000150243 001__ 150243
000150243 005__ 20251017144546.0
000150243 0247_ $$2doi$$a10.1021/acsnano.5b01326
000150243 0248_ $$2sideral$$a91614
000150243 037__ $$aART-2015-91614
000150243 041__ $$aeng
000150243 100__ $$aPelaz, B.
000150243 245__ $$aSurface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake
000150243 260__ $$c2015
000150243 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150243 5203_ $$aHere we have investigated the effect of enshrouding polymer-coated nanoparticles (NPs) with polyethylene glycol (PEG) on the adsorption of proteins and uptake by cultured cells. PEG was covalently linked to the polymer surface to the maximal grafting density achievable under our experimental conditions. Changes in the effective hydrodynamic radius of the NPs upon adsorption of human serum albumin (HSA) and fibrinogen (FIB) were measured in situ using fluorescence correlation spectroscopy. For NPs without a PEG shell, a thickness increase of around 3 nm, corresponding to HSA monolayer adsorption, was measured at high HSA concentration. Only 50% of this value was found for NPs with PEGylated surfaces. While the size increase clearly reveals formation of a protein corona also for PEGylated NPs, fluorescence lifetime measurements and quenching experiments suggest that the adsorbed HSA molecules are buried within the PEG shell. For FIB adsorption onto PEGylated NPs, even less change in NP diameter was observed. In vitro uptake of the NPs by 3T3 fibroblasts was reduced to around 10% upon PEGylation with PEG chains of 10 kDa. Thus, even though the PEG coatings did not completely prevent protein adsorption, the PEGylated NPs still displayed a pronounced reduction of cellular uptake with respect to bare NPs, which is to be expected if the adsorbed proteins are not exposed on the NP surface.
000150243 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000150243 590__ $$a13.334$$b2015
000150243 591__ $$aCHEMISTRY, PHYSICAL$$b6 / 144 = 0.042$$c2015$$dQ1$$eT1
000150243 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b4 / 82 = 0.049$$c2015$$dQ1$$eT1
000150243 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b8 / 162 = 0.049$$c2015$$dQ1$$eT1
000150243 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b9 / 270 = 0.033$$c2015$$dQ1$$eT1
000150243 592__ $$a6.712$$b2015
000150243 593__ $$aEngineering (miscellaneous)$$c2015$$dQ1
000150243 593__ $$aPhysics and Astronomy (miscellaneous)$$c2015$$dQ1
000150243 593__ $$aNanoscience and Nanotechnology$$c2015$$dQ1
000150243 593__ $$aMaterials Science (miscellaneous)$$c2015$$dQ1
000150243 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000150243 700__ $$0(orcid)0000-0002-1477-5259$$aDel Pino, P.
000150243 700__ $$aMaffre, P.
000150243 700__ $$aHartmann, R.
000150243 700__ $$aGallego, M.
000150243 700__ $$0(orcid)0000-0003-0616-4383$$aRivera-Fernández, S.
000150243 700__ $$aFuente, De La
000150243 700__ $$aNienhaus, G. U.
000150243 700__ $$aParak, W. J.
000150243 773__ $$g9, 7 (2015), 6996-7008$$pACS Nano$$tACS NANO$$x1936-0851
000150243 8564_ $$s4654499$$uhttps://zaguan.unizar.es/record/150243/files/texto_completo.pdf$$yPostprint
000150243 8564_ $$s1692187$$uhttps://zaguan.unizar.es/record/150243/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000150243 909CO $$ooai:zaguan.unizar.es:150243$$particulos$$pdriver
000150243 951__ $$a2025-10-17-14:09:49
000150243 980__ $$aARTICLE