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Chapter 1

Introduction to dynamical systems with
symmetries.

The aim of this work is to find symmetries in dynamical systems. Symmetries in dynamical systems

allow us to deduce certain properties that simplify the system for better understanding of its behavior.

Although we distinguish the discrete case and the continuous case, we will be mainly interested in the

continuous case. We will introduce the concept of Lie group and Lie algebra and we will also see that

a manifold, in which a Lie group is acting, can be reduced to a smaller one and thus facilitate us the

studying of the first one.

1.1 Basic concepts.

Definition 1.1.1. A dynamical system is a tern (S ,f ,T ) where T =R,Z, called set of times, S is a
set called the state space, and f = {ft} is a family of maps, ft : S �!S defined for t � 0 satisfying:

• f

0

= id,

• ft+s = ft �fs for all t,s � 0.

When T = R the dynamical system will be said to be coninuous, and if T = Z the dynamical system
will be said to be discrete.

If ft is defined for all t 2 T , whenever t is positive or not, and satisfies the above properties, we

say that the dynamical system is invertible. We will refer to a dynamical system indicating only the

family of maps ft . For a discrete dynamical system, T =Z, ft is just a t-times composition of F = f

1

,

that is called generator of the dynamical system. For a continuous dynamical system, T = R, and

under suitable regularity conditions, ft is the general solution of a system of differential equations.

Definition 1.1.2. An invertible map y : S �!S is a symmetry of a dynamical system ft if it satisfies:

y �ft = ft �y (1.1)

for all t � 0.

Proposition 1.1.3. If y is a symmetry of a dynamical system ft and x
0

2 S , y(ft(x0

)) = ft(y(x
0

)).

Let (G,�) be the group of invertible maps from S to itself, G = {y : S ! S |9y

�1

: S ! S },
with the composition. The set of symmetries of a dynamical system is a subgroup of G.
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VI Chapter 1. Introduction to dynamical systems with symmetries.

1.1.1 Other notions of symmetry.

There are other more general notions of symmetries. Sometimes symmetry is accepted as a map

y : S �! S such that y � ft = f�t � y . In this case y applies orbits in orbits in the opposite

orientation. It isalso said that y : S �! S is a symmetry of ft if there is a map t : S ⇥T �! T
such that t(x, ·) : T �! T is monotone, for each x 2 S , and it is satisfied that y �ft = f

t( ,t) �y ,

for all t � 0. In this case, y applies orbits in orbits but its parametrization is changed. We will not

consider here such generalizations.

1.2 Characterization in terms of the generator.

1.2.1 Discrete time systems.

Let ft be a discrete time dynamical system. Let F = f

1

: S �!S be its generator. Then an invertible

map y is a symmetry of ft if and only if F �y = y �F . The proof is immediate, since ft = F � · · ·�F
(t-times).

1.2.2 Continuous time systems.

Suppose the state space is a smooth manifold S = M, and that the map f : R⇥M �! M, defined by

f : (t,x) 7! ft(x) is differentiable C •
. We will denote by T M the tangent bundle of M.

Definition 1.2.1. A vector field is a differentiable map X : M �! T M such that X(m) 2 TmM for all
m 2 M.

We denote by X(M) the set of vector fields in M. We say that the generator of the dynamical

system ft is the vector field X 2 X(M) defined by:

X(m) =
d
dt

ft(m)
���
t=0

+
, for all m 2 M.

Definition 1.2.2. An integral curve g of a vector field X is a map g : I �! M such that ˙

g(t) = X(g(t))
where I is an interval in R.

If I is as big as possible, we will say that the curve is maximal.

Definition 1.2.3. A vector field it is said to be complete if all its maximal integral curves are defined
in all R and semi-complete if they are defined in [0,+•).

Definition 1.2.4. The flow ft of a vector field X is the map ft : S �! S defined by ft(x) = gx(t),
where gx(t) is the maxiamal integral curve of X such that gx(0) = x.

We also say that ft is a one-parameter group generated by X .
If a vector field X is semi-complete, it defines a dynamical system and if X is complete, it defines

an invertible dynamical system. We can write

d
dt ft(x) = X(ft(x)), for all t 2 R and all x 2 M.

In terms of the generator of the continuous dynamical system, a symmetry is characterized by the

following property.

Proposition 1.2.5. Let ft a continuous dynamical system and let X be its infenitesimal generator. A
diffeomorphism y : M ! M is a symmetry if and only if T y �X = X �y .

Let ft be a discrete dynamical system genetated by F . Supose that it has an one-parameter group

ys of symmetries of F ,i.e,

F �ys = ys �F.

If Y is the infinisesimal generator for ys we have that T F �Y =Y �F . And if T F �Y =Y �F then the

one-parameter group that is generated by Y is a one-parameter group of symmetries of F .

Dynamical systems with symmetry



1.3. Symmetry groups and reduction. VII

1.3 Symmetry groups and reduction.

Definition 1.3.1. A Lie group is a group G that is also a finite dimensioal differentiable manifold,
such that the two group operations of G, multiplication and inversion, are differentiable maps.

Let G be a Lie group and M a connected differentiable manifold. Consider a left action of G in M,

i.e, a differentiable map j : G⇥M �!M verifying:

i) j(e,m) = m, for all m 2M, with e identity element.

ii) j(g
1

,j(g
2

,m)) = j(g
1

g
2

,m), for all g
1

,g
2

2 G and for all m 2M.

Definition 1.3.2. A Lie algebra is a vectorial space V endowed with a bilinear operation [, ] such that
for a,b,c elements in the algebra we have:

• [a,b] =�[b,a], (skew symmetric),

• [a, [b,c]]+ [a, [b,c]]+ [c, [a,b]] = 0, (Jacobi identity).

Definition 1.3.3. A vector field X on a Lie group G is called left-invariant if:

(T 0gLg)(X(g0)) = X(gg0), for all g,g0 2 G.

The space of left-invariant vector fields is a vectorial space that we denote XL(G). If X , Y are

left-invariant vector fields on a Lie group G, [X ,Y ] is also a left-invariant vector field in G. Therefore

XL(G) is a Lie algebra.

If e is the identity element of a Lie group G and TeG = G is the tangent space to G in e, we define

the map : G ! XL(G) such that

 �
x (g) = (TeLg)(x ), for all g 2 G.

Definition 1.3.4. Let G be a Lie group and G the tangent space to G in the identity element. Then
a Lie algebra structure [, ]G exists in G such that: [x ,h ]G = [

 �
x , �h ](e), for all x and h in G . The

vectorial space G with a Lie algebra structure [, ]G is called Lie algebra of a Lie group G.

Let G be the Lie algebra of the Lie group G of M. For each a 2 G we can define a vector field

Xa 2 X(M) through:

Xa(m) = Tejm(a),

or equivalently, if f 2 C •(M).

Xa(m) f =
d

dt
f (exp(ta)m)

���
t=0

,

The map X : G �! X(M) associating a 2 G with Xa is an antihomomorphism of Lie algebras, i.e:

[Xa,Xb] =�X[a,b].

It follows that Xa is complete and the flow ft of Xa is defined by:

ft = jexp(ta).

Proposition 1.3.5. Let M be a manifold and G a Lie group in M. Supppose M/G has a structure of
cocient manifold. If X is a vector field such that T jg �X = X �jg, for all g 2 G the a unique vector
field ¯X 2 X(M/G) exists such that T p �X = ¯X � p where p : M �! M/G is the projection to the
cocient. If ft is the flow of X then the flow of ( ¯X) is ¯

ft([m]) = [ft(m)] .

From now, we will focus on dynamical systems in continuous time assumimg that they are invert-

ible. If they have continuous symmetry is also assumed that the generator is complete.

Author: Ana Rojo Echebur´ua
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Chapter 2

Riemannian geometry and symmetries.
Geodesics.

A physical system is often subjected to restrictions in the state space. The kinetic energy in the

constricted space is given by a riemannian metric. To study the symmetries of the dynamical system

it is necessary to study the symmetries of the metric.

2.1 Linear connections

Definition 2.1.1. A linear connection is a map which asocciates to every vector field U 2 X(M) an
operator —U : X(M)�! X(M) satisfying the following properties:

• —U(aX +bY ) = a—U X +b—UY , for all a,b 2 R and for all U,X ,Y 2 X(M).

• — fU+gV X = f —U X +g—V X, for all f ,g 2 C •(M) and for all U,V,X 2 X(M).

• —U( f X) =U( f )X + f —U X, for all f 2 C •(M) and for all X 2 X(M).

A vector field along a curve g : I �! M is a differentiable map X : I �! T M such that:

X(t) 2 T
g(t)M,

where I is an interval of R.
Let M be a differentiable manifold with an affine connection. Let X be a vector field along a

differentiable curve g : I ⇢ R �! M. We take a subinterval of I where g is inyective. Let U be a

neighbourhood of this subinterval, we can obtain an other vector field Y 2 X(M) such that Y � g = X .
We will call covariant derivative of X along g to the vector field that satisfies:

—
˙

g

X = —
˙

g

Y.

Let F :

¯M �! M be a differentiable map. Two vector field X 2X( ¯M) and Y 2X( ¯M) are F-related

if T F �X = Y �F. If F is a diffeomorphism, then for every vector field X 2 X(M), T F�1 �X �F is

also a vector field on X( ¯M) that it is denoted by F⇤X . Besides, if X 2 X( ¯M), T F �X �F�1

is a vector

field in X(M) and it is denoted by F⇤X . If f 2 C •(M), X( f �F) = (F⇤X) f .

Definition 2.1.2. Let ¯— and — be linear connections in ¯M and M respectively. A map F :

¯M �! M it
is said to be affine if

F⇤—XY = ¯—F⇤X F⇤Y, for all X ,Y 2 X(M). (2.1)

IX



X Chapter 2. Riemannian geometry and symmetries. Geodesics.

2.2 Riemannian geometry. Concepts.

Definition 2.2.1. A riemannian metric g on a manifold M is a differentiable map

g : T M⇥M T M �! R

such that gm : TmM⇥TmM �! R defines a scalar product on TmM, for all m 2 M.

Definition 2.2.2. (pullback) Let F :

¯M �! M be a differentiable map and g a riemannian metric on
M. The pullback of g by F is the map F⇤g : T ¯M⇥

¯M T ¯M �! R given by

(F⇤g)m̄(u,v) = gF(m̄)(Tm̄F(u),Tm̄F(v))

for all u,v 2 Tm̄ ¯M an all m̄ 2 ¯M.

Definition 2.2.3. Let (M,g) be riemannian manifold and F : M �! M a diffeomorphism. We say that
F is an isometry if F⇤g = g.

2.3 Levi-Civita connection.

Theorem 2.3.1. In a riemannian manifold (M,g) there exists a unique linear connection — which
satisfies the following two properties:

⇧ X(g(X ,Z)) = g(—XY,Z)+g(Y,—X Z), metric connection,

⇧ —XY �—Y X = [X ,Y ], torsion free connection,

for all X ,Y,Z 2 X(M). This connection is called the Levi-Civita connection.

Choosing a coordinate system mi
the Levi-Civita connection is characterized by the Christoffel

coefficients of the metric as follows:

—
∂

∂mi

∂

∂m j = Gk
i, j

∂

∂mk , Gk
i, j =

1

2

ghk(
∂g jh

∂mi +
∂gih

∂m j �
∂gi j

∂mh ),

where gi j
is the inverse of the metric gi j.

2.4 Killing vector fields.

Definition 2.4.1. Let K be a vector field on (M,g) and let ft be its flow. K is a Killing vector field if
each map ft is an isometry, i.e:

f

⇤
t g = g.

Proposition 2.4.2. The following three statements are equivalent:

i) A vector field K in (M,g) is a Killing vector field.

ii) LKg = 0.

iii) g(—X K,Y )+g(—Y K,X) = 0, for all X ,Y 2 X(M).

In coordinates, Kk ∂gi j

∂mk +gik
∂Ki

∂m j +g jk
∂K j

∂mi = 0.
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2.5 Geodesics.

Definition 2.5.1. A curve g : I ⇢ R �! M on a riemannian manifold (M,g) is a geodesic if there is
no covariant change of the tangent vector field to the curve over time, i.e :

—
˙

g(t) ˙

g(t) = 0.

If a curve g : I ⇢ R�! M is geodesic then it is easy to see that g( ˙

g, ˙

g) is constant.

Theorem 2.5.2. In a local coordinate system, a curve g(t) = (g1(t), ...,gk(t)) is geodesic if and only
if it satisfies the system of differential equations d2

g

k

dt2

+(Gk
i, j � g)dg

i

dt
dg

j

dt = 0.

Corollary 2.5.3. If vm 2 T M the generator of this geodesic system is

G(vm) =
d
dt

˙

g

���
t=0

,

where g is the geodesic that satisfies that g(0) = x and ˙

g(0) = v.

Definition 2.5.4. Let g be a geodesic that satisfies that g(0) = x and ˙

g(0) = v. We say that a geodesic
flow a the map ft : T M �! T M that is defined by ft(m,vm) = (g(t), ˙

g(t)) for all vm 2 T M.

Proposition 2.5.5. The map f : T M �!R defined by f(vm) = gm(K(m),vm), for all vm 2 T M, where
K be a Killing vector field, is a constant of motion for the geodesic flow.

Theorem 2.5.6. ( Clairaut) Let g(t) = (x(t),y(t),z(t)) be a geodesic curve of a surface of revolution
M ✓ R3. If r(t) is the function that measures the distance of g(t) to the rotation axis and q(t)) isthe
angle that forms ˙

g(t) with the parallel wich cuts it at the instant t, then r(t)cos(q(t)) is constant.

Note that the metric is inherited from R3

, i.e g(u,v) = u · v where u,v are tangent vectors to M at

the same point. The group of rotations about the z axis

Rt =

8
<

:

0

@
cos(t) �sin(t) 0

sin(t) cos(t) 0

0 0 1

1

A
����� t 2 R

9
=

; ,

is a one-parameter group of isometries.Then, it has an associated Killing vector field. Let’s find that

Killing vector field:

K(g(t)) =
d

dt
Rt

���
t=0

0

@
x
y
z

1

A=

0

@
sin(t) �cos(t) 0

cos(t) �sin(t) 0

0 0 1

1

A
�����
t=0

0

@
x
y
z

1

A=

0

@
�y
x
0

1

A

K =�y
∂

∂x
+ x

∂

∂y
.

We now apply the previous theorem. We have that g(K, ˙

g) = |K|| ˙g|cos(q) is constant. Applying (2.5)

and since |K| = (x2 + y2)
1

2

is the distance of the point of the geodesic curve to the revolution surface

axis, we have that r(t)cos(q) is constant. In cartesian coordinates R3

the expresion of that constant

of motion is:

f( ˙

g(t)) = g
g(t)(K(g(t)), ˙

g(t)) = K(g(t)) ˙

g(t) =
�
�y x 0

�
0

@
ẋ
ẏ
ż

1

A= ẏx� ẋy.

In mechanics is called angular momentum, and it is constant.

Author: Ana Rojo Echebur´ua
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2.6 Newtonian mechanics.

Let M be a differentiable manifold. We define the gradient of the potential V : M �! R as the vector

field gradV 2 X(M) such that g(gradV (m),w) = dV (m)(w) for m 2 M and w 2 TmM. We set the

following system of differential equations:

—
˙

g

˙

g =�gradV (g(t)).

Note that this system matches the second Newton’s law, F = ma, where m = 1 and F =�gradV.

Proposition 2.6.1. If K is a Killing vector field such that LKV = 0 then g(K(m),v) is a constant of
motion, for v 2 T M.

Dynamical systems with symmetry



Chapter 3

Geometric formulation of hamiltonian
mechanics.

In physics, mechanical systems are usually hamiltonian dynamical systems. The symplectic geome-

try allow us to find symmetries in these systems quickly. In this chapter we will study the invariance

of the hamiltonian under a certain symmetry group and we will see that they have important conse-

quences, such as Noether’s theorem. Theorem of Marsden and Weinstein, which provides a method

for constructing, from a symplectic manifold on which a Lie group acts, another symplectic manifold

with smaller dimension with the same properties as the first one, will be also seen.

3.1 Symplectic manifolds. Symplectic forms. Symplectomorphisms.

Let M be a differentiable manifold.

Definition 3.1.1. A symplectic form w in M is a map

w : T M⇥M T M �! R

such that wm : TmM⇥TmM �! R defines a bilinear form in each point that is close, skew symmetric
and regular. The pair (M,w) is called symplectic manifold.

Definition 3.1.2. If (M,w) y (N,r) are symplectic manifolds, a differentiable map F : M �! N is
called symplectic when F⇤

r = w , i.e:

w(u,v) = rF(m)(T F(u),T F(v)), for all u,v 2 M.

If F is diffeomorphism we say that F is a symplectomorphism.

Locally, all symplectic manifolds are equivalent.

Theorem 3.1.3. (Darboux): Let w be a symplectic form on a differentiable manifold M.
For each point m 2 M, a local coordinate chart (U,j) exists arround m in which the map j is given
by j(m) = (q1, ...,qn, p

1

, ..., pn) such that w is expressed as:

w = dqi ^dpi.

Such coordinates (qi, p j) are called canonical coordinates. In mechanics, qi
are called positions

and p j are called momenta.

XIII
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3.1.1 The canonical symplectic structure on the contangent bundle.

Let Q be a manifold such that M = T Q⇤
. A tangent covector to a manifold Q at a point q is a linear

form on TqQ. The set of such covectors is the dual vector space of the tangent space and is called

cotangent space of Q in q and it is denoted by (TqQ)⇤. The cotangent bundle of a manifold is the

union of all cotangent spaces at every point of the manifold. If the manifold Q represents the set of

possible positions qi in a dynamical system, then the cotangent space represents the set of possible

positions qi and momenta pi. Thus the cotangent bundle describes the phase space of the system. The

Liouville 1-form is a 1-form defined on the cotangent space T Q⇤
of Q.

Let (U,j) a local chart Q which induces a chart on T Q⇤
. If the chart coordinates are denoted by

(q1, ...,qn, p
1

, ..., pn), then the Liouville 1-form is given by q = pidqi. Its exterior derivative defines a

symplectic form endowing T Q⇤
with a symplectic manifold structure. Without using the coordinates,

we can define the Liouville 1-form as follows: Let T Q⇤
be the cotangent bundle to the manifold Q

and we denote p the projection map p : T Q⇤ �! Q such that every pair (q, p) is associated to q. Let

T p : T (T Q⇤)�! T Q the tangent map of p . For all a 2 T Q⇤
we define the map q

a

: T
a

(T Q⇤)�! R
such that q

a

(v) = aT p(v) for all v in T
a

(T Q⇤). The symplectic form, called Poincar´e 2-form is given

by w =�dq = dqi ^d pi.

3.2 Hamiltonian dynamical systems and symmetries.

Definition 3.2.1. A hamiltonian dynamical system is a tern (M,w,H) where (M,w) is a symplectic
manifold and H 2 C •(M). H defines a unique vector field given by iXH w = dH.

Proposition 3.2.2. i) The vector field XH corresponding to H it is written in canonical coordinates
as follows:

XH =
∂H
∂ pi

∂

∂qi �
∂H
∂qi

∂

∂ pi
.

ii) The integral curves of the vector field XH are determined in canonical coordinates by the equa-
tions: (

q̇i = ∂H
∂ pi

,

ṗi =� ∂H
∂qi .

iii) H is a constant of motion.

Definition 3.2.3. We say that f is a symmetry of w if f

⇤
w = w , i.e:

wm(u,v) = w

f(m)(Tmf(u),Tmf(v)), for all m 2 M,and for all u,v 2 TmM.

Theorem 3.2.4. Let Y be a vector field with flow ft . ft is a one-parameter group of symmetries of w

if and only if the Lie derivative of w along Y is zero.

Definition 3.2.5. We say that f is a symmetry of H if f

⇤H = H, i.e, H(f(x)) = H(x).

Theorem 3.2.6. Let Y be a vector field let ft be his flow. ft is a one-paremeter group of symmetries
of H if and only of the Lie derivative of H along Y is zero.

Definition 3.2.7. We say that X 2X(M) is a hamiltonian vector field if there exists H 2 C • such that
X is the hamiltonian vector field associated to H, i.e, iX w = dH.

Note that if X is hamiltonian 0 = d2H = d(iX w) = (diX + iX d)w = LX w. The reciprocal is not

true generally but it is true locally:

Lemna 3.2.8. (Poincaré) If LX w = 0 there exists a neighborhood U 2 M of each point m 2 M and a
function f 2 C • such that iX w = d f .

Dynamical systems with symmetry



3.3. Geodesic equations as a hamiltonian system. XV

A vector field X such that LX w = 0 is called locally hamiltonian.

Theorem 3.2.9. If Y 2X(M) is hamiltonian with hamiltonian function f , i.e, iY w = d f and LY H = 0,
then XH f = 0, i.e, f is a constant of motion for XH.

Proof. XH f = d f (XH) = iY w(XH) = w(Y,XH) =�w(XH ,Y ) =�dH(Y ) =�LY H = 0.

This result is called Noether’s theorem in the hamiltonian formalism.

3.2.1 Poisson brackets.

Definition 3.2.10. We will denote Poisson bracket of two functions f ,g 2 C •(M) by :

{ f ,g}= w(Xf ,Xg).

The Poisson bracket of two functions f ,g 2 C •(M) can be written as follows:

{ f ,g}= Xg f =�Xf g.

Theorem 3.2.11. The set C •(M) is endowed with Lie algebra structure by the product defined by the
Poisson brackets.

If mi(t) are the coordinates of a integral curve of the vector field XH :

d

dt
f (mi(t)) = { f ,H}(mi(t))

3.3 Geodesic equations as a hamiltonian system.

Let g be a metric on a manifold Q and let T Q⇤
be its cotengent manifold. Let H 2 C •(T Q⇤) be

the hamiltonian function that can be written as H(a) = 1

2

g�1(a,a). Expressed in canonical coordi-

nates (qi, pi), H = 1

2

gi j(q)pi p j, where gi j
is the inverse of the metric gi j.The canonical equations are

therefore: (
q̇k = ∂H

∂ pk
= gik pi,

ṗl = � ∂H
∂ql = � 1

2

∂grm

∂ql pr pm.

Deriving and computing in the above equations we will get the following result:

q̈k =
1

2

gck
✓
�∂gnc

∂qb � ∂gbc

∂qn +
∂gbn

∂qc

◆
q̇bq̇n =�Gc

n,bq̇bq̇n.

Where Gc
n,b are the Christoffel simbols.

So we get the following system of differential equations q̈k+Gc
n,bq̇bq̇n = 0, which matches with the

geodesic equations —
˙

g

˙

g = 0. Note that the hamiltonian is constant of motion and g(a,a) is constant,

which was not as immediate as it was from the point of view of Riemann’s geometry.

Now consider the case in which the hamiltonian has a potential V (q). The hamiltonian will be

written as H(a) = 1

2

g�1(a,a)+V (p(a)) and in canonical coordinates H = 1

2

gi j(q)pi p j +V (q). The

canonical equations are therefore:

(
q̇k = ∂H

∂ pk
= gik pi,

ṗl = � ∂H
∂ql = � 1

2

∂grm

∂ql pr pm + ∂V
∂ql .

Deriving and computing in the above equations we will get the following result:

q̈k +Gk
n,l q̇

l q̇n =�gkl ∂V
∂xl ,

which matches with the equations of the newtonian mechanics section —
˙

g

˙

g =�gradV .

Author: Ana Rojo Echebur´ua



XVI Chapter 3. Geometric formulation of hamiltonian mechanics.

3.4 Complete lift.

Definition 3.4.1. Let X 2 X(Q) and let ft : Q �! Q be its flow. The map (T f

⇤
t )

�1

: T Q⇤ �! T Q⇤ is
a flow in T Q⇤. We will say that the infinitesimal generator of this flow is the complete lift of X and we
will denote it by Xc.

Proposition 3.4.2. The expression in natural coordinates (qi, pi) in T Q⇤ of the complete lift is as
follows:

Xc(q, p) = Xi(q)
∂

∂qi � p j
∂X j

∂qi (q)
∂

∂ pi
.

Definition 3.4.3. Let ˆX 2 C •(T Q⇤) given by ˆX(aq) =< aq,X(q) > for all aq 2 T Q⇤ . This map is
called momentum in the direction of X 2 X(Q).

In coordinates,

ˆX(q, p) = piXi(q).

Proposition 3.4.4. X is hamiltonian with hamiltonian function ˆX = piXi.

Proof. Indeed:

iXc
w = Xid pi + p j

∂X j

∂qi dqi = d[Xi pi] = d ˆX .

Proposition 3.4.5. Let H(a) = 1

2

g�1(a,a). X is a Killing vector field if and only if LXcH = 0.

Proof. In coordinates, H = 1

2

gi j(q)pi p j we have that:

LXcH =
1

2

✓
�Xk ∂gi j

∂qk viv j �gk j
∂X j

∂qi viv j �gki
∂Xi

∂q j viv j

◆
=�1

2

LX g(v,v),

with vi = gi j p j and p j = gi jvi.
If X is a Killing vector field then LX g = 0 and then LXcH = 0. And if LXcH = 0, then LX g = 0

and X is a Killing vector field.

3.5 Mardsen-Weinstein reduction.

Theorem 3.5.1. (Marsden-Weinstein) Let j be a free and proper hamiltonian action of G in a sym-
plectic manifold (M,w) with equivariant momentum map J. Then the space P

µ

= J�1(µ)/G
µ

with µ

regular value has a unique symplectic form characterized by p

⇤
µ

w

µ

= i⇤
µ

w . Besides, if H is an invari-
ant hamiltonian in M and ˜H

µ

is the induced hamiltonian in J�1(µ)/G
µ

, the flows ft and ˜

ft of XH and
˜XH

µ

2 X(P
µ

) satisfy that p

µ

�ft = ˜

ft �p

µ

.

This theorem allows us to reduce a symplectic manifold, under certain conditions, to an other whit

lower dimension wich preserves the dynamics and structure of the manifold from which it comes. An

example where we can apply this teorem is in the Elroy’s Beanie problem: Two rigid bodies that are

joined at a fixed point are considered. Two reference semi-axes are set. The manifold to consider is

Q = S1 ⇥S1

with coordinates (q ,j), where q is the angle between the x semi-axis with the semi-axis

of reference of the first body and f is the angle between a reference semi-axis of the first body with

the reference axis of the second body. The angle between the first and the second body is always the

same. In this problem we can reduce a manifold of dimension four - S1 ⇥S1 ⇥R⇥R - to a manifold

of dimension two - S1 ⇥R.

Dynamical systems with symmetry
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Prólogo.

La presencia de simetrías en un sistema dinámico implica ciertas propiedades que permiten sim-
plicar dicho sistema y entender mejor su comportamiento. En este trabajo estudiaremos la teoría de la
simetría en sistemas dinámicos y la aplicaremos a casos concretos.

De manera informal, podemos entender una simetría como lo que se repite, lo reiterativo, lo que
vuelve a ser igual, es decir, si aplicamos una simetría a un objeto, este queda de la misma forma. Así
pues, podríamos hablar de simetrías de un sistema como su conjunto de invariancias, es decir, que al
aplicar una transformación de simetría sobre un sistema, el sistema queda inalterado.

Se definirá el concepto de sistema dinámico así como el de simetría de un sistema dinámico y se
caracterizarán las simetrías de los sistemas dinámicos distinguiendo el caso en el que sean discretas
o continuas. Estaremos interesados en las simetrías continuas y serán las que trataremos a lo largo
de todo el trabajo. También se introducirá el concepto de grupo de Lie y álgebra de Lie, así como
el de álgebra de Lie de un grupo de Lie. Interpretando el conjunto de estados como una variedad
diferenciable, se verá que si la cocientamos por un grupo de Lie de simetrías, ésta puede reducierse a
la variedad cociente, obteniendo un sistema dinámico en una variedad de dimensión menor.

En muchas ocasiones un sistema físico se ve sometido a restricciones en el espacio de estados. La
energía cinética en el espacio restringido viene dada por una métrica riemanniana. Por tanto, estaremos
interesados en estudiar el flujo geodésico asociado a dicha métrica. Para estudiar las simetrías del
sistema dinámico se procede a estudiar las simetrías de la métrica. Los grupos uniparamétricos de
isometrías son simetrías continuas de la métrica y por tanto estaremos interesados en estudiarlos junto
con sus campos vectoriales asociados, los campos de Killing.

Un tipo de sistema dinámico muy común en mecánica clásica es el de los sistemas dinámicos
hamiltonianos. La geometría simpléctica nos permite encontrar simetrías en estos sistemas de una
manera sistemática. Estudiaremos la invariancia de los hamiltonianos bajo un cierto grupo de sime-
trías y veremos que tiene consecuencias importantes, como por ejemplo el teorema de Noether. Este
teorema dice que cada simetría continua de un sistema dinámico implica que alguna magnitud del
sistema se conserva, y que, cada magnitud conservada tiene una correspondiente simetría. También
se verá el teorema de Marsden y Weinstein, que proporciona un método para construir, a partir de
una variedad simpléctica sobre la que actúa un grupo de Lie, otra variedad simpléctica de dimensión
menor con las mismas propiedades que la de partida.

En un apéndice se han recogido diversas propiedades de la derivada de Lie que hemos utilizado
frecuentemente. Aunque su estudio también ha formado parte de este trabajo, se ha preferido separar-
las del texto principal para una exposición más fluida.

XIX
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Capítulo 1

Introducción a los sistemas dinámicos
con simetría.

La presencia de simetrías en un sistema dinámico implica ciertas propiedades que permiten sim-
plicar dicho sistema dinámico. En este capítulo se presentará la noción de sistema dinámico así como
la de simetría de un sistema dinámico y se caracterizarán las simetrías de los sistemas dinámicos en
el caso en que estas sean discretas o sean continuas. También se introducirá el concepto de grupo de
Lie y álgebra de Lie, así como el de álgebra de Lie de un grupo de Lie. Interpretando el conjunto
de estados como una variedad diferenciable, se verá que si la cocientamos por un grupo de Lie de
simetrías de un sistema dinámico, éste puede reducierse a la variedad cociente, obteniendo un sistema
dinámico en una variedad de dimensión menor.

1.1. Conceptos básicos.

Definición 1.1.1. Un sistema dinámico es una terna (S ,f ,T ) donde T = R,Z, denominado con-
junto de tiempos, S es un conjunto, denominado espacio de estados, y f = {ft} es una familia de
aplicaciones, ft : S �!S definida para t � 0 satisfaciendo:

f0 = id,

ft+s = ft �fs para todo t,s� 0.

Cuando T = R se dirá que es un sistema dinámico en tiempo continuo, mientras que si T = Z se
dirá que el sistema dinámico es en tiempo discreto.

Si ft está definido para todo t 2 T (positivo o no) y satisface las propiedades anteriores, se dirá
que es invertible. Por comodidad se referirá a un sistema dinámico indicando únicamente la familia
de aplicaciones ft de la terna que define el sistema dinámico.

En el caso de un sistema dinámico en tiempo discreto, T = Z, la aplicación ft es simplemente la
composición t-veces de la aplicación F = f1, que se denomina generador del sistema dinámico. En el
caso de un sistema dinámico en tiempo continuo, T = R, bajo condiciones adecuadas de regularidad
(que se precisarán más adelante) la aplicación ft es la solución general de un sistema de ecuaciones
diferenciales.

En cualquier caso, nótese que un sistema dinámico equivale a la acción del semigrupo aditivo
T+ = {t 2 T |t � 0} sobre el espacio de estados S . La órbita de un punto x 2 S es el conjunto
ordenado {ft(x)|t 2T }.

Definición 1.1.2. Se dice que una aplicación invertible y : S �!S es una simetría de un sistema
dinámico ft si satisface

y �ft = ft �y (1.1)

1
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para todo t � 0.

Una simetría aplica órbitas en órbitas.

Proposición 1.1.3. Si y es una simetría de un sistema dinámico ft y x0 2S entonces la imagen por
y de la órbita de x0 es igual a la órbita de y(x0), es decir, y(ft(x0)) = ft(y(x0)).

Demostración. Se obtiene inmediatamente al aplicar (1.1) a x0.

Proposición 1.1.4. Consideremos el grupo (G,�) de las aplicaciones invertibles de S en sí mismo,
G= {y : S �!S |9y�1 : S �!S }, con la composición de aplicaciones. El conjunto de simetrías
de un sistema dinámico es un subgrupo de G.

Demostración. Hay que ver que S = {y 2 G|y es simetría de ft} es un subgrupo de G.
En primer lugar, contiene al elemento neutro de G, id : S �! S , ya que trivialmente se tiene

que: id �ft = ft � id.
Por otro lado, hay que ver que si y es simetría entonces y

�1 es simetría. A partir de y �ft = ft �y

componiendo con y

�1 por la izquierda se obtiene ft = y

�1 � ft �y . Componiendo ahora con y

�1

por la derecha se llega a ft �y

�1 = y

�1 �ft , por lo que y

�1 es simetría.
Por último hay que ver que si y1,y2 son simetrías entonces y1 �y2 es simetría. Componiendo

y2 � ft = ft �y2 con y1 por la izquierda se obtiene que y1 �y2 � ft = y1 � ft �y2, y componiendo
y1 �ft = ft �y1 con y2 por la derecha se obtiene que y1 �ft �y2 = ft �y1 �y2, de donde se obtiene
y1 �y2 �ft = y1 �ft �y2 = ft �y1 �y2.

1.1.1. Otras nociones de simetría.

Existen otras nociones más generales que la considerada aquí. En ocasiones se acepta como sime-
tría una aplicación y : S �!S tal que y �ft = f�t �y . En este caso la aplicación y aplica órbitas
en órbitas con la orientación contraria. Con más generalidad, se dice que y : S �!S es un simetría
de ft si existe una aplicación t : S ⇥T �! T tal que t(x, ·) : T �! T es monótona, para cada
x 2S , y se satisface y � ft = f

t( ,t) �y , para todo t � 0. En este caso, y aplica órbitas en órbitas,
como conjuntos, aunque cambia su parametrización.

No se considerarán aquí dichas generalizaciones.

1.2. Caracterización en términos del generador.

Veamos cómo se puede caracterizar una simetría de un sistema dinámico dependiendo de si éste
es discreto o continuo.

1.2.1. Sistemas en tiempo discreto.

Se considera un sistema dinámico ft en tiempo discreto, T = Z, y sea F = f1 : S �! S su
generador. Entonces una aplicación invertible y es una simetría de ft si y sólo si F �y = y �F . La
demostración es inmediata, ya que ft = F � · · ·�F (t-veces).

1.2.2. Sistemas en tiempo continuo.

Como se ha mencionado anteriormente los sistemas dinámicos en tiempo continuo están rela-
cionados con los sistemas de ecuaciones diferenciales ordinarias. Supongamos que el espacio de
estados es una variedad diferenciable S = M, y que la aplicación f : R⇥M �! M, definida por
f : (t,x) 7! ft(x) es diferenciable de clase C •. De tonaremos por T M al fibrado tangente a M.

Definición 1.2.1. Un campo vectorial es una aplicación diferenciable X : M �! T M tal que para
todo m 2M se tiene que X(m) 2 TmM.

Sistemas dinámicos con simetría
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Se denota por X(M) al conjunto de los campos de vectores sobre M.
Llamamos generador infinitesimal del sistema dinámico ft al campo vectorial X 2X(M) definido

por:

X(m) =
d
dt

ft(m)
���
t=0+

, para todo m 2M.

Definición 1.2.2. Una curva integral g de un campo vectorial X es una aplicación g 2 R : I �!M
tal que ġ(t) = X(g(t)) e I es un intervalo de R.

Diremos que una curva integral g es maximal si su dominio de definición I es el mayor posible en
el sentido de la inclusión.

Definición 1.2.3. Un campo vectorial se dice completo si todas sus curvas integrales maximales están
definidas en todo R y semicompleto si lo están para [0,+•).

Definición 1.2.4. Sea gm una curva integral maximal del campo vectorial X tal que gm(0) = m para
todo m2M. El flujo de un campo vectorial es una aplicación ft : M�!M definida por ft(m) = gm(t).

A ft también se le llama grupo uniparamétrico generado por X .
Si un campo X es semicompleto, define un sistema dinámico y se X es completo, define un sistema

dinámico invertible.
Se sigue de la definición de generador que:

d
dt

ft(m) = X(ft(m)), para todo t 2 R y para todo m 2M.

En términos del generador del sistema dinámico en tiempo continuo una simetría queda caracte-
rizada por la siguiente propiedad.

Proposición 1.2.5. Sea ft un sistema dinámico en tiempo continuo y sea X su generador infinitesimal.
Un difeomorfismo y : M!M es una simetría si y sólo si T y �X = X �y .

Demostración. Aplicando (1.1) a un punto cualquiera m 2 M y tomando la derivada en t = 0+ se
tiene, por un lado

d
dt
(y �ft)(m)

���
t=0+

= T
ft(m)y

d
dt

ft(m)
���
t=0+

= Tmy(X(m)),

y por otro
d
dt
(ft �y)(m)

���
t=0+

= X(y(m)).

Se llega así a Tmy(X(m)) = X(y(m)).
Recíprocamente, supongamos que T y �X = X �y . Probaremos que ft �y �f�t = y . Derivando

ft �y �f�t con respecto de t en un punto cualquiera m 2M se tiene que:

d
dt
(ft �y �f�t)(m) = X(ft �y �f�t)(m)�Tmft �Tmy �X �f�t(m).

Por otro lado, derivando con respecto a s la igualdad ft �fs = fs �ft en un punto cualquiera m2M
se tiene que Tmft(X(m)) = X(ft(m)). Por tanto Tmft �Tmy �X �f�t(m) = Tmft �X �y � (f�t)(m) =
X(ft �y �f�t)(m) y d

dt (ft �y �f�t)(m) = 0. Así ft �y �f�t es constante respecto a t. Tomando, por
ejemplo, t = 0 en ft �y �f�t se obtiene y y así ft �y �f�t = y para todo t � 0.

Consideremos un sistema dinámico en tiempo discreto generado por F . Supóngase que se tiene
un grupo uniparamétrico ys de simetrías de F , es decir,

F �ys = ys �F.

Si Y es el generador infinitesimal de ys entonces T F �Y = Y � F . Recíprocamente, si se cumple
T F �Y = Y � F entonces el grupo uniparamétrico generado por Y es un grupo uniparamétrico de
simetrías de F .

Autor: Ana Rojo Echeburúa
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1.3. Grupos de simetría y reducción.

Definición 1.3.1. Un grupo de Lie es un grupo G que es, al mismo tiempo, una variedad diferenciable
de dimensión finita, de modo que las dos operaciones de grupo de G, multiplicación e inversión:

µ : G⇥G�! G tal que (x,y) 7! xy : G⇥G�! G,

i : G�! G tal que x 7! x�1,

son aplicaciones diferenciables.

Sea G un grupo de Lie y M una variedad diferenciable. Consideramos una acción por la izquierda
de G en M, es decir, una aplicación diferenciable j : G⇥M �!M verificando:

i) j(e,m) = m, para todo m 2M, con e elemento neutro.

ii) j(g1,j(g2,m)) = j(g1g2,m), para todo g1,g2 2 G y para todo m 2M.

Las aplicaciones jg : M �!M y jm : G �!M definidas por jg(m) = j(g,m) = jm(g) = g ·m
para todo g 2 G y m 2M son diferenciables. Además je = idM y jg1 �jg2 = jg1g2 , y por tanto jg�1

es el inverso de jg que será un difeomorfismo.

Definición 1.3.2. Un álgebra de Lie es un espacio vectorial V dotado de una operación bilineal
interna [, ] tal que para a,b,c elementos del álgrebra se tiene que:

[a,b] =�[b,a], (antisimétrica),

[a, [b,c]]+ [b, [c,a]]+ [c, [a,b]] = 0, (identidad de Jacobi).

Definición 1.3.3. Un campo de vectorial X sobre un grupo de Lie G se dice invariante a la izquierda
si

(Tg0Lg)(X(g0)) = X(gg0), para todo g,g0 2 G.

El espacio de los campos invariantes a la izquierda es un espacio vectorial que denotaremos por
XL(G). Se puede ver que si X e Y son campos invariantes a la izquierda, el corchete de Lie [X ,Y ]
también es un campo invariante a la izquierda.

Si e el elemento neutro de un grupo de Lie G y TeG = G el espacio tangente a G en e, se define la
aplicación : G ! XL(G) tal que

 �
x (g) = (TeLg)(x ), para todo g 2 G.

Definición 1.3.4. Sea G un grupo de Lie y G el espacio tangente a G en el neutro. Entonces,existe
una estructura de álgebra de Lie [, ]G sobre G tal que [x ,h ]G = [

 �
x , �h ](e), para todo x y h en G . Al

espacio vectorial G dotado de la estructura de álgebra de Lie [, ]G se le denomina el álgebra de Lie
del grupo de Lie G.

Sea G el álgebra de Lie del grupo de Lie G de M. Para cada a 2 G podemos definir un campo
vectorial Xa 2 X(M) mediante:

Xa(m) = Tejm(a),

o lo que es lo mismo, si f 2 C •(M)

Xa(m) f =
d
dt

f (exp(ta)m)
���
t=0

.

A este campo lo llamaremos campo fundamental. La aplicación X : G �!X(M) que lleva cada a2 G
a Xa es un antihomomorfismo de álgebras de Lie, es decir:

[Xa,Xb] =�X[a,b].

Se deduce que Xa es completo y que el flujo ft de Xa está dado por:

ft = jexp(ta).

Sistemas dinámicos con simetría
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Proposición 1.3.5. Sea M variedad y G un grupo de Lie que actúa en M y supongamos que M/G tiene
estructura de variedad cociente. Si X es un campo vectorial tal que T jg �X = X �jg, para todo g2G
entonces existe un único campo vectorial X̄ 2X(M/G) tal que T p �X = X̄ �p siendo p : M �!M/G
la proyección sobre el cociente. Si ft es el flujo de X entonces el flujo de (X̄) es f̄t([m]) = [ft(m)] .

En lo que sigue en este trabajo, nos centraremos en sistemas dinámicos en tiempo continuo. Su-
pondremos que son invertibles, es decir, que el campo vectorial que lo genera es completo. Además
cuando tengan simetría continua se supondrá también que el generador es completo.

Autor: Ana Rojo Echeburúa





Capítulo 2

Geometría riemanniana y simetrías.
Geodésicas.

En muchas ocasiones un sistema físico se ve sometido a restricciones en el espacio de estados.
La energía cinética en el espacio restringido viene dada por una métrica riemanniana. En ausencia de
otras fuerzas las trayectorias del sistema dinámico están descritas por las geodésicas de dicha métrica.
Por tanto, es interesante estudiar las simetrías de los flujos geodésicos en variedades riemannianas.
Para ello se procede a estudiar las simetrías de la métrica. Los grupos uniparamétricos de isometrías
son simetrías continuas de la métrica y por tanto estaremos interesados en estudiarlos junto con sus
campos vectoriales asociados, los campos de Killing.

2.1. Conexiones lineales

Sea X(M) el conjunto de campos vectoriales de una variedad diferenciable M.

Definición 2.1.1. Una conexión lineal es una aplicación que a cada campo vectorial U 2 X(M) le
asocia un operador —U : X(M)�! X(M) satisfaciendo las siguientes propiedades:

—U(aX +bY ) = a—U X +b—UY , para todo a,b 2 R y para todo U,X ,Y 2 X(M).

— fU+gV X = f —U X +g—V X, para todo f ,g 2 C •(M) y para todo U,V,X 2 X(M).

—U( f X) =U( f )X + f —U X, para todo f 2 C •(M) y para todo X 2 X(M).

Definición 2.1.2. Un campo vectorial a lo largo de una curva g : I ⇢ R �!M con I intervalo de R
es una aplicación X : I �! T M diferenciable tal que:

X(t) 2 T
g(t)M.

Dos tipos relevantes de estos campos son los siguientes:

⇧ Si X 2 X(M), X � g es un campo vectorial a lo largo de la curva g .

⇧ El campo d g

dt = ġ tangente a la curva g .

Sea M una variedad diferenciable con una conexion lineal. Sea X un campo vectorial a lo largo
de una curva diferenciable g : I ⇢ R�!M. Tomamos un subintervalo de I donde g es inyectiva. Sea
U un entorno de ese trozo de curva. Se halla otro campo vectorial Y en ese entorno de tal forma que
Y � g = X . Se denomina derivada covariante de X a lo largo de g al campo vectorial que cumple que:

—
ġ

X = —
ġ

Y.

7
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Sea F : M̄ �! M una aplicación diferenciable. Dos campos vectoriales X 2 X(M̄) y Y 2 X(M)
se dicen F-relacionados si T F �X = Y �F. Si F es un difeomorfismo, entonces para cualquier campo
vectorial Y 2X(M), T F�1�Y �F es también un campo vectorial en X(M̄) que se denota F⇤Y . Además
T F �X �F�1 es también es un campo vectorial en X(M) y se denota F⇤X . Si f 2 C •(M) entonces
X( f �F) = (F⇤X) f .

Definición 2.1.3. Sean —̄ y — conexiones lineales sobre M̄ y M respectivamente. Una aplicación
F : M̄ �!M se dice afín si

F⇤—XY = —̄F⇤X F⇤Y, para todo X ,Y 2 X(M). (2.1)

Una transformación afín de (M,—) es un difeomorfismo afín de M en sí mismo. El conjunto de
transformaciones afines de una variedad M conexa es un grupo de Lie de dimension menor o igual
n2 +n. Para más detalles véase el libro [KN].

2.2. Geometría riemanniana. Conceptos.

Definición 2.2.1. Una métrica de Riemann g sobre una variedad M es una aplicación diferenciable

g : T M⇥M T M �! R

tal que gm : TmM⇥TmM �! R define un producto escalar sobre TmM, para todo m 2M.

Definición 2.2.2. (pullback) Sea F : M̄ �!M una aplicación diferenciable y g una métrica de Rie-
mann sobre M. Se llama pullback de g por F a la aplicación F⇤g : T M̄⇥M T M̄ �! R dada por

(F⇤g)m̄(u,v) = gF(m̄)(Tm̄F(u),Tm̄F(v))

para todo u,v 2 Tm̄M̄ y todo m̄ 2 M̄.

Recordemos que una inmersión es una aplicación diferenciable entre variedades cuyo rango coin-
cide en todos los puntos con la dimensión de la variedad de partida. Si F es una inmersión entonces
F⇤g es una métrica riemanniana en M̄.

Definición 2.2.3. Sea (M,g) una variedad de Riemann y F : M �!M un difeomorfismo. Se dice que
F es una isometría si F⇤g = g.

Definición 2.2.4. Una simetría de una variedad riemanniana (M,g) es una isometría de (M,g) en sí
misma.

Ejemplo: Sea M un elipsoide en R3 con la métrica inducida. Los giros de p

2 y las reflexiones
respecto a los planos ecuatoriales son simetrías. Si dos semiejes son iguales, cualquier giro alrededor
del otro eje es una simetría.

Se puede ver que el grupo de isometrías es grupo de Lie de dimensión menor o igual que n2 + n
con n la dimensión de M conexa y que su álgebra de Lie son los campos de Killing completos. Para
más detalles véase el libro [M].

2.3. Conexión de Levi-Civita.

El siguiente resultado se suele denominar teorema fundamental de la geometría riemanniana.

Teorema 2.3.1. En una variedad riemanniana (M,g) existe una única conexión lineal — que satisface
las dos siguientes propiedades:

Sistemas dinámicos con simetría
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⇧ X(g(X ,Z)) = g(—XY,Z)+g(Y,—X Z), conexión métrica.

⇧ —XY �—Y X = [X ,Y ], conexión libre de torsión.

para todo X ,Y,Z 2 X(M). Dicha conexión se denomina conexión de Levi-Civita.

Demostración. Unicidad
Usando las propiedades exigidas a la conexión de Levi-Civita se tiene que:

g(—XY,Z) = Xg(Y,Z)�g(Y,—X Z) = Xg(Y,Z)�g(Y,—ZX +[X ,Z]) =

= Xg(Y,Z)�Zg(X ,Y )+g(—ZY,X)+g(Y, [Z,X ]) =

= Xg(Y,Z)�Zg(X ,Y )+g(—Y Z +[Z,Y ],X)+g(Y, [Z,X ]) =

= Xg(Y,Z)�Zg(X ,Y )+Y g(Z,X)�g(Z,—Y X)�g(X , [Y,Z])+g(Y, [Z,X ]) =

= Xg(Y,Z)+Y g(Z,X)�Zg(X ,Y )+g(Z, [X ,Y ])+g(Y, [Z,X ])�g(X , [Y,Z])�g(—XY,Z).

Por tanto:

g(—XY,Z) =
1
2
(Xg(Y,Z)+Y g(Z,X)�Zg(X ,Y )+g(Z, [X ,Y ])+g(Y, [Z,X ])�g(X , [Y,Z])).

Esta identidad, denominada indentidad de Koszul, se cumple para cualquier conexión métrica libre de
torsión, y como g es no singular para todo m 2M, — es única.

Existencia
Sean X e Y 2 X(M) fijos y µ : X(M)�! C •(M) definida por:

µ(Z) =
1
2
(Xg(Y,Z)+Y g(Z,X)�Zg(X ,Y )+g(Z, [X ,Y ])+g(Y, [Z,X ])�g(X , [Y,Z])).

Es fácil, pero tedioso, probar que se cumple que µ(X +Y ) = µ(X)+ µ(Y ) y que µ( f X) = f (µ(X))
para todo X ,Y 2 X(M) y f 2 C •(M).

Así µ es lineal y por tanto, existe un único campo vectorial —XY en M tal que:

g(—XY,Z) = µ(Z), para todo X ,Y,Z 2 X(M).

Eligiendo un sistema de coordenadas locales (mi), la conexión de Levi-Civita queda caracterizada
por los coeficientes de Christoffel de la métrica Gk

i, j de la siguiente forma:

—
∂

∂mi

∂

∂m j = Gk
i, j

∂

∂mk ,

Gk
i, j =

1
2

ghk(
∂g jh

∂mi +
∂gih

∂m j �
∂gi j

∂mh ),

donde gi j es la inversa de la métrica gi j.
La conexión de Levi-Civita es natural respecto a las isometrías, es decir, para la conexión de

Levi-Civita una isometría es una transformación afín.

Proposición 2.3.2. Si F : M̄ �!M es isometría, entonces F es afín:

F⇤—XY = —̄F⇤X F⇤Y, para todoX ,Y 2 X(M).

Autor: Ana Rojo Echeburúa
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Demostración. Sean U,V,W 2 X(M) campos F-relacionados con X ,Y,Z 2 X(M̄), respectivamente.
Por ser F isometría se tiene que:

Uḡ(V,W ) =Uḡ(F⇤Y,F⇤Z) =U(g(Y,Z)�F) = F⇤Ug(Y,Z) = Xg(Y,Z).

Análogamente se tiene que V ḡ(W,U) = Y g(Z,X) y que Wḡ(U,V ) = Zg(X ,Y ). Por otro lado:

ḡ(U, [V,W ]) = ḡ(F⇤U,F⇤[V,W ]) = ḡ(F⇤U, [F⇤V,F⇤W ]) = g(X , [Y,Z]).

Análogamente se tiene que ḡ(W, [U,V ]) = g(Z, [X ,Y ]) y que ḡ(V, [W,U ]) = g(Y, [Z,X ]). Teniendo en
cuenta la identidad de Koszul:

ḡ(F⇤—UV,F⇤W ) = ḡ(—̄XY,Z)�F = ḡ(—F⇤UY,F⇤W ) = ḡ(—̄F⇤U F⇤V,F⇤W ),

para todo W 2 X(M̄), luego:
F⇤—UV = —̄F⇤U F⇤V.

Por tanto F es afín.

2.4. Campos de Killing.

Un campo de Killing K es un campo vectorial en una variedad de Riemann (M,g) que define un
grupo uniparamétrico de isometrías.

Definición 2.4.1. Sea K un campo vectorial en (M,g) y sea ft su flujo. Se dice que K es un campo de
Killing si cada aplicación ft es una isometría, es decir:

f

⇤
t g = g.

Proposición 2.4.2. Las siguientes tres afirmaciones son equivalentes:

i) Un campo vectorial K en (M,g) es de Killing.

ii) LKg = 0.

iii) g(—X K,Y )+g(—Y K,X) = 0, para todo X ,Y 2 X(M).

Demostración. i), ii)
Sea ft el grupo uniparamétrico asociado a K campo de Killing. Derivando f

⇤
t g con respecto de t

y usando (A.1.6):

d
dt

f

⇤
t g =

d
ds

���
s=0

f

⇤
t+sg =

d
ds

���
s=0

f

⇤
t f

⇤
s g = f

⇤
t

d
ds

���
s=0

f

⇤
s g = f

⇤
t LKg.

Supongamos primero que K es de Killing. Entonces, f

⇤
t g = g. Por tanto se tiene que d

dt f

⇤
t g = d

dt g = 0
y así LKg = 0. Recíprocamente, supongamos ahora que LKg = 0. Entonces f

⇤
t LKg = 0 y así se tiene

que d
dt f

⇤
t g = 0. Por tanto f

⇤
t g constante respecto a t, luego f

⇤
t g = g y así K es de Killing.

ii), iii)
Utilizando (A.1.7), para todo X ,Y 2 X(M) se tiene:

LKg(X ,Y ) = Kg(X ,Y )�g([K,X ],Y )�g(X , [K,Y ])

= g(—KX ,Y )+g(X ,—KY )�g(—KY �—xK,Y )�g(X ,—KY �—Y K)

= g(—KX ,Y )+g(X ,—KY )�g(—KX ,Y )+g(—X K,Y )�g(X ,—KY )+g(X ,—Y K)

= g(—X K,Y )+g(—Y K,X),

de donde se deduce el resultado.

Sistemas dinámicos con simetría
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Expresemos en coordenadas LKg. Usando otra vez (A.1.7) se tiene que para X = ∂

∂mi y para
Y = ∂

∂m j :

LKg
✓

∂

∂mi ,
∂

∂m j

◆
= Kg

✓
∂

∂mi ,
∂

∂m j

◆
�g

✓
K,

∂

∂mi

�
,

∂

∂m j

◆
�g

✓
∂

∂mi ,


K,

∂

∂m j

�◆

= Kk ∂gi j

∂xk +gik
∂Ki

∂m j +g jk
∂K j

∂mi ,

puesto que
h
K, ∂

∂mk

i
=�

h
∂

∂mk ,K
i
=�L

∂

∂mk
K =� ∂Kl

∂mk
∂

∂ml .

Por tanto, K es campo de Killing si y sólo si se tiene que la expresión Kk ∂gi j

∂mk +gik
∂Ki

∂m j +g jk
∂K j

∂mi se
anula.

2.5. Geodésicas

Sea (M,g) una variedad de Riemann de dimensión n.

Definición 2.5.1. Una curva g : I ⇢R�!M sobre una variedad de Riemann (M,g) es una geodésica
si no hay variación covariante del campo tangente a la curva a largo del tiempo, es decir:

—
ġ(t)ġ(t) = 0.

Lema 2.5.2. Si una curva g : I ⇢ R �!M es geodésica entonces el vector tangente en un punto de
la misma tiene módulo constante, es decir:

g(ġ, ġ) = cte.

Demostración. Derivando g(ġ, ġ) respecto a t:

d
dt
(g(ġ, ġ)) = g(—

ġ(t)ġ(t), ġ)+g(ġ,—
ġ(t)ġ(t)) = 2g(—

ġ(t)ġ(t), ġ) = 0,

ya que por ser g : I ⇢ R�!M geodésica, —
ġ(t)ġ(t) = 0.Por tanto g(ġ, ġ) es constante.

Esta constante c es proporcional a la longitud de arco s ya que s =
Z b

a
g(ġ(t), ġ(t)) dt = (b�a)c.

Se dice que g está parametrizada por un parámetro natural. Si c = 1 está parametrizada por la longitud
del arco.

Proposición 2.5.3. En un sistema de coordenadas locales, una curva g(t) = (g1(t), ...,gk(t)) es geo-
désica si y sólo si satisface el sistema de ecuaciones diferenciales:

d2
g

k

dt2 +(Gk
i, j � g)

dg

i

dt
dg

j

dt
= 0. (2.2)

Demostración. Expresando ġ en coordenadas, ġ = ġ

i ∂

∂mi . Se tiene la siguiente expresión:

—
ġ

ġ = —
ġ

i ∂

∂mi
ġ

i ∂

∂mi = ġ

i—
ġ

j ∂

∂mi

∂

∂mi +
d2

g

k

dt2
∂

∂mk

= ġ

i
ġ

j—
∂

∂mi

∂

∂mi +
d2

g

k

dt2
∂

∂mk =

✓
d2

g

k

dt2 +(Gk
i, j � g)

dg

i

dt
dg

j

dt

◆
∂

∂mk ,

de donde se deduce directamente el resultado.

Autor: Ana Rojo Echeburúa
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Corolario 2.5.4. Sea vm 2 T M. El campo vectorial correspondiente al sistema de ecuaciones anterior
se puede expresar como

G(vm) =
d
dt

ġ(t)
���
t=0

,

donde g es la solución del sistema —
ġ

ġ que satisface ġ = vm.

Demostración. En coordenadas podemos escribir el sistema anterior como:
⇢

ṁk = vk

v̇k = �Gk
i, jv

iv j.

Por tanto el generador en coordenadas, al que denotaremos G, se expresa de la siguiente forma:

G = vi ∂

∂xi �Gk
i, jv

iv j ∂

∂vi .

Por el teorema de existencia y unicidad, si m 2 M y v 2 TmM, existe un intervalo maximal I 2 R
alrededor del 0 y una única geodésica g : I ⇢ R�!M tal que:

⇢
g(0) = m,
ġ(0) = v.

Luego para todo vm 2 T M se tiene que:

G(vm) =
d
dt

ġ(t)
���
t=0

.

El sistema (2.2) se puede reescribir de forma más cómoda de la siguiente forma:

m̈k +Gk
i, jṁ

iṁ j = 0.

Definición 2.5.5. El flujo asociado a G se denomina flujo geodésico y está dado por ft : T M �! T M
tal que ft(m,vm) = (g(t), ġ(t)) para todo vm 2 T M y g(t) curva geodésica con g(0) = m, ġ(0) = vm.

Proposición 2.5.6. Un difeomorfismo F : (M̄, —̄)�! (M,—) es afín si y sólo si la imagen de cualquier
geodésica en M̄ es una geodésica en M.

Demostración. Supongamos que F es afín y sean g y ḡ una curvas en M̄ de forma que g = F �
ḡ . Sea Y 2 X(M) tal que Y � g = ġ. Por (2.1.3) se tiene que F⇤—ZY = —̄F⇤ZF⇤Y para todo Y,Z 2
X(M). Aplicando esta igualdad a Z =Y se tiene que F⇤—YY = —̄F⇤Y F⇤Y . Evaluando en ḡ(t) el primer
miembro se obtiene que:

T F�1 �—YY �F � ḡ(t) = T F�1(—Y�F�ḡ(t)Y ) = T F�1(—
ġ

Y ) = T F�1(—
ġ

ġ).

Evaluando en ḡ(t) el segundo miembro de la igualdad se obtiene que:

(—̄F⇤Y F⇤Y )� ḡ(t) = —̄(F⇤Y )(ḡ)F
⇤Y = —̄T F�1�Y�F�ḡ(t)(F

⇤Y ) = —̄T F�1�ġ(t)F
⇤Y = —̄ ˙̄

g(t)F
⇤Y = —̄ ˙̄

g(t)
˙̄
g(t),

ya que F⇤Y � ḡ = T F�1 �Y �F � ḡ = T F�1 �Y � g = d
dt (F

�1 � g) = dḡ

dt =
˙̄
g. Por tanto:

T F�1(—
ġ(t)ġ(t)) = —̄ ˙̄

g(t)
˙̄
g(t).

Supongamos que ḡ(t) es geodésica. Se tiene que — ˙̄
g(t)

˙̄
g(t) = 0, luego T F�1(—

ġ(t)ġ(t)) = 0. Como
F es difeomorfismo, —

ġ(t)ġ(t) = 0 y así g es también geodésica. Recíprocamente, si g es geodésica
—

ġ(t)ġ(t) = 0 y por ser F difeomorfismo T F�1(—
ġ(t)ġ(t)) = 0 y así —̄ ˙̄

g(t)
˙̄
g(t) = 0 y ḡ es geodésica.

Sistemas dinámicos con simetría
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Proposición 2.5.7. Si K es un campo vectorial de Killing, entonces la aplicación f : T M �! R
definida por f(vm) = gm(K(m),vm) para todo vm 2 T M, es constante de movimiento para el flujo
geodésico.

Demostración. Sea g(t) curva geodésica. Derivando f(ġ(t)) con respecto a t se tiene que:

d
dt
(f(ġ(t)) =

d
dt

g
g(t)(K(g(t)), ġ(t)) = g

g(t)(—ġ

K, ˙
g(t))+g

g(t)(—ġ

ġ,K(g(t))).

Por ser g(t) geodésica se tiene que —
ġ

ġ es cero, luego el segundo sumando es cero. Por (2.4.2)
tomando los campos X e Y como ġ(t) se tiene que:

LKg(ġ(t), ġ(t)) = g(—
ġ(t)K, ġ(t))+g(—

ġ(t)K), ġ(t)) = 2g(—
ġ(t)K, ġ(t)) = 0

Luego el primer sumando también se anula y así d
dt (f(ġ(t)) = 0 y por tanto f(ġ(t)) = cte.

Una aplicación de la proposición anterior se ve reflejada en el teorema siguiente:

Teorema 2.5.8. (de Clairaut) Sea g(t) = (x(t),y(t),z(t)) una curva geodésica de una superficie de
revolución M ✓ R3. Si r(t) es la función que mide la distancia de g(t) al eje de rotación y q(t)ángulo
que forma ġ(t) con el paralelo que corta en el instante t, entonces r(t)cos(q(t)) es constante.

Demostración. Nótese que la métrica es la heredada de R3, es decir: g(u,v) = u · v donde u,v son
vectores tangentes a M en el mismo punto. El grupo de rotaciones respecto al eje z

Rt =

8
<

:

0

@
cos(t) �sin(t) 0
sin(t) cos(t) 0

0 0 1

1

A
����� t 2 R

9
=

; ,

es un grupo uniparamétrico de isometrías ya que preserva tanto la variedad como la métrica — si
giramos cualquier ángulo la variedad respecto al eje z, la variedad no cambia y el ángulo formado
por dos vectores tangentes en el mismo punto tampoco. Luego tiene asociado un campo vectorial de
Killing.

Vamos a hallar ese campo de Killing:

K(g(t)) =
d
dt

Rt

���
t=0

0

@
x
y
z

1

A=

0

@
sin(t) �cos(t) 0
cos(t) �sin(t) 0

0 0 1

1

A
�����
t=0

0

@
x
y
z

1

A=

0

@
�y
x
0

1

A

K =�y
∂

∂x
+ x

∂

∂y
, que es tangente a los paralelos.

Aplicamos ahora el anterior teorema. Se tiene que g(K, ġ) = |K||ġ|cos(q(t)) es constante. Por
(2.5.2) y como |K|= (x2 +y2)

1
2 es la distancia de un punto de la curva geodésica al eje de revolución,

se tiene que r(t)cos(q(t)) es constante.

En coordenadas cartesianas en R3 la expresión de dicha constante de movimiento es:

f(ġ(t)) = g
g(t)(K(g(t)), ġ(t)) = K(g(t))ġ(t) =

�
�y x 0

�
0

@
ẋ
ẏ
ż

1

A= ẏx� ẋy.

lo que en mecánica se llama momento angular. Por tanto, el momento angular se conserva.

Autor: Ana Rojo Echeburúa
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2.6. Mecánica newtoniana.

Sea M variedad diferenciable y consideremos una función, V : M�!R, que llamaremos el poten-
cial. Definimos el gradiente de V con respecto a la métrica g como el campo vectorial gradV 2 X(M)
que satisface g(gradV (m),w) = dV (m)(w), para todo m 2M. A partir de él, planteamos el siguiente
sistema de ecuaciones diferenciales:

—
ġ

ġ =�gradV (g(t)).

Nótese que este sistema coincide con la segunda ley de newton, F = ma, donde m = 1 y F =�gradV.

Proposición 2.6.1. Si K es un campo de Killing tal que LKV = 0 entonces la función f : T M �! R
definida por f(vm) = g(K(m),vm) es constante de movimiento para el sistema dinámico anterior.

Demostración. Derivando g(K(g(t)), ġ(t)) con respecto a t:

d
dt

g(K(g(t)), ġ(t)) = g(—
ġ(t)K, ġ(t))+g(K(g(t)),—

ġ(t)ġ(t)).

Como K es campo de Killing se tiene por (2.4.2) que el primer sumando es cero. Por otro lado,
g(K(g(t)),—

ġ(t)ġ(t)) =�g(K(g(t)),gradV (g(t))) =�dV (g(t))K =�LKV (g(t)) que es cero por hi-
pótesis.
Por tanto el segundo sumando es cero y d

dt g(K(g(t)), ġ(t)) también es cero. Así g(K(g(t)), ġ(t)) es
constante.

Ejemplo: Supongamos que estamos las mismas condiciones del anterior ejemplo del teorema de
Clairaut salvo que, en este caso, suponemos que existe un campo gravitatorio V(x,y,z)=mgz. Es obvio
que LKV =0 puesto que no hay componente z en K y el gradiente de V es la proyección ortogonal de
mg ∂

∂ z

���
(x,y,z)

sobre T(x,y,z)M. Así podemos aplicar el teorema anterior y afirmar que g(K,v) es constante

de movimiento, que es la misma que la del teorema de Clairaut.

Sistemas dinámicos con simetría



Capítulo 3

Formulación geométrica de la mecánica
hamiltoniana.

En física, los sistemas mecánicos suelen ser sistemas dinámicos hamiltonianos. La geometría sim-
pléctica es una herramienta que permite encontrar simetrías en estos sistemas de manera sistemática.
En este capítulo estudiaremos la invariancia de los sistemas dinámicos hamiltonianos bajo un cierto
grupo de simetrías y veremos que tiene consecuencias importantes, como por ejemplo el teorema de
Noether. También se verá el teorema de Marsden y Weinstein, que proporciona un método para cons-
truir, a partir de una variedad simpléctica sobre la que actúa un grupo de Lie, otra variedad simpléctica
de dimensión menor con las mismas propiedades que la de partida.

3.1. Variedades simplécticas. Formas simplécticas. Simplectomorfismos.

Sea M una variedad diferenciable.

Definición 3.1.1. Una forma simpléctica w en M es una aplicación diferenciable

w : T M⇥M T M �! R

tal que wm : TmM⇥ TmM �! R define una forma bilineal en cada punto, antisimétrica, regular y
cerrada. El par (M,w) recibe el nombre de variedad simpléctica.

Nótese que w es una 2-forma, es decir, w(u,v) =�w(v,u), cerrada, es decir, dw = 0, siendo d la
diferencial exterior, y no degenerada, es decir, para todo m en M, si existe u en TmM tal que w(u,v)
para todo v en TmM, entonces u = 0.

Definición 3.1.2. Si (M,w) y (N,r) son variedades simplécticas, una aplicación diferenciable
F : M �! N se dirá simpléctica cuando F⇤r = w , es decir:

w(u,v) = rF(m)(T F(u),T F(v)), para todo u,v 2M.

Si F es difeomorfismo se dice que F es simplectomorfismo.

El ejemplo más sencillo de variedad simpléctica es R2n con coordenadas (q1, ...,qn, p1, ..., pn)
junto con la 2-forma diferencial w = dqi ^ dpi. Es de gran importancia puesto que proporciona el
modelo local para una variedad simpléctica arbitraria. Este resultado es conocido como Teorema de
Darboux.

Teorema 3.1.3. (Darboux) Si w es una forma simpléctica en una variedad diferenciable M, para
cada punto m 2M existe una carta local coordenada (U,j) en torno a m en donde la aplicación j

está dada por j(m) = (q1, ...,qn, p1, ..., pn) tal que w se expresa como:

w = dqi^dpi.

15



16 Capítulo 3. Formulación geométrica de la mecánica hamiltoniana.

Tales coordenadas (qi, p j) se denominan coordenadas canónicas. En mecánica, a qi se les llama
posiciones y a p j se les llama momentos. Para la demostración y otros detalles véanse los libros [AM],
[M].

3.1.1. Estructura simpléctica canónica en un fibrado cotangente.

Sea Q una variedad tal que M=T Q⇤. Otro ejemplo de variedad simpléctica importante es el fibrado
cotangente de una variedad. Un covector tangente a una variedad Q en un punto q es una forma lineal
sobre TqQ. El conjunto de tales covectores constituye el espacio vectorial dual del espacio tangente
y se denomina espacio cotangente a Q en q, denotándose por (TqQ)⇤. El fibrado cotangente de una
variedad es la unión de todos los espacios cotangentes en cada punto de la variedad. Si la variedad
Q representa el conjunto de posiciones posibles qi en un sistema dinámico, entonces el espacio co-
tangente representa el conjunto de posibles posiciones qi y momentos pi. Así el fibrado cotangente
describe el espacio de fases del sistema. La 1-forma de Liouville es una 1-forma definida en el espacio
contangente T Q⇤ de Q. Su derivada exterior define una forma simpléctica dando a T Q⇤ estructura de
variedad simpléctica.

Sea (U,j) una carta local de Q que induce una carta en T Q⇤. Si las coordenadas en dicha carta se
denotan (q1, ...,qn, p1, ..., pn), entonces la 1-forma de Liouville está dada de la siguiente manera:

q = pidqi.

Sin recurrir a las coordenadas, podemos definir la 1-forma de Liouville como sigue: Sea T Q⇤ el fibrado
contangente a la variedad Q y denotemos por p a la proyección p : T Q⇤ �! Q que a cada par (q, p)
le asocia q. Sea T p : T (T Q⇤) �! T Q la aplicación tangente de p . Para todo a 2 T Q⇤ definimos la
aplicación q

a

: T
a

(T Q⇤) �! R de forma que q

a

(v) = aT p(v) para todo v en T
a

(T Q⇤). La forma
simpléctica, a veces denominada 2-forma de Poincaré está dada por:

w =�dq = dqi^d pi.

3.2. Sistemas dinámicos hamiltonianos y simetrías.

3.2.1. Sistemas dinámicos hamiltonianos

Definición 3.2.1. Se llama sistema dinámico hamiltoniano a una terna (M,w,H) donde (M,w) es
una variedad simpléctica y H 2 C •(M). Esta función define un campo vectorial único dado por
iXH w = dH. A dicho campo vectorial lo llamamos campo vectorial hamiltoniano definido por H.

Propiedades 3.2.2. i) El campo XH correspondiente a H se escribe en coordenadas canónicas
como:

XH =
∂H
∂ pi

∂

∂qi �
∂H
∂qi

∂

∂ pi
.

ii) Las curvas integrales del campo vectorial XH son determinadas en coordenadas canónicas por
las ecuaciones diferenciales: (

q̇i = ∂H
∂ pi

,

ṗi =� ∂H
∂qi .

iii) H es integral primera de XH.

Demostración. i) Sean w = dqi^d pi y X = Ai ∂

∂qi +Bi
∂

∂ pi
expresados en coordenadas canónicas. De-

terminemos Ai y Bi para que este campo sea XH . Para ello ha de cumplirse que iXH w = dH. Expresando
dH y iX w en coordenadas canónicas se tiene que dH = ∂H

∂qi d pi +
∂H
∂ pi dqi y que iX w = Aid pi�Bidqi.

Igualando coeficientes se tiene que Ai = ∂H
∂qi y que Bi =� ∂H

∂ pi
y se obtiene el resultado.

Sistemas dinámicos con simetría



3.2. Sistemas dinámicos hamiltonianos y simetrías. 17

ii) Es inmediato por la proposición anterior y la definición de curva integral.
iii) Es inmediato ya que XHH = dH(XH) = w(XH ,XH) = 0 por ser w antisimétrica.

3.2.2. Simetrías en sistemas dinámicos hamiltonianos

Definición 3.2.3. Se dice que f es una simetría de w si f

⇤
w = w , es decir:

wm(u,v) = w

f(m)(Tmf(u),Tmf(v)), para todo m 2M,y para todo u,v 2 TmM

Teorema 3.2.4. Sea Y un campo vectorial con ft su flujo. ft es un grupo uniparamétrico de simetrías
de w si y sólo si la derivada de Lie de w a lo largo de Y es cero.

Demostración. Supongamos que ft es un grupo uniparamétrico de simetrías de w . Por (A.1.5) se
tiene que:f ⇤t LY w = d

dt f

⇤
t w = d

dt w = 0, y como ft es un grupo uniparamétrico de simetrías de w se
tiene que LY w es también cero. Recíprocamente supongamos que LY w = 0. Por (A.1.5) se tiene
que d

dt f

⇤
t w = 0, luego f

⇤
t w es constante con respecto a t y así f

⇤
t w = w y por tanto ft es un grupo

uniparamétrico de simetrías de w .

Definición 3.2.5. Se dice que f es una simetría de H 2 C •(M) si f

⇤H = H, es decir:

H(f(x)) = H(x).

Teorema 3.2.6. Sea Y un campo vectorial con ft su flujo. ft es un grupo uniparamétrico de simetrías
de H si y sólo si la derivada de lie de H a lo largo de Y es cero.

Demostración. Supongamos que ft es un grupo uniparamétrico de simetrías de H. Por (A.1.5) se
tiene que:f ⇤t LY H = d

dt f

⇤
t H = d

dt H = 0, y como ft es un grupo uniparamétrico de simetrías de H se
tiene que LY H es también cero. Recíprocamente supongamos que LY H = 0. Por (A.1.5) se tiene
que d

dt f

⇤
t H = 0, luego f

⇤
t H es constante con respecto a t y así f

⇤
t H = H y por tanto ft es un grupo

uniparamétrico de simetrías de H.

Definición 3.2.7. Se dice que un campo vectorial X es hamiltoniano si existe H 2 C •(M) tal que X
es el campo vectorial hamiltoniano asociado a H, es decir:

iX w = dH.

Nótese que si X es hamiltoniano 0 = d2H = d(iX w) = (diX + iX d)w = LX w. El recíproco no es
cierto globalmente, pero sí localmente:

Lema 3.2.8. (Poincaré) Si LX w = 0 existe un entono U 2M para cada punto m 2M y una función
f 2 C •(M) tal que iX w = d f .

Por esta razón a un campo X tal que LX w = 0 se le llama campo localmente hamiltoniano.

Teorema 3.2.9. Si Y 2 X(M) es hamiltoniana con función hamiltoniana f , es decir, iY w = d f y
además LY H = 0, entonces XH f = 0, es decir, f es constante de movimiento por XH.

Demostración. En efecto,

XH f = d f (XH) = iY w(XH) = w(Y,XH) =�w(XH ,Y ) =�dH(Y ) =�LY H = 0.

El resultado anterior se llama Teorema de Noether en el formalismo hamiltoniano.

Autor: Ana Rojo Echeburúa



18 Capítulo 3. Formulación geométrica de la mecánica hamiltoniana.

3.2.3. Paréntesis de Poisson

Los paréntesis de Poisson son operadores muy utilizados en la mecánica hamiltoniana y conviene
mencionarlos puesto que permiten de manera cómoda encontrar las constantes de movimiento de un
sistema. Consideramos una variedad simpléctica fija (M,w).

Definición 3.2.10. Llamaremos paréntesis de Poisson de dos funciones f ,g 2 C •(M) a :

{ f ,g}= w(Xf ,Xg).

El paréntesis de Poisson de dos funciones f ,g 2 C •(M) puede escribirse como:

{ f ,g}= Xg f =�Xf g.

Se puede expresar lo visto en el apartado de sistemas dinámicos hamiltonianos en términos del
paréntesis de Poisson.

Nótese que { f , f} = w(Xf ,Xf ) = 0. Luego para H hamiltoniano se tiene que 0 = {H,H} =
w(XH ,XH) = XH(H) = dH(XH) = LXH H. Es decir, la derivada de lie de H a lo largo de su cam-
po hamiltoniano es nula.

Podemos expresar en términos del paréntesis de Poisson el Teorema de Noether: si f es constante
de movimiento se tiene, por (3.2.9) que: { f ,H}= w(Xf ,XH) = XH f = 0.

El paréntesis de Poisson es no degenerado en el siguiente sentido: Las funciones f a las que
corresponde el campo vectorial nulo son las funciones constantes.

Teorema 3.2.11. El conjunto C •(M) queda dotado de estructura de álgebra de Lie mediante el
producto definido por el paréntesis de Poisson.

Corolario 3.2.12. Si mi(t) son las coordenadas de una curva integral del campo XH que parte de un
punto, se tiene que:

d
dt

f (mi(t)) = { f ,H}(mi(t))

Para la demostración y otros detalles véase el libro [AM].

3.3. Ecuaciones de las geodésicas como sistema hamiltoniano.

Vamos a probar que las ecuaciones de las geodésicas son hamiltonianos. Veremos primero en el
caso en el que no haya potencial y luego en el caso en el que haya potencial. En cualquier caso, la
energía cinética viene dada por inversa de la métrica.

Sea g una métrica en una variedad Q y sea T Q⇤ su variedad cotangente correspondiente. Sea
H 2 C •(T Q⇤) la función hamiltoniana dada de la siguiente forma:

H(a) =
1
2

g�1(a,a).

Expresado en las coordenadas canónicas (qi, pi),

H =
1
2

gi j(q)pi p j,

donde gi j es la inversa de la métrica gi j.

Las ecuaciones canónicas serán por tanto:
(

q̇k = ∂H
∂ pk

= gik pi,

ṗl = � ∂H
∂ql = � 1

2
∂grm

∂ql pr pm.

Sistemas dinámicos con simetría



3.3. Ecuaciones de las geodésicas como sistema hamiltoniano. 19

Derivando con respecto a t la primera ecuación se tiene:

q̈k =
dgik

dt
pi +gik ṗi =

∂gik

∂qn q̇n pi +gik ṗi

=
∂gik

∂qn q̇n pi�gik 1
2

∂grm

∂qi pr pm

=
∂gik

∂qn q̇nq̇sgis�gik 1
2

∂grm

∂qi q̇ jgr jq̇pgmp (⇤)

donde hemos usado que pi = gi jq̇ j.
Por otro lado se tiene que:

gabgbc = d

a
c .

Derivando ambos miembros:
∂gab

∂qd gbc +
∂gbc

∂qd gab = 0.

Multiplicando por gc f :
∂gab

∂qd gbcgc f +
∂gbc

∂qd gabgc f = 0

∂gab

∂qd d

f
b +

∂gbc

∂qd gabgc f = 0

∂ga f

∂qd =�∂gbc

∂qd gabgc f .

Así hemos obtenido una expresión general de la derivada parcial de la inversa de la métrica con
respecto a una coordenada qd cualquiera.
Sustituyendo en el sustraendo de (⇤) se tiene que, agrupando los términos gi j con sus inversas gi j:

�∂gbc

∂qn gibgckq̇nq̇sgis =�
∂gbc

∂qn gckq̇bq̇n.

Por otro lado:
∂grm

∂qi =�∂gb0c0

∂qi grb0gc0m.

Sustituyendo en el minuendo de (⇤) se tiene que, agrupando los términos gi j con sus inversas gi j:

gik 1
2

∂gb0c0

∂qi grb0gc0mq̇ jgr jq̇pgmp =
1
2

∂gb0c0

∂qi q̇b0 q̇c0gik.

Por tanto:
q̈k =�∂gbc

∂qn gckq̇bq̇n +
1
2

∂gb0c0

∂qi q̇b0 q̇c0gik.

Como los índices en cada sumando son independientes - se pueden repetir indices en cada sumando-
se puede identificar b0 = b y n = c0, y así:

q̈k =�∂gbc

∂qn gckq̇bq̇n +
1
2

∂gbn

∂qi q̇bq̇cgik.

De la misma forma, identificando c = i:

q̈k =�∂gbc

∂qn gckq̇bq̇n +
1
2

∂gbn

∂qc q̇bq̇cgck.

Autor: Ana Rojo Echeburúa



20 Capítulo 3. Formulación geométrica de la mecánica hamiltoniana.

Descomponiendo ∂gbc
∂qn en parte simétrica y antisimétrica respecto a lo índices c y n:

q̈k =�1
2
(
∂gnc

∂qb +
∂gbc

∂qn )gckq̇bq̇n +
1
2

∂gbn

∂qc q̇bq̇cgck

=
1
2

gck
✓
�∂gnc

∂qb �
∂gbc

∂qn +
∂gbn

∂qc

◆
q̇bq̇n

=�Gc
n,bq̇bq̇n,

donde Gc
n,b son los símbolos de Christoffel.

Así por tanto se obtiene el siguiente sistema de ecuaciones (2.5) que coincide con las ecuaciones
de las geodésicas —

ġ

ġ = 0.
Consecuencia: Nótese si el hamiltoniano es constante también lo es g(a,a), lo cual no era tan

inmediato desde el punto de vista de la geometría riemanniana.

Consideremos ahora el caso en el que el hamiltoniano tiene un potencial V (q), es decir, ahora:

H(a) =
1
2

g�1(a,a)+V (p(a)).

Expresado en coordenadas canónicas:

H =
1
2

gi j(q)pi p j +V (q).

Las ecuaciones canónicas serán por tanto:
(

q̇k = ∂H
∂ pk

= gik pi,

ṗl = � ∂H
∂ql = � 1

2
∂grm

∂ql pr pm + ∂V
∂ql .

Derivando con respecto a t la primera ecuación se tiene:

q̈k =
dgik

dt
pi +gik ṗi =

∂gik

∂qn q̇n pi +gik ṗi

=
∂gik

∂qn q̇n pi�gik
✓

1
2

∂grm

∂qi pr pm +
∂V
∂qi

◆

=
∂gik

∂qn q̇nq̇sgis�gik 1
2

∂grm

∂qi q̇ jgr jq̇pgmp�gik ∂V
∂qi .

Por tanto, comparando con el caso en el que no hay potencial, se ve que excepto por el término�gik ∂V
∂qi

la expresión es la misma. Así, los cálculos son análogos y se obtiene:

q̈k +Gk
n,l q̇

l q̇n =�gkl ∂V
∂xl .

que coincide con las ecuaciones del apartado de mecánica newtoniana (2.6).

3.4. Levantamiento completo.

Definición 3.4.1. Sea X 2 X(Q) y sea ft : Q �! Q el flujo que lo genera. La aplicación contra-
gradiente (T f

⇤
t )
�1 : T Q⇤ �! T Q⇤ es flujo en T Q⇤. Al generador infinitesimal de dicho flujo se le

denomina levantamiento completo y se denota por Xc.

Nótese que (T f

⇤
t )
�1 = T ⇤f�t .

Sistemas dinámicos con simetría
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Proposición 3.4.2. La expresión en coordenadas naturales (qi, pi) de T Q⇤ del levantamiento com-
pleto es de la siguiente forma:

Xc(q, p) = Xi(q)
∂

∂qi � p j
∂X j

∂qi (q)
∂

∂ p j
.

Demostración. Sea F : Q�! Q aplicación diferenciable con F(q) = Fi(q) ∂

∂qi expresado en coorde-
nadas qi. A partir de F se contruye su aplicación tangente en el punto q de la siguiente forma:
TqF : TqQ�! TF(q)Q con T F(q,v) = Fi(q) ∂

∂qi +
∂Fi

∂q j (q)v j ∂

∂vi con (qi,v j) coordenadas del espacio tan-
gente de Q. Se puede también construir su dual en q de la siguiente forma:
TqF⇤ : TF(q)Q⇤ �! TqQ⇤ con T F⇤(q, p) = Fi(q) ∂

∂qi + p j
∂F j

∂qi (q) ∂

∂ p j
con (qi, p j) coordenadas del espa-

cio cotangente de Q .
Si F es difeomorfismo local, entonces existe la aplicación (TqF⇤)�1 : TqQ⇤ �! T ⇤F(q)Q.

En el caso en el que F sea ft flujo de X entonces, expresando ft en coordenadas asociadas a
una carta en Q, análogamente se tiene que ft(q) = f

i(t,q) ∂

∂qi y en la correspondiente carta de T Q⇤,

T ⇤f�t(q, p) = f

i(t,q) ∂

∂qi + p j
∂f

j

∂qi (�t,q) ∂

∂ p j
.

Así podemos expresar el generador X de ft en coordenadas asociadas a una carta en Q de las
siguiente forma Xi(q) = ∂f

i

∂ t (t,q)
���
t=0

. Por tanto el generador Xc de T f

⇤
t se expresará en la correspon-

diente carta de T Q⇤ de la siguiente forma :

Xc(q, p) =
d
dt
(T f

⇤
t (q, p))

���
t=0

=
∂f

i

∂ t
(0,q)

∂

∂qi + p j
∂

2
f

j

∂qi
∂ t

(0,q)
∂

∂ p j
= Xi(q)

∂

∂qi � p j
∂X j

∂qi (q)
∂

∂ p j
.

Definición 3.4.3. Sea X̂ 2 C •(T Q⇤) definida por X̂(aq) =< aq,X(q)> para todo aq 2 T Q⇤. A esta
función se le llama momento en la dirección de X 2 X(Q).

Expresado en coordenadas, X̂(q, p) = piXi(q)

Teorema 3.4.4. X es hamiltoniano con función hamiltoniana X̂ = piXi

Demostración. Es inmedianto ya que:

iXc
w = Xid pi + p j

∂X j

∂qi dqi = d[Xi pi] = dX̂ .

Teorema 3.4.5. Sea H(a) = 1
2 g�1(a,a). Un campo X es de Killing si y sólo si LXcH = 0.

Demostración. En coordenadas H = 1
2 gi j(q)pi p j se tiene que utilizando que ∂gik

∂qn =� ∂gbc
∂qn gibgck:

LXcH =
1
2

✓
Xh ∂gi j

∂qk �gki ∂X j

∂qi �gk j ∂Xi

∂q j

◆
pi p j

=
1
2

✓
�Xk ∂gcb

∂qk gibgc j�gki ∂X j

∂qk �gk j ∂Xi

∂qk

◆
pi p j

=
1
2

✓
�Xk ∂gcb

∂qk vbvc�
∂X j

∂qk vk p j�
∂Xi

∂qk vk pi

◆

=
1
2

✓
�Xk ∂gi j

∂qk viv j�gk j
∂X j

∂qi viv j�gki
∂Xi

∂q j viv j

◆

=�1
2
LX g(v,v), con vi = gi j p j, y con p j = gi jvi.

Supongamos ques X es campo de Killing entonces LX g = 0 y asi LXcH = 0. Recíprocamente, si
LXcH = 0 se tiene que LX g = 0 y así X es de Killing.

Autor: Ana Rojo Echeburúa
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3.5. Reducción de Mardsen-Weinstein

En esta sección se expondrá el teorema de reducción de Marsden-Weinstein sin dar la demostra-
ción y se verá un ejemplo en el que se aplicará el teorema.

Teorema 3.5.1. (Marsden-Weinstein) Sea j una acción hamiltoniana libre y propia de G en una va-
riedad simpléctica (M,w) con aplicación momento equivariante J. Entonces el espacio P

µ

= J�1(µ)/G
µ

con µ valor regular tiene una única forma simpléctica caracterizada por p

⇤
µ

w

µ

= i⇤
µ

w . Además, si H
es un hamiltoniano invariante en M y H̃

µ

es el hamiltoniano inducido en J�1(µ)/G
µ

, los flujos ft y
f̃t correspondientes a XH y X̃H

µ

2 X(P
µ

) cumplen que p

µ

�ft = f̃t �p

µ

.

Para la demostración y otros detalles véase el libro [AM].
Este teorema nos permite reducir una variedad simpléctica, bajo ciertas condiciones, a una de

menor dimensión que conserva la dinámica y la estructura de la variedad de la que procede. Podemos
cocientar la antimagen de la aplicación momento por un subgrupo de simetrías resultando una variedad
que admite una estructura simpléctica tal que su pullback por la proyección coincide con la de la forma
simpléctica original restringida a la aplicación momento.

Aunque no se dé la demostración del teorema, vamos a dar unas definiciones que nos permitirán
entender el teorema.

Sea M una variedad.

Definición 3.5.2. Una acción j : G⇥M �!M se dice que es:

i) Libre si jg(m) = m para algún m 2M entonces g = e, donde e es el elemento neutro.

ii) Propia si la aplicación G⇥M �!M⇥M tal que (g,m) 7! (m,jg(m)) es propia.

Recordemos que una aplicación es propia si la antimagen de todo conjunto compacto es compacto.
Se puede ver que si G es compacto entonces la acción es propia.

Teorema 3.5.3. Sea (M,w) variedad simpléctica y sea T M⇤ su espacio cotangente. Si G es de Lie
y una acción es libre y propia, entonces el espacio cociente M/G admite una única estructura de
variedad diferenciable tal que la proyección p : M �!M/G es una submersión.

Definición 3.5.4. j es una acción simpléctica si j

⇤
g w = w , para todo g 2 G. Una acción simpléctica

f es hamiltoniana si, para cada x 2 G , el generador infinitesimal xM es Hamiltoniano.

En esta situación, denotamos J
x

a la función hamiltoniana asociada al generador xM. Por tanto se
cumple:

i
xM w = dJ

x

.

La aplicación que a cada elemento del álgebra x le asocia J
x

es lineal. Así podemos definir la aplica-
ción momento como sigue:

Definición 3.5.5. Con la notación anterior, la función J : M �! G ⇤ definida por J
x

=< J,x > se
llama aplicación momento para la acción j .

Un automorfismo interno de G es una aplicación Ig : G�!G dada por Ig(h) = ghg�1 para h 2G.
Diferenciando en la identidad se obtiene la acción adjunta:

Adg : G �! G

x 7! Adgx = Tejg(x )

Así, podemos definir la acción coadjunta de G en G ⇤ como la contragradiente de la acción adjunta:

Coadg : G ⇤ �! G ⇤

µ 7!Coadgµ := Ad⇤g�1 µ.

Dadas acciones de G en A y en B, una función f : A�! B se dice equivariante si f (gx) = g f (x) para
todo g 2 G y para todo x 2 A.

Sistemas dinámicos con simetría
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Definición 3.5.6. La aplicación momento J es equivariante si es equivariante respecto a la G-acción
j en M y la acción coadjunta en G ⇤, Coad : G⇥G ⇤ �! G ⇤.

Vamos a ver un ejemplo en el que gracias a que se cumplen todas las condiciones necesarias para
aplicar el teorema de Marsden-Weinstein, podemos reducir una variedad de dimensión cuatro a una
de dimensión dos.

Ejemplo: Elroy’s beanie.
Se consideran dos cuerpos rígidos que están unidos en un punto de tal forma que pueden girar

respecto a ese punto. Se fijan dos semiejes de refrencia. La variedad a considerar será Q = S1⇥ S1

con coordenadas (q ,j), donde q es el ángulo que forma el semieje x con el semieje de referencia
del primer cuerpo y j es el ángulo que forma el semieje de referencia del primer cuerpo con el
semieje de referencia del segundo cuerpo. Así, al girar el primer cuerpo, el segundo cuerpo se moverá
conjuntamente con él de forma que el ángulo que hay entre los dos cuerpos es siempre el mismo.

El movimiento queda descrito por el lagrangiano, que es la diferencia entre la energía cinética y
la potencial,

L =
1
2

I1q̇

2 +
1
2

I2(q̇ + j̇)2�V (j)

=
1
2
(I1 + I2)q̇

2 +
1
2

I2(q̇)
2 +2

1
2

j̇q̇ �V (j)

=
1
2
�

q̇ j̇

�✓ I1 + I2 I2
I2 I2

◆✓
q̇

j̇

◆
�V (j).

La energía cinética es la asociada a la métrica g =

✓
I1 + I2 I2

I2 I2

◆
y g�1 = 1

I1I2

✓
I2 �I2
�I2 I1 + I2

◆

es la inversa de la métrica. Las constantes I1 e I2 son los momentos de inercia del primer y segundo
cuerpo respectivamente.

Se construye el hamiltoniano correspondiente:

H =
1
2
�

p
q

p
j

�
g�1

✓
p

q

p
j

◆
�V (j),

donde (p
q

, p
j

) son los momentos asociados a (q ,j) respectivamente.
Se considera la transformación que se produce al rotar ambos cuerpos conjuntamente un ángulo

a:

f

a

: Q�! Q

(q ,j) 7! (q +a,j).

Se tiene así una acción de G = S1 sobre Q = S1⇥S1. El álgebra de Lie es G =R y su dual es también
G ⇤ = R.

Si hubiésemos considerado el conjunto de isometrías

f

a,b : Q�! Q

(q ,j) 7! (q +a,j +b ).

con b distinto de cero, el potencial no sería invariante ya que el potencial al depender de j iría
cambiando para cada par (a,b ). El ángulo entre los dos cuerpos ya no seria el mismo.

Identificando T Q con S1⇥S1⇥R⇥R y T Q⇤ con S1⇥S1⇥R⇥R, se construye la acción tangente
y cotangente respecto a la acción f

a

:

T f

a

: T Q�! T Q

(q ,j,v
q

,v
j

) 7! (q +a,j,v
q

,v
j

),
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donde (v
q

,v
j

) son las velocidades asociadas a (q ,j).

y

a

= (T f

⇤
a

)�1 : T Q⇤ �! T Q⇤

(q ,j, p
q

, p
j

) 7! (q +a,j, p
q

, p
j

),

donde (p
q

, p
j

) son los momentos asociados a (q ,j).
La acción es libre ya que si y

a

(q ,j, p
q

, p
j

) = (q ,j, p
q

, p
j

) entonces a = e, donde e es el
elemento neutro.

La acción también es propia ya que G es compacto.
¿Es el hamiltoniano invariante en Q? Hay que ver que H �y

a

= H, lo que se cumple trivialmente
ya que H no depende de q y es la única variable que cambia en la acción. Por tanto al aplicarle la
acción a H, no varía.

¿Deja la acción cotangente invariante a la forma simpléctica canónica de T Q⇤, w = dq ^ d p
q

+
dj ^d p

j

. Hay que ver que y

⇤
a

w = w .
Haciendo el pullback de la forma por la acción cotangente:

y

⇤
a

w = d(q +a)^d p
q

+dj ^d p
j

= dq ^d p
q

+dj ^d p
j

.

Sea x 2 G . Hallemos el generador del espacio cotangente T Q⇤.

xT Q⇤(q ,j, p
q

, p
j

) =
d
dt

y(q ,j,p
q

,p
j

)tx
���
t=0

=
d
dt
(q + tx ,j, p

q

, p
j

)
���
t=0

= x

∂

∂q

.

Luego si v 2 T
a

Q⇤:
⇣

i
xT Q⇤w(a)

⌘
(v) = w(xT Q⇤(a),v)

= dq ^d p
q

(xT Q⇤(a),v)+dj ^d p
j

(xT Q⇤(a),v)

= dq ^d p
q

(xT Q⇤(a),v)+dj ^d p
j

(xT Q⇤(a),v)

=< dq ,xT Q⇤(a)>< d p
q

,v >�< dq ,v >< d p
q

,xT Q⇤(a)>

+< dj,xT Q⇤(a)>< d p
j

,v >�< dj,v >< d p
j

,xT Q⇤(a)>

=< dq ,xT Q⇤(a)>< d p
q

,v >= x < d p
q

,v > .

Por tanto:
i
xT Q⇤w = d < p

q

,x >= d(x p
q

),

y se tiene que J = p
q

. Luego:

J : T Q⇤ �! R
(q ,j, p

q

, p
j

) 7! p
q

.

Para cada µ 2 G ⇤:
J�1(µ) = {(q ,j, p

q

, p
j

)|µ = p
q

}' (S1⇥S1⇥R).

Nótese que tiene dimensión tres.
Denotamos G

µ

al grupo de simetría que deja µ invariante. Pero como G = S1 es abeliano, se tiene
que G

µ

= G = S1, ya que como gh = hg se tiene que Ig es la identidad y por tanto, la acción adjunta
y la coadjunta son la identidad. y por tanto:

J�1(µ)/G
µ

⌘ J�1(µ)/G = S1⇥R= T S1⇤,

y

p

µ

: J�1(µ)' (S1⇥S1⇥R)�! J�1(µ)/G
µ

' (S1⇥R)
(q ,j, p

j

) 7! (j, p
j

).
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Por tanto ya tenemos todas las condiciones necesarias para poder aplicar el teorema de Marsden-
Weinstein y podemos asegurar que J�1(µ)/G

µ

tiene una única forma simpléctica caracterizada por:

p

⇤
µ

w

µ

= i⇤
µ

w.

Determinemos w

µ

. Esta forma ha de ser tener la expresión:

w

µ

= Adj ^d p
j

,

p

⇤
µ

w

µ

= Adj ^d p
j

.

w es de la forma dq ^d p
q

+dj ^d p
j

. i⇤
µ

p
q

= µ, luego d p
q

= 0 y por tanto:

i⇤
µ

w = dj ^d p
j

.

Como p

⇤
µ

w

µ

= Adj ^d p
j

yi⇤
µ

w = dj ^d p
j

, se tiene que A = 1, y por tanto:

w

µ

= dj ^d p
j

.

También se satisface la segunda parte del teorema y podemos asegurar que si H̃ es el hamiltoniano
inducido en J�1(µ)/G

µ

, los flujos ft y f̃t correcpondientes a XH y X̃H cumplen que:

p

µ

�ft = f̃t �p

µ

.
Hallemos H̃ y X̃H .
En J�1(µ) el momento p

q

es una constante µ . Por tanto movimiento descrito por el hamiltoniano
es el siguiente:

H̃
��
J�1(µ) =

1
2
�

µ p
j

�
g�1

✓
µ

p
j

◆
�V (j),

que no depende de q y pasa al cociente con la misma expresión.
Desarrollando:

H̃
���
J�1(µ)

=
1
2
�

µ p
j

� 1
I1I2

✓
I2 �I2
�I2 I1 + I2

◆✓
µ

p
j

◆
�V (j)

=
1

2I1I2

�
µI2� I2 p

j

�I2µ + p
j

(I1 + I2)
�✓

µ

p
j

◆
�V (j)

=
1

2I1I2
(µ2I2�2I2 p

j

µ + p2
j

(I1 + I2))�V (j).

Aplicando las ecuaciones de hamilton:
8
>><

>>:

j̇ =
∂H
∂ p

j

=
1

2I1I2
(�2I2µ +2p

j

(I1 + I2)),

ṗ
j

=�∂H
∂j

=�∂V
∂j

.

Como la forma simpléctica inducida en J�1(µ)/G
µ

es la forma simpléctica en coordenadas canó-
nicas, w

µ

= dj ^d p
j

, se tiene que X̃H = j̇

∂

∂j

+ ṗ
j

∂

∂ p
j

. Por tanto:

X̃H =
1

2I1I2
(�2I2µ +2p

j

(I1 + I2))
∂

∂j

� ∂V
∂j

∂

∂ p
j

.
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Apéndice A

Derivada de Lie y diferencial exterior.

Se recogen en este apéndice algunas propiedades de la derivada de Lie que se han usado en este
trabajo.

Dada una variedad diferenciable M, denotaremos T M al espacio tangente de M y T M⇤ al espacio
cotangente de M. Dada F : M̄ �!M la aplicación diferenciable entre las variedades M̄ y M quedarán
definidas de forma natural las aplicaciones diferenciables T F : T M̄ �! T M y T F⇤ : T M⇤ �! T M̄⇤.

Denotaremos C •(M) al conjunto de funciones diferenciables en M, X(M) al conjunto de campos
vectoriales de M y Wp(M) al conjunto de p-formas sobre M.

A.1. Relación entre sistemas dinámicos simétricos y el corchete de Lie.

Sea X 2 X(M) y ft su flujo local. Para m 2M y f 2 C •(M) se tiene que:

X(m)( f ) =
d
dt

���
t=0

( f �ft)(m) = lı́m
t!0

1
t
[( f �ft)(m)� f (m)].

Definición A.1.1. Dados X ,Y 2 X(M), se define el corchete de Lie [X ,Y ] 2X (M) por:

[X ,Y ](m)( f ) = X(m)(Y ( f ))�Y (m)(X( f ))

con f 2 C •(M).

El corchete de dos campos de vectores cumple las siguientes propiedades :

[X ,Y ] =�[Y,X ];

[X +X 0,Y ] = [X ,Y ]+ [X 0,Y ];

[lX ,Y ] = l [X ,Y ];

[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0;

[ f X ,gY ] = f X(g)Y �gY ( f )X + f g[X ,Y ];

para todo X ,Y,Z,X 0 2 X(M), l 2 R y f ,g 2 C •.

Definición A.1.2. Sean X ,Y 2 X(M) y m 2M. Se define la derivada de Lie de Y con respecto de X
como el campo de vectores sobre M que en el punto m 2M vale:

LXY (m) = lı́m
t!0

1
t
[(T

ft(m)f�t)(Y (ft(m)))�Y (m)] =
d
dt
(f ⇤t Y )(m)

���
t=0

.
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Proposición A.1.3. Sean X ,Y 2 X(M). Entonces:

LXY = [X ,Y ]. (A.1)

Demostración. Sea a(r,s) = Y (fr(m))( f �fs). Se tiene que:

a(0,s) = Y (m)( f �fs),

a(r,0) = Y (fr(m)) f = (Y f (fr(m)).

De aquí:
∂a

∂ s
(0,0) =

d
ds

Y (m)( f �fs)
���
s=0

= Y (m)(X f ) = Y (X f )(m),

∂a

∂ r
(0,0) =

d
dr

Y f (fr(m))
���
t=0

= X(Y f )(m).

Por tanto:
LXY ( f (m)) =

d
dt
(f ⇤t Y )(m) f

=
d
dt

T f�tY (ft(m))) f
���
t=0

=
d
dt

Y (ft(m))( f �f�t)
���
t=0

=
d
dt

a(t,�t)
���
t=0

=
∂a

∂ r
(0,0)� ∂a

∂ s
(0,0)

= X(Y f )(m)�Y (X f )(m)

= [X ,Y ](m) f ,

de donde LXY = [X ,Y ].

El paréntesis de Lie mide la conmutatividad de los flujos.

Proposición A.1.4. Sean X ,Y 2X(M) y ft ,yt sus flujos respectivamente. Entonces, son equivalentes
las siguientes condiciones:

i) ft �ys = ys �ft .

ii) [X ,Y ] = 0.

iii) T ft �Y = Y �ft .

Demostración. i)) iii) Se ha probado en (1.2.5) y se omite.
i)) ii)
Si ft �ys = ys �ftse tiene que Y es invariante por ft . Luego para todo m 2M se tiene que:

LXY (m) = lı́m
t!0

1
t
[(T

ft(m)f�t)(Y (ft(m)))�Y (m)] = lı́m
t!0

1
t
[Y (m)�Y (m)] = 0.

ii)) i)
Supongamos que [X ,Y ] = 0. Luego, si m 2M se tiene que:

0 = (T ys � [X ,Y ]�y�s)(m)

= [T ys �X �y�s,T ys �Y �y�s](m) = [X ,T ys �Y �y�s](m)

= lı́m
t!0

1
t
(T

y�s(m)ys)(Y (y�s(m)))� (T
y�s(m)yt)(T

y�(s+t)(m)ys)(Y (y�(t+s)(m)))

=� lı́m
t!0

1
t
(T

y�(s+t)(m)yt+s)(Y (y�(t+s)(m)))� (T
y�s(m)ys)(Y (y�s(m)))

=
d
ds

(T ys �Y �y�s)(m).
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Tomando s = 0 en (T ys �Y �y�s)(m) se tiene que (T y0 �Y �y0)(m) = Y (m). Por tanto, Y es
invariante por yt y, así ft �yt = yt �ft .

Definición A.1.5. Sea U un tensor covariante y sea X campo vectorial con ft su flujo. Se define la
derivada de Lie de U a lo largo de X por:

LXU =
d
dt

f

⇤
t U

���
t=0

.

Proposición A.1.6. Sea U tensor covariante y X ,Y1, ...,Yp campos vectoriales. Se tiene que:

(LXU)(Y1, ...,Yp) = LX(U(Y1, ...,Yp))�ÂU(Y1, ...,LXYi, ...,Xp).

Proposición A.1.7. Sea U un tensor covariante y sea X campo vectorial con ft su flujo. Entonces:

d
dt

f

⇤
t U = f

⇤
t LXU.

Como vimos en Análisis II:

Definición A.1.8. Sea U una abierto de Rn y sea w : U �! Lp(Rn) una p-forma diferencial de clase
C •. Si

w = Pi1,...,ipdxi1^ ...^dxip,

se llama diferencial exterior de w a la (p+1)-forma

dw : U �! Lp+1(Rn)

dada por
dw = (dPi1,...,ip)^dxi1^ ...^dxip

=

✓
∂Pi1,...,ip

∂x j

◆
dx j ^dxi1^ ...^dxip.

La diferencial exterior se extiende de manera natural a formas diferenciales en variedades diferen-
ciables sin mas que tomar cartas coordenadas. Se comprueba que el resultado no depende de la carta
elegida, obteniendo un operador d : Wp(M)�!Wp+1(M) que llamamos diferencial exterior en M.

Definición A.1.9. Se define la aplicación contracción para p-formas iX : Wp(M) �! Wp�1(M) de
forma que iX w(Y1, ...,Yp) = w(X ,Y1, ...,Yp), para todo X ,Y1, ...,Yp 2 X(M).

Teorema A.1.10. Para cualquier X 2 X(M) y w una p-forma en una variedad M se tiene:

LX w = iX(dw)+d(iX w).

Esta identidad suele llamarse fórmula de Cartan. Para la demostración véase el libro [M].
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