000150261 001__ 150261
000150261 005__ 20251017144650.0
000150261 0247_ $$2doi$$a10.3390/app12020788
000150261 0248_ $$2sideral$$a138407
000150261 037__ $$aART-2022-138407
000150261 041__ $$aeng
000150261 100__ $$aAbdelmoula, Mohamed
000150261 245__ $$aScanning Strategy Investigation for Direct Powder Bed Selective Laser Processing of Silicon Carbide Ceramic
000150261 260__ $$c2022
000150261 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150261 5203_ $$aDirect-Powder Bed Selective Laser Processing (D-PBSLP) is considered a promising technique for the Additive Manufacturing (AM) of Silicon Carbide (SiC). For the successful D-PBSLP of SiC, it is necessary to understand the effects of process parameters. The process parameters are the laser power, scanning speed, hatching distance, and scanning strategies. This study investigates the effect of scanning strategies on the D-PBSLP of SiC and ensures that other process parameters are appropriately selected to achieve this. A numerical model was developed to obtain the proper process parameters for the investigation of scanning strategies in this work. Different scanning strategies available in the commercial Phoenix 3D printer manufactured by 3D Systems, such as concentric in–out, linear, inclined zigzag, and hexagonal, have been investigated. It was concluded that the zigzag strategy is the best scanning strategy, as it was seen that SiC samples could be printed at a high relative density of above 80% without a characteristic pattern on the layer’s top surface. SiC samples were successfully printed using different laser powers and scanning speeds obtained from the numerical model and zigzag strategy. Additionally, complex geometry in the form of triple periodic minimum surface (gyroid) was also successfully printed.
000150261 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000150261 590__ $$a2.7$$b2022
000150261 591__ $$aPHYSICS, APPLIED$$b78 / 160 = 0.488$$c2022$$dQ2$$eT2
000150261 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b42 / 90 = 0.467$$c2022$$dQ2$$eT2
000150261 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b100 / 178 = 0.562$$c2022$$dQ3$$eT2
000150261 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b208 / 343 = 0.606$$c2022$$dQ3$$eT2
000150261 592__ $$a0.492$$b2022
000150261 593__ $$aFluid Flow and Transfer Processes$$c2022$$dQ2
000150261 593__ $$aMaterials Science (miscellaneous)$$c2022$$dQ2
000150261 593__ $$aEngineering (miscellaneous)$$c2022$$dQ2
000150261 593__ $$aInstrumentation$$c2022$$dQ2
000150261 593__ $$aProcess Chemistry and Technology$$c2022$$dQ3
000150261 593__ $$aComputer Science Applications$$c2022$$dQ3
000150261 594__ $$a4.5$$b2022
000150261 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000150261 700__ $$0(orcid)0000-0003-3948-9520$$aMontón Zarazaga, Alejandro
000150261 700__ $$aKüçüktürk, Gökhan
000150261 700__ $$aMaury, Francis
000150261 700__ $$aGrossin, David
000150261 700__ $$aFerrato, Marc
000150261 773__ $$g12, 2 (2022), 788 [20 pp.]$$pAppl. sci.$$tApplied Sciences (Switzerland)$$x2076-3417
000150261 8564_ $$s1453033$$uhttps://zaguan.unizar.es/record/150261/files/texto_completo.pdf$$yVersión publicada
000150261 8564_ $$s2786773$$uhttps://zaguan.unizar.es/record/150261/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000150261 909CO $$ooai:zaguan.unizar.es:150261$$particulos$$pdriver
000150261 951__ $$a2025-10-17-14:36:14
000150261 980__ $$aARTICLE