume 168 169 and intensity increased over the training period of 6 months, with the specific 170 amplitudes, frequencies, durations and rests detailed in Figure 1. 171 [INSERT FIGURE 1 AROUND HERE] 172 173 Statistical analysis 174 Mean and standard deviation (SD) were calculated for each variable. Chi-square 175 test was initially performed to identify any potential differences in the maturity status of 176 the swimmers between groups pre-intervention. Males and females were analysed 177 together since time x sex interaction did not reach significance for any DLS, DLP or 178 performance variable (p > 0.05). All data was transformed logarithmically to reduce 179 potential bias arising from non-uniformity error. The effect size (ES, 95% confidence

180	interval) for each variable was calculated using the pooled pre-intervention SD.
181	Threshold values for Cohen ES statistics were: > 0.2 (small effect); > 0.6 (moderate
182	effect); > 1.2 (large effect) ²³ . For within/between-groups comparisons, the chances that
183	the differences in performance and measures of LBS were better/greater (ie., greater
184	than the smallest worthwhile change [0.2 multiplied by the between-subjects SD, based
185	on the Cohen d principle]), similar, or worse/smaller were calculated. Quantitative
186	chances of beneficial/better or detrimental/poorer effect were assessed qualitatively as
187	follows: <1%, almost certainly not; 1% to 5%, very unlikely; >5% to 25%, unlikely;
188	>25% to 75%, possibly; >75% to 95%, likely; >95% to 99%, very likely and >99%,
189	almost certainly ²³ . If the chances of having beneficial/better and detrimental/poorer
190	performances were both >5%, the true difference was assessed as unclear. Otherwise,
191	we interpreted that change as the observed chance ²³ . Finally, the reliability of the LBS
192	and LBP tests was tested through the intraclass correlation coefficient (ICC).
193	

194 **Results**

195 Subjects

196 Although 98 swimmers were initially allocated into the control and intervention 197 group, 61 were excluded from the present study for the following reasons: Eight 198 swimmers declined to participate, 22 did not meet the inclusion criteria, 14 were 199 excluded due to discontinued practice or disease over the experimental period, 12 200 swimmers were excluded for practicing additional sports, and five did not compete 201 within 15 days near the testing sessions. A final sample of 37 adolescent swimmers (13 202 males and seven females allocated in the intervention group and 10 males and seven 203 females allocated in the control group) was included in the present study, with the main 204 personal and anthropometric data displayed in Table 1. Chi-square test showed no

205	differences in the maturity status pre-intervention between groups ($p > 0.05$) and
206	reliability tests showed a very high consistency of the LBS and LBP tests in this group
207	of swimmers (all ICC > 0.9; Table 2).
208	
209	[INSERT TABLE 1 AROUND HERE]
210	[INSERT TABLE 2 AROUND HERE]
211	
212	Whole Body Vibration training effects
213	Within-group comparisons showed that the WBV group had a most likely
214	beneficial small to moderate effect on knee extensors isometric strength, 30 m sprint
215	running test and 100 m swimming performance after the 6-month training period (ES=
216	0.63, 0.62 and 0.25, respectively; Table 3). However, these effects were comparable to
217	the <i>likely beneficial</i> small to moderate effect observed in the control group ($ES=0.73$,
218	0.62 and 0.20, respectively; Table 3). In addition, the control group exhibited a <i>possibly</i>
219	<i>beneficial</i> small effect after the 6-month period ($ES=0.27$), whereas the WBV group
220	did not (ES= 0.07). The rest of the strength- and performance-related variables showed
221	no effects after the WBV period. In the between-groups analyses, unclear effects were
222	observed in all variables when comparing the WBV group with the control group
223	(Figure 2).
224	[INSERT TABLE 3 AROUND HERE]
225	[INSERT FIGURE 2 AROUND HERE]
226	
227	Discussion
228	Contrary to our initial hypothesis, the main findings of this intervention study
229	showed that a 6-month WBV training period (3 sessions per week with a gradually

increased intensity) did not elicit additional improvements in neither LBS, LBP nor
swimming performance when compared to the control group, in trained adolescent
swimmers.

233 Regarding the effects of WBV on LBS, our results showed small and wide-234 ranging effect sizes across the two isometric LBS exercises examined (CIs range= -0.35) 235 to 0.85 and -0.49 to 0.97 for the intervention and control group, respectively). Seminal 236 well designed (i.e., controlled and randomized) research into the effects of WBV on 237 isometric LBS reported positive effects of a 12-week WBV training on knee extensors 238 isometric strength (16.6%), with a similar improvement observed in a resistance training group (14.4%)¹⁴. However, the fact that this study only included untrained adult 239 240 females makes difficult to compare with the trained swimmers from our study. 241 Hortobagyi et al. performed a meta-analytical study of the effects of WBV on LBS only 242 including trained individuals. One of the studies included in this meta-analysis ²⁴ 243 compared the effects of 4 weeks under three different training conditions (WBV 244 training group, loaded WBV training group, and loaded training group) on the knee 245 extensors isometric strength in elite track and field athletes. There was only a significant 246 time x group interaction for the loaded WBV training group, hypothesizing that 247 combining WBV loaded with a weight corresponding to the 75% of the maximal 248 isometric strength enhances isometric LBS. Nevertheless, when examining the overall 249 effects reported by the meta-analysis of Hortobagyi et al., uncertain chronic effects were 250 found from WBV protocols of similar characteristics (frequency range= 25 to 40 Hz; 251 amplitude range= 1.5 to 6 mm; acceleration range= 5.4 to 29.6 g) on maximal voluntary 252 force from the lower extremities (ES range= -0.19 to 0.87)¹⁶. 253 When examining the effects of WBV on LBP, unclear effects were also 254 observed. Similar to the effects seen on LBS, the effect sizes found on the 3 LBP

255	variables were small and widely varied (ES range: -0.19 to 0.62 and -0.06 to 0.71 for
256	the intervention and control group, respectively). It is worth noting that the control
257	group showed larger improvements for CMJ performance when compared to the WBV
258	group (ES = 0.27 and 0.07 , respectively). However, the higher CMJ initial values of the
259	intervention group at baseline (+ 3 cm on average) might have inhibited any
260	improvement of the WBV training stimulus in CMJ performance due to a potentially
261	reduced potential to improve, as previously suggested ¹ . These results are in
262	disagreement with Manimmanakorn et al. ¹ , who found moderate positive effects of
263	WBV on LBP (CMJ performance; mean ES= 0.77). This review and meta-analysis also
264	included studies with non-athletic participants; it is therefore likely that these less
265	trained individuals had superior improvements from WBV training than competitive
266	trained athletes. Manimmanakorn et al. ¹ also revealed that the vibration exposure in
267	each training session should be more than 10 min to maximize the benefits from WBV,
268	which is longer than the durations selected for the present study (durations from 7.5 min
269	to 8 min per session). A more recent meta-analysis examined the chronic effects of
270	WBV on LBP at frequencies ranging from 25 to 40, amplitudes from 4 to 8 mm and
271	accelerations from 10 to 39 g, over training periods from 4 to 15 weeks ¹⁶ . Only three
272	out of nine studies included in this meta-analysis showed positive effects of WBV on
273	LBP, highlighting the inconsistencies in the results deduced from a wide range of effect
274	sizes (ES range: -1.01 to 1.32). Although the comparisons between WBV studies should
275	be considered with caution due to the wide variety of protocols, sports and exercise tests
276	used, the present findings do not support the use of WBV as an effective method to
277	enhance either LBS or LBP in trained adolescent swimmers. Concurrently, this lack of
278	effect on muscle function is in concordance with the lack of effect of the same WBV

protocol on several bone markers (i.e., bone strength and structure) in this group of
swimmers ²⁵.

281 Finally, although we witnessed small positive effects of WBV on swimming 282 performance (ES=0.25), this improvement was not different from the observed in the 283 control group (ES= 0.20). We therefore hypothesize that the addition of WBV training 284 does not elicit any LBS, LBP or swimming performance improvements in adolescent 285 swimmers. The traditional swimming training and the maturity changes over the 286 intervention period were the sole reason for the minor improvements obtained after the 287 intervention period. Although previous studies have examined the effects of WBV on 288 athletic performance in other sports such as basketball, track and field sprinting, long 289 distance running or rugby ^{24,26–29}, the present research is the first to examine the chronic 290 effects of WBV on swimming performance. A quantitative analysis of the effects of 291 WBV of these five studies ¹⁶ reported small and varying effects on athletic performance 292 (ES range= -035 to 0.93), with only two out of the five showing a significant group by 293 time interaction ^{24,28}. These results are supported by additional reviews that consider the 294 current WBV paradigm unlikely to produce any additional benefits to the performance of trained competitive athletes ^{30,31}. A further difficulty in the interpretation of these 295 296 results lies on the wide variety in the WBV protocol designs (i.e., frequencies, 297 amplitudes and accelerations), which complicates the identification of the optimal dose 298 that would elicit sufficient levels of muscle activation from WBV. In relation to this, a 299 recent study ³² pointed out that the magnitude of the response to the vibration stimulus 300 (as measured through electromyography) to generate acute increases in muscle strength 301 is individualized. These authors concluded that the individualized vibratory stimulus of 302 each athlete should be determined in advance to maximize the benefits from this 303 training method. A final point to consider is the use of the handle bars in the vibration

304	platform during the WBV training. Previous research used hands-free exercises during
305	the vibration routine to prevent from any potential reduction in the vibratory load ³³ ,
306	however, we allowed swimmers to gently handle the bars with their hands just to ensure
307	a sufficient balance to avoid any risk of fall.
308	
309	Practical applications
310	Considering the current state of knowledge and the findings of the present study,
311	we do not recommend swimming coaches and trainers to use this method to improve
312	LBS, LBP or swimming performance given the unclear and inconsistent effects of
313	WBV training. Nevertheless, there are some drawbacks that could affect the results of
314	this study and the reader and further studies should consider. The main limitation of this
315	study is attributed to the small sample size finally included. The reason for this
316	remarkable drop out was mainly because swimmers failed to meet some relevant
317	inclusion criteria, especially because of the wide range of swimming experience, weekly
318	training volumes and age. Future studies using larger samples should consider dividing
319	them into subgroups according to different maturity status to examine possible
320	differences in the response to the vibration stimulus. Another important limitation of
321	this study is the lower initial values observed in the control group, which could have
322	given this group a greater potential to improve. Thus, further research including more
323	homogeneous and larger samples would be recommended to confirm these results. In
324	our study, we used progressive loading throughout the 6-month WBV training period to
325	elicit continuous adaptations, however, more frequent follow-up assessments (e.g., at
326	weeks 6, 12 and 18) could have shown more thorough and reliable information about
327	the response to WBV over time. An active control group to counterbalance the extra
328	workload performed by the intervention group was not included and would have been

329	appropriate to determine the true effects of WBV. However, even performing a higher
330	workload, WBV did not elicit any extra improvement. We encourage future research to
331	apply individualized frequencies and longer exposures per session to withdraw final
332	conclusions on the effectiveness of this practice, focusing on the muscle adaptations and
333	the transfer to the sports-specific action.
334	
335	Conclusions
336	The results from this randomized controlled trial revealed that the WBV
337	protocol selected for this study had no additional chronic effects on LBS, LBP and
338	athletic performance, when compared to the control group, in trained adolescent
339	swimmers. In our study, we used similar WBV intensities and volumes than previously
340	reported with other sports, and we obtained comparable inconsistent results also with
341	swimmers. Although the addition of WBV to the swimmer's training routine seems
342	unnecessary to increase strength or power, less trained individuals appear to benefit
343	from this practice ¹ .
344	
345	Acknowledgements
346	The authors would like to thank all the swimmers and their families for their
347	collaboration. We also thank the Spanish 'Ministerio de Economía y Competitividad'
348	'Plan Nacional I+D+I 2008-2011 (Project DEP DEP2011-29093)' for supporting this

References

- Manimmanakorn N, Hamlin MJ, Ross JJ, Manimmanakorn A. Long-term effect of whole body vibration training on jump height: meta-analysis. *J Strength Cond Res.* 2014; 28(6):1739-1750.
- Cardinale M, Bosco C. The use of vibration as an exercise intervention. *Exerc Sport Sci Rev.* 2003; 31(1):3-7.
- Helmkamp JC, Talbott EO, Marsh GM. whole body vibration a critical review.
 Am Ind Hyg Assoc J. 1984; 45(3):162-167.
- Conway GE, Szalma JL, Hancock PA. A quantitative meta-analytic examination of whole-body vibration effects on human performance. *Ergonomics*. 2007; 50(2):228-245.
- Bosco C, Colli R, Introini E, et al. Adaptive responses of human skeletal muscle to vibration exposure. *Clin Physiol.* 1999; 19(2):183-187.
- 6. Bosco C, Iacovelli M, Tsarpela O, et al. Hormonal responses to whole-body vibration in men. *Eur J Appl Physiol*. 2000; 81(6):449-454.
- Torvinen S, Kannu P, Sievänen H, et al. Effect of a vibration exposure on muscular performance and body balance. Randomized cross-over study. *Clin Physiol Funct Imaging*. 2002; 22(2):145-152.
- 8. Issurin V, Tenenbaum G. Acute and residual effects of vibratory stimulation on explosive strength in elite and amateur athletes. *J Sport Sci.* 1999; 17(3):177-182.
- Swaine IL. Arm and leg power output in swimmers during simulated swimming. *Med Sci Sport Exerc*. 2000; 32(7):1288-1292.
- West DJ, Owen NJ, Cunningham DJ, Cook CJ, Kilduff LP. Strength and power predictors of swimming starts in international sprint swimmers. *J Strength Cond Res.* 2011; 25(4):950-955.

- Beretić I, Đurovic M, Okičić T, Dopsaj M. Relations between lower body isometric muscle force characteristics and start performance in elite male sprint swimmers. *J Sports Sci Med.* 2013; 12(4):639-645.
- Muniz-Pardos B, Gomez-Bruton A, Matute-Llorente A, et al. Non-Specific Resistance Training and Swimming Performance: Strength or Power? A Systematic Review. J Strength Cond Res. 2019; In press.
- Lyttle A, Benjanuvatra N. Start right? A biomechanical review of dive start performance. http://www.coachesinfo.com/category/swimming/321/.
- 14. Delecluse C, Roelants M, Verschueren S. Strength increase after whole-body vibration compared with resistance training. *Med Sci Sport Exerc*. 2003; 35(6):1033-1041.
- Torvinen S, Kannus P, Sievänen H, et al. Effect of four-month vertical whole body vibration on performance and balance. *Med Sci Sport Exerc*. 2002; 34(9):1523-1528.
- Hortobagyi T, Lesinski M, Fernandez-Del-Olmo M, Granacher U. Small and inconsistent effects of whole body vibration on athletic performance: a systematic review and meta-analysis. *Eur J Appl Physiol.* 2015; 115(8):1605-1625.
- Izquierdo M, Hakkinen K, Gonzalez-Badillo JJ, Ibanez J, Gorostiaga EM. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. *Eur J Appl Physiol*. 2002; 87(3):264-271.
- Gomez-Bruton A, Gonzalez-Aguero A, Casajus JA, Vicente-Rodriguez G.
 Swimming training repercussion on metabolic and structural bone development; benefits of the incorporation of whole body vibration or pilometric training; the

RENACIMIENTO project. Nutr Hosp. 2014; 30(2):399-409.

- Tanner JM, Whitehouse RH, Takaishi M. Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965. II. *Arch Dis Child*. 1966; 41(220):613-635.
- 20. Chelly SM, Denis C. Leg power and hopping stiffness: relationship with sprint running performance. *Med Sci Sport Exerc*. 2001; 33(2):326-333.
- Ferragut-Fiol C, Cortadellas J, Arteaga R, Calbet J. Predicción de la altura de salto vertical. Importancia del impulso mecánico y de la masa muscular de las extremidades inferiores. *Eur J Hum Mov.* 2003; (10):7-22.
- FINA Points | fina.org Official FINA website. Available from http://www.fina.org/content/fina-points.
- Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. *Med Sci Sport Exerc*. 2009; 41(1):3-13.
- 24. Wang H-H, Chen W-H, Liu C, Yang W-W, Huang M-Y, Shiang T-Y. Wholebody vibration combined with extra-load training for enhancing the strength and speed of track and field athletes. *J Strength Cond Res*. 2014; 28(9):2470-2477.
- 25. Gómez-Bruton A, González-Agüero A, Matute-Llorente A, et al. Effects of whole body vibration on tibia strength and structure of competitive adolescent swimmers: A Randomized Controlled Trial. *PM&R*. 2018; 10(9):889-897.
- Fort A, Romero D, Bagur C, Guerra M. Effects of whole-body vibration training on explosive strength and postural control in young female athletes. *J Strength Cond Res.* 2012; 26(4):926-936.
- Suarez-Arrones L, Tous-Fajardo J, Núñez J, Gonzalo-Skok O, Gálvez J, Mendez-Villanueva A. Concurrent repeated-sprint and resistance training with

superimposed vibrations in rugby players. *Int J Sport Physiol Perform*. 2014; 9(4):667-673.

- Cheng C-F, Cheng K-H, Lee Y-M, Huang H-W, Kuo Y-H, Lee H-J. Improvement in running economy after 8 weeks of whole-body vibration training. *J Strength Cond Res*. 2012; 26(12):3349-3357.
- 29. Delecluse C, Roelants M, Diels R, Koninckx E, Verschueren S. Effects of whole body vibration training on muscle strength and sprint performance in sprint-trained athletes. *Int J Sport Med.* 2005; 26(8):662-668.
- Cardinale M, Wakeling J. Whole body vibration exercise: are vibrations good for you? * Commentary. *Br J Sport Med.* 2005; 39(9):585-589.
- 31. Savelberg HH, Keizer HA, Meijer K. Whole-body vibration induced adaptation in knee extensors; consequences of initial strength, vibration frequency, and joint angle. *J Strength Cond Res*. 2007; 21(2):589.
- 32. Oliveira MP, Menzel HK, Cochrane DJ, et al. Individual responses to different vibration frequencies identified by electromyography and dynamometry in different types of vibration application. *J Strength Cond Res*. [Epub ahead of print] doi: 10.1519/JSC.00000000002985
- Osawa Y, Oguma Y. Effects of resistance training with whole-body vibration on muscle fitness in untrained adults. *Scand J Med Sci Sport*. 2013; 23(1):84-95.

Table 1. Personal and Anthropometric data.

Table 2. Intraclass correlation coefficient for the strength and power tests.

Table 3. Within-group changes in LBS, LBP and swimming performance after the 6-month WBV period.

Figure 1. Whole-body vibration exercises and protocol.

Figure 2. Effectiveness of the 6-month intervention period when compared to the control group to improve LBS, LBP and swimming. A reduction of time in 30 m running sprint test was interpreted as a positive effect. Trivial areas (shaded rectangles) were calculated from the smallest worthwhile change (further detailed in the methods section). Quality assessment and % of the chances of having better/similar/poorer effect in favour to the vibration group are also reported. Cls were set at 95%.

Human Kinetics, 1607 N Market St, Champaign, IL 61825

Table 1 Personal	And Anthropol All	Males	Females	Control Group	WBV Group
Age (y)	N=37 14.8±1.4	N=23 15.0±1.3	N=14 14.4±1.4	N= 17 14.4±1.3	N=20 15.0±1.4
Height (cm)	167.3 ± 11.2	172.5±8.5	158.7±9.7	166.3 ± 10.6	168.1 ± 11.8
Weight (kg)	56.9±11.5	61.6±9.5	49.2±10.4	55.7±12.3	58.0 ± 11.0
Tanner Stage (I/II/III/IV/V)	0/2/9/21/5	0/0/7/11/5	0/2/2/10/0	$\frac{0/1}{4}$	0/1/5/10/4
Swimming Experience (y)	7.8±2.9	7.9±3.1	7.7±2.5	8.1±2.6	7.6±3.2
Training Volume (h/week)	10.3±1.9	10.1±1.9	10.7±1.9	10.2±2.3	10.4±1.5

Table 1Personal and Anthropometric data, Mean ± SD

Human Kinetics, 1607 N Market St, Champaign, IL 61825

	ICC	
MIS KE left	0.950	
MIS KE right	0.924	
СМЈ	0.972	
MIS Squat	0.923	
30 m sprint	0.944	
Horiz Jump	0.927	

Table 2 Intraclass correlation coefficient for the strength and power tests

ICC=intraclass correlation coefficient; MIS squat=maximal isometric strength from half-squat position; MIS KE=maximal isometric strength of the knee extensors; CMJ=countermovement jump height; Horiz Jump=horizontal jump.

μp. μp.

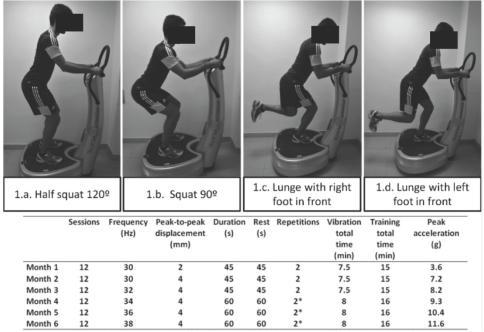

	Pre-	Post WBV Grou	p(N = 20; 13 male)	es and 7 females)		
		Differences*				
	Pre-test	Post-test	% (<mark>95%</mark> CL)	Standardized (<mark>95%</mark> CL)†	Chances‡	QA
FINA 100	392.7±63.2	412.2±69.5	5.1 <mark>(-1.1; 11.7)</mark>	0.25 <mark>(-0.05; 0.55)</mark>	63/37/0%	Possibly Beneficial
MIS SQ (N)	1420.2±511.8	1346.8±347.2	-2.9 <mark>(-11.1; 6.0)</mark>	-0.09 <mark>(-0.35; 0.17)</mark>	2/79/19%	Likely Trivial
MIS KE (N)	947.3±230.6	1101.2±253.0	16.6 <mark>(10.5; 23.1)</mark>	0.63 <mark>(0.41; 0.85)</mark>	100/0/0%	Most Likely Beneficial
CMJ (m)	0.29 ± 0.07	0.30 ± 0.06	1.7 <mark>(-4.5; 8.4)</mark>	0.07 <mark>(-0.18; 0.31)</mark>	14/85/2%	Unclear
30 m (s)	4.96±0.45	4.68±0.42	5.6 <mark>(3.3; 8.0)</mark>	0.62 <mark>(0.36; 0.89)</mark>	100/0/0%	Most Likely Beneficial
Horiz Jump (m)	1.99±0.28	1.94±0.30	-2.8 <mark>(-5.6; 0.2)</mark>	-0.19 <mark>(-0.40; 0.01)</mark>	0/52/47%	Possibly Harmful
	Pre-Post Control Group ($N = 17$; 10 males and 7 females)					
	Differences*					
	Pre-test	Post-test	% (<mark>95%</mark> CL)	Standardized (95% CL)†	Chances‡	QA
FINA 100	360.5±95.8	380.9±105.3	5.6 <mark>(-1.0; 12.7)</mark>	0.20 <mark>(-0.04; 0.44)</mark>	51/49/0%	Possibly Beneficial
MIS SQ (N)	1244.9±284.7	1172.7±253.5	-5.5 <mark>(-11.1; 0.4)</mark>	-0.24 <mark>(-0.49; 0.02)</mark>	0/38/62%	Possibly Harmful
MIS KE (N)	896.5±203.3	1075.6±308.1	18.7 <mark>(11.9; 25.8)</mark>	0.73 <mark>(0.48; 0.97)</mark>	100/0/0%	Most Likely Beneficial
CMJ (m)	0.26±0.04	0.27±0.04	3.9 <mark>(-1.0; 9.1)</mark>	0.27 <mark>(-0.07; 0.60)</mark>	66/34/0%	Possibly Beneficial
30 m (s)	5.09±0.31	4.86±0.32	4.5 <mark>(1.2; 7.9)</mark>	0.71 <mark>(0.18; 1.25)</mark>	97/3/0%	Very Likely Beneficial
Horiz Jump (m)	1.85±0.23	1.83±0.22	-0.8 <mark>(-3.5; 1.9)</mark>	-0.06 <mark>(-0.26; 0.14)</mark>	1/91/8%	Likely Trivial

Table 3	Within-group changes in LBS, LBP and swimming performance after the 6-month WBV p	oeriod
	Pre-Post WBV Group (N = 20: 13 males and 7 females)	

*All differences are presented as improvements (positive), so that negative and positive differences are in the same direction. † Effect size.

‡% of the chances of having better/similar/poorer values.

Abbreviations: CL=confidence limits; QA=quality assessment; 30 m=30 m sprint running test; Horiz Jump= horizontal jump; CMJ=countermovement jump; MIS KE=knee extension maximal isometric strength; MIS SQ=half squat maximal isometric strength; FINA 100= FINA points in 100m; WBV=whole-body vibration.

Squat 120°, 90° and dynamic were performed twice, while lunge with each leg was only performed once

Figure 1. Whole-body vibration exercises and protocol [Figure used with permission (25)]

274x190mm (300 x 300 DPI)

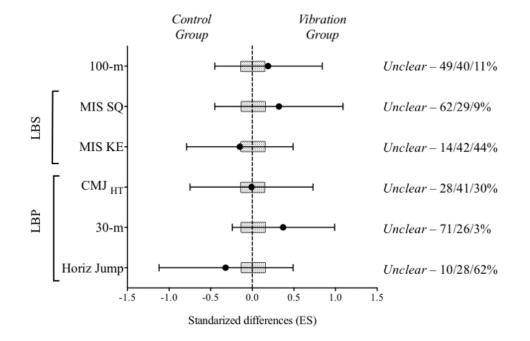


Figure 2. Effectiveness of the 6-month intervention period when compared to the control group to improve LBS, LBP and swimming. A reduction of time in 30 m running sprint test was interpreted as a positive effect. Trivial areas (shaded rectangles) were calculated from the smallest worthwhile change (further detailed in the methods section). Quality assessment and % of the chances of having better/similar/poorer effect in favour to the vibration group are also reported. CIs were set at 95%.

237x189mm (77 x 77 DPI)

WBV and the control group following the WBV training period.					
	WBV group	CON group			
	Mean (SD)	Mean (SD)	р		
	n = 20	n = 17			
FINA 100	398.02 (44.68)	397.57 (44.78)	0.976		
MIS SQ (N)	1298.7 (180.4)	1229.3 (180.7)	0.257		
MIS KE (N)	1074.7 (132.4)	1106.7 (132.5)	0.472		
CMJ (m)	0.285 (0.03)	0.280 (0.03)	0.592		
30 m (s)	4.72 (0.28)	4.81 (0.28)	0.312		
Horiz Jump (m)	1.88 (0.11)	1.90 (0.12)	0.537		

Supplementary Table 1. Differences adjusting by pre-test values between the WBV and the control group following the WBV training period

No significant differences between groups in any variable (p<0.05)

30 m=30 m sprint running test; CON=control; Horiz Jump= horizontal jump; CMJ=countermovement jump; MIS KE=knee extension maximal isometric strength; MIS SQ=half squat maximal isometric strength; FINA 100= FINA points in 100m; WBV=whole-body vibration

Supplementary Table 2. Differences adjusting by pre-test values between the swimmers training before or after the swimming session following the WBV training period.

a anning period.					
	WBV BEFORE SW	WBV AFTER SW	CON		
	Mean (SD)	Mean (SD)	Mean (SD)		
	n = 8	n = 12	n = 17		
FINA 100	386.37 (44.83)	405.60 (44.38)	397.70 (44.82)		
MIS SQ (N)	1290.5 (181.5)	1304.4 (186.2)	1229.0 (183.4)		
MIS KE (N)	1096.6 (134.0)	1059.7 (135.8)	1107.0 (133.8)		
CMJ(m)	0.283 (0.03)	0.286 (0.03)	0.280 (0.03)		
30 m (s)	4.78 (0.28)	4.68 (0.28)	4.81 (0.28)		
Horiz Jump (m)	1.91 (0.11)	1.85 (0.11)	1.90 (0.12)		
No significant differences between grouns in any variable (n<0.05)					

No significant differences between groups in any variable (p<0.05)

30 m=30 m sprint running test; CON=control; Horiz Jump= horizontal jump; CMJ=countermovement jump; MIS KE=knee extension maximal isometric strength; MIS SQ=half squat maximal isometric strength; FINA 100= FINA points in 100m; SW=swimming; WBV=whole-body vibration

Supplementary Table 3. Differences adjusting by pre-test values between the immature (Tanner stages 1 to 3) and mature (Tanner stages 4 and 5) swimmers following the WBV training period.

	WBV vs. CON		WBV vs. CON		Tanner 1-3 vs. Tanner 4-5	
	Tanner 1-3		Tanner 4-5		WBV	
	WBV	CON	WBV	CON	Tanner 1-3	Tanner 4-5
	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
	n = 6	n = 5	n = 14	n = 12	n = 14	n = 6
FINA 100	364.48 (36.70)	339.62 (36.90)	414.25 (46.41)	419.55 (46.47)	408.32 (50.02)	413.79 (48.04)
MIS SQ (N)	1242.8 (116.1)	990.9 (117.1)	1332.0 (194.6)	1317.6 (194.8)	1366.3 (213.8)	1338.4 (212.5)
MIS KE (N)	990.8 (121.7)	909.7 (124.8)	1121.6 (141.6)	1176.1 (141.6)	1089.8 (124.5)	1106.0 (124.5)
CMJ (m)	0.290 (0.03)	0.257 (0.03)	0.282 (0.02)	0.290 (0.02)	0.308 (0.03)	0.291 (0.03)
30 m (s)	4.83 (0.29)	5.06 (0.29)	4.66 (0.25)	4.72 (0.26)	4.78 (0.25)	4.64 (0.25)
Horiz Jump (m)	1.88 (0.11)	1.83 (0.11)	1.88 (0.12)	1.92 (0.12)	1.93 (0.13)	1.94 (0.13)
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

No significant differences between groups in any variable (p<0.05)

30 m=30 m sprint running test; CON=control; Horiz Jump= horizontal jump; CMJ=countermovement jump; MIS KE=knee extension maximal isometric strength; MIS SQ=half squat maximal isometric strength; FINA 100= FINA points in 100m; WBV=whole-body vibration