000150245 001__ 150245
000150245 005__ 20250131203739.0
000150245 0247_ $$2doi$$a10.1016/j.compstruct.2020.111983
000150245 0248_ $$2sideral$$a116525
000150245 037__ $$aART-2020-116525
000150245 041__ $$aeng
000150245 100__ $$0(orcid)0000-0001-8451-660X$$aRanz, D.$$uUniversidad de Zaragoza
000150245 245__ $$aA cohesive zone model approach to interlaminar behaviour of carbon/epoxy laminated curved beams
000150245 260__ $$c2020
000150245 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150245 5203_ $$aThis study analytically investigates the behaviour of carbon/epoxy laminated curved beams subjected to interlaminar tensile stress by means of a four-point-bending test, carried out in compliance with ASTM D6415 Standard. A Cohesive Zone Model (CZM) has been used to analyse the interlaminar tensile strength (ILTS) and the post-failure behaviour for lay-ups in several thicknesses, as well as the location of first and subsequent predicted delamination. In this study, the model behaviour is described by a bilinear constitutive model. Initially, a law of traction-separation governs the elastic behaviour, until satisfying a quadratic criterion that establishes the failure and degradation starting at the interface. Finally, a law describes the evolution of the damage and the interaction in mixed-mode conditions, which leads to the final failure of the interface and delamination onset. Two-dimensional finite element models (FEM) have been created to apply the CZM and analyse the influence of several cohesive model parameters, such as, cohesive element stiffness, cohesive element size and critical energy release rate. Predicted load–displacement curves have been compared with the experimental results obtained and strong correlation has been observed. The ILTS values predicted by the two-dimensional models show deviations no greater than 5.6% in comparison with the experimental results. These models and the influence of their parameters play an important role in the prediction of the interlaminar tensile strength and the post-failure behaviour of laminated curved beams.
000150245 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000150245 590__ $$a5.407$$b2020
000150245 591__ $$aMECHANICS$$b11 / 135 = 0.081$$c2020$$dQ1$$eT1
000150245 591__ $$aMATERIALS SCIENCE, COMPOSITES$$b9 / 28 = 0.321$$c2020$$dQ2$$eT1
000150245 592__ $$a1.63$$b2020
000150245 593__ $$aCivil and Structural Engineering$$c2020$$dQ1
000150245 593__ $$aCeramics and Composites$$c2020$$dQ1
000150245 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000150245 700__ $$0(orcid)0000-0002-6100-7412$$aCuartero, J.$$uUniversidad de Zaragoza
000150245 700__ $$0(orcid)0000-0002-9007-1560$$aCastejon, L.$$uUniversidad de Zaragoza
000150245 700__ $$0(orcid)0000-0002-9702-9314$$aMiralbes, R.$$uUniversidad de Zaragoza
000150245 700__ $$0(orcid)0000-0002-0341-8408$$aMalon, H.$$uUniversidad de Zaragoza
000150245 7102_ $$15004$$2530$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Ingen.e Infraestr.Transp.
000150245 7102_ $$15004$$2545$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Ingeniería Mecánica
000150245 7102_ $$15002$$2305$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Expresión Gráfica en Ing.
000150245 773__ $$g238 (2020), 111983 [10 pp.]$$pCompos. struct.$$tComposite Structures$$x0263-8223
000150245 8564_ $$s1862745$$uhttps://zaguan.unizar.es/record/150245/files/texto_completo.pdf$$yPostprint
000150245 8564_ $$s2035596$$uhttps://zaguan.unizar.es/record/150245/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000150245 909CO $$ooai:zaguan.unizar.es:150245$$particulos$$pdriver
000150245 951__ $$a2025-01-31-20:05:30
000150245 980__ $$aARTICLE