000150260 001__ 150260
000150260 005__ 20251017144650.0
000150260 0247_ $$2doi$$a10.1016/j.ceramint.2023.07.189
000150260 0248_ $$2sideral$$a138412
000150260 037__ $$aART-2023-138412
000150260 041__ $$aeng
000150260 100__ $$aAbdelmoula, Mohamed
000150260 245__ $$aDirect selective laser sintering of silicon carbide: Realizing the full potential through process parameter optimization
000150260 260__ $$c2023
000150260 5203_ $$aDirect-Selective Laser Sintering (D-SLS) is a promising Additive Manufacturing (AM) technology for Silicon Carbide (SiC). The appropriate values for the process parameters should be employed to achieve considerable success in the D-SLS of SiC. These process parameters include laser power, scanning speed, layer thickness, hatching space, and compaction ratio. A numerical model has been developed to determine the optimal process parameters for the D-SLS of SiC to be used as a guide during the experimental research. SiC samples were successfully printed using the estimated parameters from the numerical model, proving the reliability of the developed numerical model. With varying layer thicknesses of 22, 30, and 40 µm, the scanning speed at various values, including 100, 250, and 500 mm/s, was investigated. It was possible to print SiC samples with a relative density of 82% directly on a metallic base plate using low scanning speeds and layer thicknesses as low as 22 and 30 µm. This result was the first study to print SiC directly on a metallic baseplate. This remarkable finding will enable many applications that previously required metallic and ceramic materials to adhere together during SLS/M-based 3D printing. The process parameters were optimized to achieve a relative density of 87%, resulting in a laser power of 45 W, a scanning speed of 100 mm/s, and a hatching space of 40 µm. The evaluation of mechanical performance should be considered a future study.
000150260 540__ $$9info:eu-repo/semantics/closedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000150260 590__ $$a5.1$$b2023
000150260 591__ $$aMATERIALS SCIENCE, CERAMICS$$b3 / 31 = 0.097$$c2023$$dQ1$$eT1
000150260 592__ $$a0.938$$b2023
000150260 593__ $$aCeramics and Composites$$c2023$$dQ1
000150260 593__ $$aElectronic, Optical and Magnetic Materials$$c2023$$dQ1
000150260 593__ $$aSurfaces, Coatings and Films$$c2023$$dQ1
000150260 593__ $$aMaterials Chemistry$$c2023$$dQ1
000150260 593__ $$aProcess Chemistry and Technology$$c2023$$dQ2
000150260 594__ $$a9.4$$b2023
000150260 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000150260 700__ $$aKüçüktürk, Gökhan
000150260 700__ $$aGrossin, David
000150260 700__ $$0(orcid)0000-0003-3948-9520$$aMontón Zarazaga, Alejandro
000150260 700__ $$aMaury, Francis
000150260 700__ $$aFerrato, Marc
000150260 773__ $$g49, 20 (2023), 32426-32439$$pCeram. int.$$tCeramics International$$x0272-8842
000150260 8564_ $$s13533452$$uhttps://zaguan.unizar.es/record/150260/files/texto_completo.pdf$$yVersión publicada
000150260 8564_ $$s2517900$$uhttps://zaguan.unizar.es/record/150260/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000150260 909CO $$ooai:zaguan.unizar.es:150260$$particulos$$pdriver
000150260 951__ $$a2025-10-17-14:36:11
000150260 980__ $$aARTICLE