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Chapter 1

Introduction to dynamical systems with
symmetries.

The aim of this work is to find symmetries in dynamical systems. Symmetries in dynamical systems
allow us to deduce certain properties that simplify the system for better understanding of its behavior.
Although we distinguish the discrete case and the continuous case, we will be mainly interested in the
continuous case. We will introduce the concept of Lie group and Lie algebra and we will also see that
a manifold, in which a Lie group is acting, can be reduced to a smaller one and thus facilitate us the
studying of the first one.

1.1 Basic concepts.

Definition 1.1.1. A dynamical system is a tern (%, ¢, ) where 7 =R, Z, called set of times, . is a
set called the state space, and ¢ = {@,} is a family of maps, ¢,: . — . defined for t > 0 satisfying:

1 (PO = ld7
o Oy =@ 00 forallt,s>0.

When 7 = R the dynamical system will be said to be coninuous, and if & = 7, the dynamical system
will be said to be discrete.

If ¢y is defined for all t € .7 , whenever t is positive or not, and satisfies the above properties, we
say that the dynamical system is invertible. We will refer to a dynamical system indicating only the
family of maps ¢;. For a discrete dynamical system, .7 = Z, ¢, is just a t-times composition of F = ¢y,
that is called generator of the dynamical system. For a continuous dynamical system, .7 = R, and
under suitable regularity conditions, ¢ is the general solution of a system of differential equations.

Definition 1.1.2. An invertible map v : ¥ — . is a symmetry of a dynamical system @, if it satisfies:
Vo =¢oy (1.1)

forallt > 0.

Proposition 1.1.3. If y is a symmetry of a dynamical system ¢, and xo € .7, y(¢;(x0)) = ¢ (¥ (x0)).

Let (G, o) be the group of invertible maps from .7 toitself, G = {y: .¥ — |3y~ . ¥ — .7},
with the composition. The set of symmetries of a dynamical system is a subgroup of G.

\Y%



VI Chapter 1. Introduction to dynamical systems with symmetries.

1.1.1 Other notions of symmetry.

There are other more general notions of symmetries. Sometimes symmetry is accepted as a map
v: Y — % such that yo ¢, = ¢_, o y. In this case y applies orbits in orbits in the opposite
orientation. It isalso said that y: . — .% is a symmetry of ¢, if there isamap 7: ./ x T — I
such that 7(x,-) : 7 — 7 is monotone, for each x € ., and it is satisfied that yo ¢, = ¢ oy,
for all + > 0. In this case, y applies orbits in orbits but its parametrization is changed. We will not
consider here such generalizations.

1.2 Characterization in terms of the generator.

1.2.1 Discrete time systems.

Let ¢, be a discrete time dynamical system. Let F = ¢;: ./ — .% be its generator. Then an invertible
map V is a symmetry of ¢, if and only if F o y = wo F. The proof is immediate, since ¢y = Fo---oF
(z-times).

1.2.2 Continuous time systems.

Suppose the state space is a smooth manifold . = M, and that the map ¢ : R x M — M, defined by
¢ : (t,x) — ¢ (x) is differentiable €. We will denote by TM the tangent bundle of M.

Definition 1.2.1. A vector field is a differentiable map X : M — TM such that X (m) € T,,M for all
meM.

We denote by X(M) the set of vector fields in M. We say that the generator of the dynamical
system ¢ is the vector field X € X(M) defined by:

X(m) = %q&,(m) , for all m e M.

t=0%

Definition 1.2.2. An integral curve y of a vector field X is a map y: I — M such that y(t) = X (y(t))
where I is an interval in R.

If I is as big as possible, we will say that the curve is maximal.

Definition 1.2.3. A vector field it is said to be complete if all its maximal integral curves are defined
in all R and semi-complete if they are defined in [0, +o0).

Definition 1.2.4. The flow ¢, of a vector field X is the map ¢,: ¥ — . defined by ¢;(x) = % (1),
where V() is the maxiamal integral curve of X such that %,(0) = x.

We also say that ¢, is a one-parameter group generated by X.

If a vector field X is semi-complete, it defines a dynamical system and if X is complete, it defines
an invertible dynamical system. We can write %(p, (x) =X(¢(x)), forallr € Rand all x € M.

In terms of the generator of the continuous dynamical system, a symmetry is characterized by the
following property.

Proposition 1.2.5. Let ¢, a continuous dynamical system and let X be its infenitesimal generator. A

diffeomorphism y : M — M is a symmetry if and only if TyoX =X o y.

Let ¢, be a discrete dynamical system genetated by F. Supose that it has an one-parameter group
Y, of symmetries of Fi.e,

Foyy;=ysoF.

If Y is the infinisesimal generator for y; we have that TF oY =Y oF. Andif TF oY =Y oF then the
one-parameter group that is generated by Y is a one-parameter group of symmetries of F'.

Dynamical systems with symmetry



1.3. Symmetry groups and reduction. VIL

1.3 Symmetry groups and reduction.

Definition 1.3.1. A Lie group is a group G that is also a finite dimensioal differentiable manifold,
such that the two group operations of G, multiplication and inversion, are differentiable maps.

Let G be a Lie group and M a connected differentiable manifold. Consider a left action of G in M,
1.e, a differentiable map ¢ : G x M — M verifying:

i) o(e,m)=m, forall m e M, with e identity element.
ii) ©(g1,9(g2,m)) = @(g182,m), forall g;,g> € G and forallme M.

Definition 1.3.2. A Lie algebra is a vectorial space V endowed with a bilinear operation |,| such that
for a,b,c elements in the algebra we have:

e [a,b] =—[b,d], (skew symmetric),
e [a,[b,c]]+][a,[b,c]] + [c,[a,b]] =0, (Jacobi identity).

Definition 1.3.3. A vector field X on a Lie group G is called left-invariant if:

(TyLe)(X(¢) =X (gg'),  forallg,¢ €G.

The space of left-invariant vector fields is a vectorial space that we denote X.(G). If X, Y are
left-invariant vector fields on a Lie group G, [X,Y] is also a left-invariant vector field in G. Therefore
X.(G) is a Lie algebra.

If e is the identity element of a Lie group G and 7,G = ¢ is the tangent space to G in e, we define

<_
the map <—: &4 — X1 (G) such that § (g) = (T.Lg) (&), forall g € G.

Definition 1.3.4. Let G be a Lie group and & the tangent space to G in the identity element. Then

%
a Lie algebra structure [,]y exists in G such that: [E.n]y =&, ](e), for all & and 1 in 9. The
vectorial space 4 with a Lie algebra structure |, |« is called Lie algebra of a Lie group G.

Let ¢ be the Lie algebra of the Lie group G of M. For each a € ¢4 we can define a vector field
X, € X(M) through:
Xa(m) = Te@m(a),

or equivalently, if f € €<(M).

Xa(m)f = 5 flexptaym)|

The map X : 4 — X(M) associating a € ¢4 with X, is an antihomomorphism of Lie algebras, i.e:
(Xas Xp) = —Xap)-

It follows that X, is complete and the flow ¢, of X, is defined by:

o= Pexp(ta)-

Proposition 1.3.5. Let M be a manifold and G a Lie group in M. Supppose M /G has a structure of
cocient manifold. If X is a vector field such that T, 0 X = X o @g, for all g € G the a unique vector
field X € X(M/G) exists such that TmoX = X o where T: M — M /G is the projection to the
cocient. If ¢, is the flow of X then the flow of (X) is ¢,([m]) = [¢,(m)].

From now, we will focus on dynamical systems in continuous time assumimg that they are invert-
ible. If they have continuous symmetry is also assumed that the generator is complete.

Author: Ana Rojo Echeburiia
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Chapter 2

Riemannian geometry and symmetries.
Geodesics.

A physical system is often subjected to restrictions in the state space. The kinetic energy in the
constricted space is given by a riemannian metric. To study the symmetries of the dynamical system
it is necessary to study the symmetries of the metric.

2.1 Linear connections

Definition 2.1.1. A linear connection is a map which asocciates to every vector field U € X(M) an
operator Vy : X(M) — X(M) satisfying the following properties:

o Vy(aX+BY)=aVyX+BVyY, foralla,p €RandforallU,X,Y € X(M).

o ViyrovX = fVuX+gVvX, forall f,g € €=(M)and forallU,V,X € X(M).

o Vu(fX)=U(f)X+fVuX, forall fe €= (M)andforall X € X(M).

A vector field along a curve y: I — M is a differentiable map X : I — TM such that:
X(t) € TynM,

where [ is an interval of R.

Let M be a differentiable manifold with an affine connection. Let X be a vector field along a
differentiable curve y: I C R — M. We take a subinterval of / where Y is inyective. Let U be a
neighbourhood of this subinterval, we can obtain an other vector field Y € X(M) such that Y oy = X.
We will call covariant derivative of X along ¥ to the vector field that satisfies:

VX = V,Y.

Let F: M — M be a differentiable map. Two vector field X € X(M) and Y € X(M) are F-related
if TFoX =Y oF. If F is a diffeomorphism, then for every vector field X € X(M), TF~'oX oF is
also a vector field on X(M) that it is denoted by F*X. Besides, if X € X(M), TF oX o F~! is a vector
field in X(M) and it is denoted by F,.X. If f € €°(M), X (foF) = (F*X)f.

Definition 2.1.2. Let V and V be linear connections in M and M respectively. A map F : M — M it
is said to be affine if
F*VxY =VpxF*Y,  forallX,Y € ¥(M). (2.1)

IX



X Chapter 2. Riemannian geometry and symmetries. Geodesics.

2.2 Riemannian geometry. Concepts.

Definition 2.2.1. A riemannian metric g on a manifold M is a differentiable map
g:TMxyTM — R

such that g, : T,M x T,,M — R defines a scalar product on T,,M, for all m € M.

Definition 2.2.2. (pullback) Let F : M — M be a differentiable map and g a riemannian metric on
M. The pullback of g by F is the map F*g : TM X j; TM — R given by

(F*g)m(u,v) = gp ) (TaF (), TaF (v))
forallu,v € T;M an all in € M.

Definition 2.2.3. Let (M, g) be riemannian manifold and F : M — M a diffeomorphism. We say that
F is an isometry if F*g = g.

2.3 Levi-Civita connection.

Theorem 2.3.1. In a riemannian manifold (M,g) there exists a unique linear connection V which
satisfies the following two properties:

. X(g(X,2)) =g(VxY,Z)+g(Y,VxZ), metric connection,
. VxY —VyX =[X,Y], torsion free connection,
forall X,Y,Z € X(M). This connection is called the Levi-Civita connection.

Choosing a coordinate system m' the Levi-Civita connection is characterized by the Christoffel
coefficients of the metric as follows:

vaizrk J ‘. =

3 p 1 hk(agjh dgin agij)
ani dm/ Bomk T2 ’

omi  omi Imh

where g%/ is the inverse of the metric g; -

2.4 Killing vector fields.

Definition 2.4.1. Let K be a vector field on (M, g) and let ¢, be its flow. K is a Killing vector field if
each map ¢ is an isometry, i.e:

¢'8=2¢
Proposition 2.4.2. The following three statements are equivalent:
i) Avector field K in (M, g) is a Killing vector field.
ii) Zxg=0.
iii) g(VxK,Y)+g(VyK,X) =0, forallX,Y € X(M).

oK' oK/
+ 8ik g7 + 8jk G = 0-

. agij
In coordinates, K ai {
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2.5 Geodesics.

Definition 2.5.1. A curve y: I C R — M on a riemannian manifold (M, g) is a geodesic if there is
no covariant change of the tangent vector field to the curve over time, i.e :

V)’/(l) ’)/(l‘) =0.

If a curve y: I C R — M is geodesic then it is easy to see that g(7, 7) is constant.

Theorem 2.5.2. In a local coordinate system, a curve y(t) = (y' ),y Y(t)) is geodesic if and only
if it satisfies the system of differential equations % + (Fﬁj o )% %" =0.

Corollary 2.5.3. Ifv,, € TM the generator of this geodesic system is

F m) = . / )
(vm) dt Y =0
where Y is the geodesic that satisfies that y(0) = x and y(0) = v.

Definition 2.5.4. Let y be a geodesic that satisfies that y(0) = x and ¥(0) = v. We say that a geodesic
flow a the map ¢,: TM — TM that is defined by ¢;(m,v,,) = (y(t),¥(t)) for all v,, € TM.
)

Proposition 2.5.5. The map ¢ : TM — R defined by ¢ (vy,) = gm(K(m),vy,), for all vy, € TM, where
K be a Killing vector field, is a constant of motion for the geodesic flow.

Theorem 2.5.6. ( Clairaut) Let y(t) = (x(t),y(t),z(t)) be a geodesic curve of a surface of revolution
M C R3. If r(t) is the function that measures the distance of Y(t) to the rotation axis and (t)) isthe
angle that forms (t) with the parallel wich cuts it at the instant t, then r(t) cos(0(t)) is constant.

Note that the metric is inherited from R3, i.e g(u,v) = u-v where u,v are tangent vectors to M at
the same point. The group of rotations about the z axis

cos(t) —sin(t) O
R, = sin(t) cos(t) O teR 3,
0 0 1

is a one-parameter group of isometries.Then, it has an associated Killing vector field. Let’s find that
Killing vector field:

d x sin(t) —cos(t) 0 X —y
K(y(t)) = &R, N IR cos(t) —sin(r) 0O y | =1 «x
B 0 0 1 =0 \ Z 0

K=—-y— —|—xi

T ox ady’

We now apply the previous theorem. We have that g(K,¥) = |K||7| cos(0) is constant. Applying (2.5)

. 1. . . . .
and since |K| = (x? +y?)7 is the distance of the point of the geodesic curve to the revolution surface
axis, we have that r(¢) cos(8) is constant. In cartesian coordinates R3 the expresion of that constant
of motion is:

(7)) = &y (K(1(1)),7(1)) = K(y)¥() = ( =y x 0) | ¥ | =yx—i
Z

In mechanics is called angular momentum, and it is constant.

Author: Ana Rojo Echeburiia



XII Chapter 2. Riemannian geometry and symmetries. Geodesics.

2.6 Newtonian mechanics.

Let M be a differentiable manifold. We define the gradient of the potential V: M — R as the vector
field gradV € X(M) such that g(gradV (m),w) = dV (m)(w) for m € M and w € T,,M. We set the
following system of differential equations:

Vyy = —gradV (y(1)).
Note that this system matches the second Newton’s law, F = ma, where m =1 and F = —gradV.

Proposition 2.6.1. If K is a Killing vector field such that £xV = 0 then g(K(m),v) is a constant of
motion, forve TM.

Dynamical systems with symmetry



Chapter 3

Geometric formulation of hamiltonian
mechanics.

In physics, mechanical systems are usually hamiltonian dynamical systems. The symplectic geome-
try allow us to find symmetries in these systems quickly. In this chapter we will study the invariance
of the hamiltonian under a certain symmetry group and we will see that they have important conse-
quences, such as Noether’s theorem. Theorem of Marsden and Weinstein, which provides a method
for constructing, from a symplectic manifold on which a Lie group acts, another symplectic manifold
with smaller dimension with the same properties as the first one, will be also seen.

3.1 Symplectic manifolds. Symplectic forms. Symplectomorphisms.
Let M be a differentiable manifold.
Definition 3.1.1. A symplectic form ® in M is a map

O:TMxyTM — R

such that ®y, : T,M x T,,M — R defines a bilinear form in each point that is close, skew symmetric
and regular. The pair (M, ) is called symplectic manifold.

Definition 3.1.2. If (M, ®) y (N,p) are symplectic manifolds, a differentiable map F : M — N is
called symplectic when F*p = , i.e:

O (u,v) = ppn) (TF (u), TF(v)), forallu,veM.
If F is diffeomorphism we say that F is a symplectomorphism.
Locally, all symplectic manifolds are equivalent.

Theorem 3.1.3. (Darboux): Let @ be a symplectic form on a differentiable manifold M.
For each point m € M, a local coordinate chart (U, Q) exists arround m in which the map @ is given
by (m) = (q',...,q", p1,..., pn) such that @ is expressed as:

o = dq' Ndp;.

Such coordinates (¢', p ;) are called canonical coordinates. In mechanics, g' are called positions
and p; are called momenta.

XIII



X1V Chapter 3. Geometric formulation of hamiltonian mechanics.

3.1.1 The canonical symplectic structure on the contangent bundle.

Let Q be a manifold such that M = TQ*. A tangent covector to a manifold Q at a point ¢ is a linear
form on 7,Q. The set of such covectors is the dual vector space of the tangent space and is called
cotangent space of Q in ¢ and it is denoted by (7,Q)*. The cotangent bundle of a manifold is the
union of all cotangent spaces at every point of the manifold. If the manifold Q represents the set of
possible positions ¢g; in a dynamical system, then the cotangent space represents the set of possible
positions ¢g; and momenta p;. Thus the cotangent bundle describes the phase space of the system. The
Liouville 1-form is a 1-form defined on the cotangent space T Q* of Q.

Let (U, @) alocal chart Q which induces a chart on TQ*. If the chart coordinates are denoted by
(q',...,4", p1,..., Pn), then the Liouville 1-form is given by 8 = p;dg'. Its exterior derivative defines a
symplectic form endowing 7 Q* with a symplectic manifold structure. Without using the coordinates,
we can define the Liouville 1-form as follows: Let 7Q* be the cotangent bundle to the manifold Q
and we denote 7 the projection map 7 : TQ* — Q such that every pair (g, p) is associated to g. Let
Tr:T(TQ") — TQ the tangent map of 7. For all o € TQ* we define the map 0y: To(TQ*) — R
such that 6, (v) = aTx(v) for all vin T (T Q*). The symplectic form, called Poincaré 2-form is given
by @ = —d6 = dq' Ndp;.

3.2 Hamiltonian dynamical systems and symmetries.

Definition 3.2.1. A hamiltonian dynamical system is a tern (M, ®,H) where (M, ®) is a symplectic
manifold and H € €(M). H defines a unique vector field given by ix, ® = dH.

Proposition 3.2.2. i) The vector field Xy corresponding to H it is written in canonical coordinates
as follows:
dJH 0 JH 4d
Xp=—————
api aql aql Ipi

ii) The integral curves of the vector field Xy are determined in canonical coordinates by the equa-

tions: 5
N H
ql = dn:’
{ oH

pi:_aqi-

iit) H is a constant of motion.
Definition 3.2.3. We say that ¢ is a symmetry of @ if §* @0 = @, i.e:
O (14, V) = @) (T (1), T (v)), forallm € M,and for all u,v € T,,M.

Theorem 3.2.4. Let Y be a vector field with flow ¢,. ¢, is a one-parameter group of symmetries of @
if and only if the Lie derivative of @ along Y is zero.

Definition 3.2.5. We say that ¢ is a symmetry of H if *H = H, i.e, H(¢(x)) = H(x).

Theorem 3.2.6. Let Y be a vector field let ¢, be his flow. ¢, is a one-paremeter group of symmetries
of H if and only of the Lie derivative of H along Y is zero.

Definition 3.2.7. We say that X € X(M) is a hamiltonian vector field if there exists H € € such that
X is the hamiltonian vector field associated to H, i.e, iy = dH.

Note that if X is hamiltonian 0 = d’H = d(ix®) = (dix + ixd)® = Zx®. The reciprocal is not
true generally but it is true locally:

Lemna 3.2.8. (Poincaré) If £x @ = 0 there exists a neighborhood U € M of each point m € M and a
function f € € such that ix® = df.

Dynamical systems with symmetry



3.3. Geodesic equations as a hamiltonian system. XV

A vector field X such that Zx @ = 0 is called locally hamiltonian.

Theorem 3.2.9. IfY € X (M) is hamiltonian with hamiltonian function f, i.e, iy® =d f and ZyH =0,
then Xy f =0, i.e, f is a constant of motion for Xy.

Pl"OOf XHf = df(XH) = in()(XH) = CO(Y,XH) = —O)(XH,Y) = —dH(Y) = —ng =0. O

This result is called Noether’s theorem in the hamiltonian formalism.

3.2.1 Poisson brackets.
Definition 3.2.10. We will denote Poisson bracket of two functions f,g € € (M) by :
{f.8} =Xy, X,).
The Poisson bracket of two functions f,g € (M) can be written as follows:
{fag} :ng: —ng-

Theorem 3.2.11. The set € (M) is endowed with Lie algebra structure by the product defined by the
Poisson brackets.

If m'(¢) are the coordinates of a integral curve of the vector field Xj:
d , .
g [ (0) = {f, H}(m'(r))

3.3 Geodesic equations as a hamiltonian system.

Let g be a metric on a manifold Q and let TQ* be its cotengent manifold. Let H € €~ (T Q") be
the hamiltonian function that can be written as H(ct) = $g~!(a, ). Expressed in canonical coordi-
nates (¢', p;), H = % 87(q)pip;, where g is the inverse of the metric g;;.The canonical equations are
therefore:

koo 9H ik

¢ = Gy = &b

: oH 1dg™
Pro= Ty = _Qagiqlprpm-

Deriving and computing in the above equations we will get the following result:

1 dg dgpe 0
k- ck | nc bc 8bn bon b -n
q9 = 2g < aqb aqn aqc q4 n,bq q .

Where F;! » are the Christoffel simbols.

So we get the following system of differential equations ¢* + I bq'b ¢" =0, which matches with the
geodesic equations Vy¥ = 0. Note that the hamiltonian is constant of motion and g(o, ) is constant,
which was not as immediate as it was from the point of view of Riemann’s geometry.

Now consider the case in which the hamiltonian has a potential V(g). The hamiltonian will be
written as H(ot) = 3¢~ !(at, &) +V(n(a)) and in canonical coordinates H = 3¢/ (q)pip;+V (q). The
canonical equations are therefore:

I oH ik

¢ = g = &b

. JH 1dg™ v
PL= o = —jagiqurpm‘f‘afq/-

Deriving and computing in the above equations we will get the following result:

o
ox!’

which matches with the equations of the newtonian mechanics section V;y = —gradV'.

..k ko .l - k
G +1,94" =—¢g

Author: Ana Rojo Echeburiia



XVI Chapter 3. Geometric formulation of hamiltonian mechanics.

3.4 Complete lift.

Definition 3.4.1. Let X € X(Q) and let ¢;: Q — Q be its flow. The map (T¢;)~': TQ* — TQ* is
a flow in T Q*. We will say that the infinitesimal generator of this flow is the complete lift of X and we
will denote it by X°.

Proposition 3.4.2. The expression in natural coordinates (q',p;) in TQ* of the complete lift is as
follows:

: : 0 0X/ 0
X“(q,p) :XI(Q)Tqi —Pigg (9)

3171"

Definition 3.4.3. Let X € €~ (T Q") given by X(a;) =< @,X(q) > for all oy € TQ* . This map is
called momentum in the direction of X € X(Q).

In coordinates, X (¢, p) = piX'(q).
Proposition 3.4.4. X is hamiltonian with hamiltonian function X = p;X'.

Proof. Indeed:

X’/ . : 5
-dq' = d[X'pi| =dX.

ixew = X'dp;+ p; 97

Proposition 3.4.5. Let H(o) = Lg™! (o, ). X is a Killing vector field if and only if £x<H = 0.

—2
Proof. In coordinates, H = % §"(q)pip; we have that:

1 dgii oX/ X' 1
SxeH = ~ (—Xk 84]1’1 Vivj 8k Vi _gkiaquiVj> =—5%s(vy),

2

with v = g'/p; and p; = g;jv'.
If X is a Killing vector field then Zxg = 0 and then ZxH = 0. And if %.H = 0, then Zxg =0
and X is a Killing vector field. O

3.5 Mardsen-Weinstein reduction.

Theorem 3.5.1. (Marsden-Weinstein) Let ¢ be a free and proper hamiltonian action of G in a sym-
plectic manifold (M, @) with equivariant momentum map J. Then the space Py = J~'(u)/G,, with u
regular value has a unique symplectic form characterized by T, @, = i @. Besides, if H is an invari-
ant hamiltonian in M and Hu is the induced hamiltonian in J~! (1)/Gy, the flows ¢ and &, of Xy and

Xy, € X(Py) satisfy that my o ¢, = ¢ omy.

This theorem allows us to reduce a symplectic manifold, under certain conditions, to an other whit
lower dimension wich preserves the dynamics and structure of the manifold from which it comes. An
example where we can apply this teorem is in the Elroy’s Beanie problem: Two rigid bodies that are
joined at a fixed point are considered. Two reference semi-axes are set. The manifold to consider is
Q = S' x S! with coordinates (8, ), where 8 is the angle between the x semi-axis with the semi-axis
of reference of the first body and ¢ is the angle between a reference semi-axis of the first body with
the reference axis of the second body. The angle between the first and the second body is always the
same. In this problem we can reduce a manifold of dimension four - §' x §! x R x R - to a manifold
of dimension two - §* x R.
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Prologo.

La presencia de simetrias en un sistema dindmico implica ciertas propiedades que permiten sim-
plicar dicho sistema y entender mejor su comportamiento. En este trabajo estudiaremos la teoria de la
simetria en sistemas dindmicos y la aplicaremos a casos concretos.

De manera informal, podemos entender una simetria como lo que se repite, lo reiterativo, lo que
vuelve a ser igual, es decir, si aplicamos una simetria a un objeto, este queda de la misma forma. Asi
pues, podriamos hablar de simetrias de un sistema como su conjunto de invariancias, es decir, que al
aplicar una transformacién de simetria sobre un sistema, el sistema queda inalterado.

Se definiré el concepto de sistema dindmico asi como el de simetria de un sistema dindmico y se
caracterizardn las simetrias de los sistemas dindmicos distinguiendo el caso en el que sean discretas
o continuas. Estaremos interesados en las simetrias continuas y serdn las que trataremos a lo largo
de todo el trabajo. También se introducird el concepto de grupo de Lie y dlgebra de Lie, asi como
el de algebra de Lie de un grupo de Lie. Interpretando el conjunto de estados como una variedad
diferenciable, se verd que si la cocientamos por un grupo de Lie de simetrias, ésta puede reducierse a
la variedad cociente, obteniendo un sistema dindmico en una variedad de dimensioén menor.

En muchas ocasiones un sistema fisico se ve sometido a restricciones en el espacio de estados. La
energia cinética en el espacio restringido viene dada por una métrica riemanniana. Por tanto, estaremos
interesados en estudiar el flujo geodésico asociado a dicha métrica. Para estudiar las simetrias del
sistema dindmico se procede a estudiar las simetrias de la métrica. Los grupos uniparamétricos de
isometrias son simetrias continuas de la métrica y por tanto estaremos interesados en estudiarlos junto
con sus campos vectoriales asociados, los campos de Killing.

Un tipo de sistema dindmico muy comun en mecénica cldsica es el de los sistemas dindmicos
hamiltonianos. La geometria simpléctica nos permite encontrar simetrias en estos sistemas de una
manera sistematica. Estudiaremos la invariancia de los hamiltonianos bajo un cierto grupo de sime-
trias y veremos que tiene consecuencias importantes, como por ejemplo el teorema de Noether. Este
teorema dice que cada simetria continua de un sistema dindmico implica que alguna magnitud del
sistema se conserva, y que, cada magnitud conservada tiene una correspondiente simetria. También
se verd el teorema de Marsden y Weinstein, que proporciona un método para construir, a partir de
una variedad simpléctica sobre la que actda un grupo de Lie, otra variedad simpléctica de dimensién
menor con las mismas propiedades que la de partida.

En un apéndice se han recogido diversas propiedades de la derivada de Lie que hemos utilizado
frecuentemente. Aunque su estudio también ha formado parte de este trabajo, se ha preferido separar-
las del texto principal para una exposicion més fluida.
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Capitulo 1

Introduccion a los sistemas dinamicos
con simetria.

La presencia de simetrias en un sistema dindmico implica ciertas propiedades que permiten sim-
plicar dicho sistema dindmico. En este capitulo se presentard la nocion de sistema dindmico asi como
la de simetria de un sistema dindmico y se caracterizardn las simetrias de los sistemas dindmicos en
el caso en que estas sean discretas o sean continuas. También se introducird el concepto de grupo de
Lie y élgebra de Lie, asi como el de dlgebra de Lie de un grupo de Lie. Interpretando el conjunto
de estados como una variedad diferenciable, se vera que si la cocientamos por un grupo de Lie de
simetrias de un sistema dindmico, éste puede reducierse a la variedad cociente, obteniendo un sistema
dindmico en una variedad de dimensién menor.

1.1. Conceptos basicos.

Definicion 1.1.1. Un sistema dindmico es una terna (., ¢,.7 ) donde 7 = R,Z, denominado con-
junto de tiempos, . es un conjunto, denominado espacio de estados, y ¢ = {¢,;} es una familia de
aplicaciones, ¢;: .~ — . definida parat > 0 satisfaciendo:

[ | ¢0 = ld7
" @5 =@ 0@ paratodot,s > 0.

Cuando 7 = R se dird que es un sistema dindmico en tiempo continuo, mientras que si 7 = 7. se
dird que el sistema dindmico es en tiempo discreto.

Si ¢, estd definido para todo t € .7 (positivo o no) y satisface las propiedades anteriores, se dird
que es invertible. Por comodidad se referird a un sistema dindmico indicando tinicamente la familia
de aplicaciones ¢, de la terna que define el sistema dindmico.

En el caso de un sistema dinamico en tiempo discreto, .7 = Z, la aplicacion ¢, es simplemente la
composicién t-veces de la aplicacion F' = ¢, que se denomina generador del sistema dindmico. En el
caso de un sistema dindmico en tiempo continuo, .7 = R, bajo condiciones adecuadas de regularidad
(que se precisaran mas adelante) la aplicacion ¢, es la solucion general de un sistema de ecuaciones
diferenciales.

En cualquier caso, nétese que un sistema dindmico equivale a la accién del semigrupo aditivo
T ={t € Tt > 0} sobre el espacio de estados .#. La 6rbita de un punto x € . es el conjunto
ordenado {¢(x)|r € T }.

Definicion 1.1.2. Se dice que una aplicacion invertible y : ¥ — . es una simetria de un sistema
dindmico ¢, si satisface

Vo =¢oy (1.D)
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para todo t > 0.
Una simetria aplica 6rbitas en 6rbitas.

Proposicion 1.1.3. Si y es una simetria de un sistema dindmico ¢; y xo € . entonces la imagen por
Y de la drbita de xy es igual a la orbita de y(x), es decir, Y (¢ (x0)) = ¢ (¥ (x0)).

Demostracion. Se obtiene inmediatamente al aplicar (1.1) a xg. O]

Proposicion 1.1.4. Consideremos el grupo (G,o) de las aplicaciones invertibles de . en si mismo,
G={y: ¥ — 7|3y . . — .7}, conla composicion de aplicaciones. El conjunto de simetrias
de un sistema dindmico es un subgrupo de G.

Demostracion. Hay que ver que S = {y € G|y es simetria de ¢, } es un subgrupo de G.

En primer lugar, contiene al elemento neutro de G, id: . — .%, ya que trivialmente se tiene
que:ido ¢, = ¢y oid.

Por otro lado, hay que ver que si Y es simetria entonces W~ es simetria. A partir de yo ¢, = ¢, oy
componiendo con y~! por la izquierda se obtiene ¢; = w~! o ¢ o y. Componiendo ahora con y~!
por la derecha se llegaa ¢, 0 y~' = y~!o ¢, por lo que w~! es simetria.

Por tltimo hay que ver que si Y1, Y, son simetrias entonces Y o Y, es simetria. Componiendo
Yy 0 ¢y = ¢, 0y con Y por la izquierda se obtiene que Y o Y o ¢ = Y o ¢ o Y, y componiendo
W1 0 ¢, = @ o Y1 con W, por la derecha se obtiene que Y o ¢, o W = ¢, o Y o Y, de donde se obtiene
Vioyro¢ = yio¢oyr =g oyioy,. u

1.1.1. Otras nociones de simetria.

Existen otras nociones més generales que la considerada aqui. En ocasiones se acepta como sime-
tria una aplicacion y: .¥ — . tal que Yo ¢, = ¢_, o y. En este caso la aplicacién y aplica 6rbitas
en Orbitas con la orientacion contraria. Con mas generalidad, se dice que y: . — . es un simetria
de ¢, si existe una aplicacién 7: . x J — 7 tal que 7(x,-) : . — 7 es mondétona, para cada
x € .7,y se satisface Yo ¢ = ¢y ;o Y, para todo r > 0. En este caso, y aplica orbitas en Orbitas,
como conjuntos, aunque cambia su parametrizacion.

No se considerardn aqui dichas generalizaciones.

1.2. Caracterizacion en términos del generador.

Veamos cémo se puede caracterizar una simetria de un sistema dindmico dependiendo de si éste
es discreto o continuo.

1.2.1. Sistemas en tiempo discreto.

Se considera un sistema dindmico ¢; en tiempo discreto, =7,y sea F = ¢: ¥ — . su
generador. Entonces una aplicacién invertible ¥ es una simetria de ¢ siy s6losi Foy = yoF. La
demostracion es inmediata, ya que ¢ = F o---oF (¢-veces).

1.2.2. Sistemas en tiempo continuo.

Como se ha mencionado anteriormente los sistemas dindmicos en tiempo continuo estdn rela-
cionados con los sistemas de ecuaciones diferenciales ordinarias. Supongamos que el espacio de
estados es una variedad diferenciable . = M, y que la aplicacién ¢ : R x M — M, definida por
¢ : (t,x) — ¢ (x) es diferenciable de clase €. De tonaremos por TM al fibrado tangente a M.

Definicion 1.2.1. Un campo vectorial es una aplicacion diferenciable X : M — TM tal que para
todo m € M se tiene que X (m) € T,,M.

Sistemas dinamicos con simetria
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Se denota por X(M) al conjunto de los campos de vectores sobre M.
Llamamos generador infinitesimal del sistema dindmico ¢, al campo vectorial X € X(M) definido
por:
X(m) = %q&t(m) ot para todo m € M.
Definicion 1.2.2. Una curva integral 'y de un campo vectorial X es una aplicacion y e R: I — M
tal que 7(t) = X (y(t)) e I es un intervalo de R.

Diremos que una curva integral ¥ es maximal si su dominio de definicién / es el mayor posible en
el sentido de la inclusion.

Definicion 1.2.3. Un campo vectorial se dice completo si todas sus curvas integrales maximales estdn
definidas en todo R y semicompleto si lo estdn para [0,+co).

Definicion 1.2.4. Sea 7, una curva integral maximal del campo vectorial X tal que ¥,,(0) = m para
todo m € M. El flujo de un campo vectorial es una aplicacion ¢,: M — M definida por ¢;(m) = ¥, (¢).

A ¢, también se le llama grupo uniparamétrico generado por X.

Si un campo X es semicompleto, define un sistema dindmico y se X es completo, define un sistema
dindmico invertible.

Se sigue de la definicién de generador que:

d
E@(m) =X(¢,(m)), para todo ¢ € R y para todo m € M.

En términos del generador del sistema dindmico en tiempo continuo una simetria queda caracte-
rizada por la siguiente propiedad.

Proposicion 1.2.5. Sea ¢; un sistema dindmico en tiempo continuo y sea X su generador infinitesimal.
Un difeomorfismo Y : M — M es una simetria siy solo si TyoX =X oy.

Demostracion. Aplicando (1.1) a un punto cualquiera m € M y tomando la derivada en t = 0™ se
tiene, por un lado

= Tuy(X(m)),

=01

d d
E(‘l’o ) (m) ’t:w = Ty, (m) ‘I/E(I)t(m)
y por otro
— X(y(m)).

d
E((Pt oy)(m)

Se llega asi a T,y (X (m)) = X (y(m)).
Reciprocamente, supongamos que 7y o X = X o . Probaremos que ¢, o y o ¢_, = y. Derivando
¢, o W o @_, con respecto de ¢ en un punto cualquiera m € M se tiene que:

t=0*"

d
E(‘Pto Voo ,)(m)=X(¢poyod )(m)—TudoTuyoXod (m).

Por otro lado, derivando con respecto a s la igualdad ¢; o ¢; = @5 o ¢; en un punto cualquiera m € M
se tiene que 7,0, (X (m)) = X (¢ (m)). Por tanto T,,¢; o T,y o X 0 ¢_;(m) = Ty 0 X oyo (¢_;)(m) =
X(¢oyod_,)(m)y %(tpt oyo¢_,)(m)=0.Asi ¢ oyod_, es constante respecto a t. Tomando, por
ejemplo, t =0 en ¢ o Yo @_; se obtiene Y y asi ¢; o wo d_, = y para todo t > 0. O

Consideremos un sistema dindmico en tiempo discreto generado por F. Supdngase que se tiene
un grupo uniparamétrico Y, de simetrias de F, es decir,

Foyy;=y;0oF.

Si Y es el generador infinitesimal de W, entonces TF oY =Y o F. Reciprocamente, si se cumple
TFoY =Y oF entonces el grupo uniparamétrico generado por Y es un grupo uniparamétrico de
simetrias de F.

Autor: Ana Rojo Echeburia
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1.3. Grupos de simetria y reduccion.

Definicion 1.3.1. Un grupo de Lie es un grupo G que es, al mismo tiempo, una variedad diferenciable
de dimension finita, de modo que las dos operaciones de grupo de G, multiplicacion e inversion:
» 4: GXG— Gtal que (x,y) —xy: GXG — G,

» 1: G— G tal que x — x~ ',

son aplicaciones diferenciables.

Sea G un grupo de Lie y M una variedad diferenciable. Consideramos una accidén por la izquierda
de G en M, es decir, una aplicacion diferenciable ¢ : G x M — M verificando:

i) ¢(e,m)=m, paratodom € M, con e elemento neutro.

ii) @(g1,9(g2,m)) = @(g182,m), paratodogi,g2 € Gy paratodom € M.

Las aplicaciones @, : M — M 'y @, : G — M definidas por @,(m) = ¢(g,m) = @,(g) =g-m
para todo g € Gy m € M son diferenciables. Ademas @, = idy y @g, © g, = Pg,g,, Y PO tanto @,
es el inverso de @, que serd un difeomorfismo.

Definicion 1.3.2. Un digebra de Lie es un espacio vectorial V dotado de una operacion bilineal
interna [,] tal que para a,b,c elementos del dlgrebra se tiene que:

» [a,b] = —[b,a], (antisimétrica),
w [a,[b,c]]+[b,[c,a]] + [c,|a,D]] =0, (identidad de Jacobi).

Definicion 1.3.3. Un campo de vectorial X sobre un grupo de Lie G se dice invariante a la izquierda
Si
(TyLg)(X(g") =X (gg'),  paratodog.g' €G.
El espacio de los campos invariantes a la izquierda es un espacio vectorial que denotaremos por
X.(G). Se puede ver que si X e Y son campos invariantes a la izquierda, el corchete de Lie [X,Y]

también es un campo invariante a la izquierda.
Si e el elemento neutro de un grupo de Lie Gy T,G = ¥ el espacio tangente a G en e, se define la

aplicacién <—: & — X1 (G) tal que & (g) = (T.L,)(&), paratodo g € G.
Definicion 1.3.4. Sea G un grupo de Lie y ¢4 el espacio tangente a G en el neutro. Entonces,existe

%
una estructura de dlgebra de Lie [,]4 sobre G tal que [E,N]g = [ & ,%] (e), paratodo & ynen 9. Al
espacio vectorial 4 dotado de la estructura de dlgebra de Lie [,]y se le denomina el dlgebra de Lie
del grupo de Lie G.

Sea ¢ el algebra de Lie del grupo de Lie G de M. Para cada a € ¢ podemos definir un campo
vectorial X, € X(M) mediante:

Xa(m) = T, 0u(a),
o lo que es lo mismo, si f € (M)

Xu(m)f = & flexpleaym)|

A este campo lo llamaremos campo fundamental. La aplicacién X : 4 — X(M) que llevacadaa € 4
a X, es un antihomomorfismo de dlgebras de Lie, es decir:

(Xas Xp] = —Xap)-
Se deduce que X, es completo y que el flujo ¢, de X, estd dado por:

o= Pexp(ia)-

Sistemas dinamicos con simetria
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Proposicion 1.3.5. Sea M variedad y G un grupo de Lie que actiia en M y supongamos que M /G tiene
estructura de variedad cociente. Si X es un campo vectorial tal que T 9, 0X = X o0 @,, para todo g € G
entonces existe un vinico campo vectorial X € X(M/G) tal que TmoX =X o7t siendo w: M — M /G
la proyeccién sobre el cociente. Si ¢, es el flujo de X entonces el flujo de (X) es ¢,([m]) = [¢,(m)].

En lo que sigue en este trabajo, nos centraremos en sistemas dindmicos en tiempo continuo. Su-
pondremos que son invertibles, es decir, que el campo vectorial que lo genera es completo. Ademas
cuando tengan simetria continua se supondrd también que el generador es completo.

Autor: Ana Rojo Echeburia






Capitulo 2

Geometria riemanniana y simetrias.
Geodésicas.

En muchas ocasiones un sistema fisico se ve sometido a restricciones en el espacio de estados.
La energia cinética en el espacio restringido viene dada por una métrica riemanniana. En ausencia de
otras fuerzas las trayectorias del sistema dindmico estdn descritas por las geodésicas de dicha métrica.
Por tanto, es interesante estudiar las simetrias de los flujos geodésicos en variedades riemannianas.
Para ello se procede a estudiar las simetrias de la métrica. Los grupos uniparamétricos de isometrias
son simetrias continuas de la métrica y por tanto estaremos interesados en estudiarlos junto con sus
campos vectoriales asociados, los campos de Killing.

2.1. Conexiones lineales

Sea X(M) el conjunto de campos vectoriales de una variedad diferenciable M.

Definicion 2.1.1. Una conexion lineal es una aplicacion que a cada campo vectorial U € X(M) le
asocia un operador Vi : X(M) — X(M) satisfaciendo las siguientes propiedades:

s Vy(aX+BY)=aVyX+BVyY, paratodo o, € Ry paratodoU,X,Y € X(M).
» VigiovX = fVyX+gVyX, paratodo f,g € €= (M) y paratodo U,V,X € X(M).
» Vu(fX)=U(f)X+fVyX, paratodo f € €M)y paratodoX € X(M).

Definicion 2.1.2. Un campo vectorial a lo largo de una curva y: I C R — M con I intervalo de R
es una aplicacion X : I — TM diferenciable tal que:

X(t) € TypM.
Dos tipos relevantes de estos campos son los siguientes:
. SiX € X(M), X oyesun campo vectorial a lo largo de la curva 7.
. El campo C;—Z’ = Y tangente a la curva 7.

Sea M una variedad diferenciable con una conexion lineal. Sea X un campo vectorial a lo largo
de una curva diferenciable y: I C R — M. Tomamos un subintervalo de I donde ¥ es inyectiva. Sea
U un entorno de ese trozo de curva. Se halla otro campo vectorial Y en ese entorno de tal forma que
Y oy=X. Se denomina derivada covariante de X a lo largo de 7 al campo vectorial que cumple que:

VX = V,Y.

7
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Sea F: M — M una aplicacién diferenciable. Dos campos vectoriales X € X(M) y Y € X(M)
se dicen F-relacionados si TF oX =Y oF. Si F es un difeomorfismo, entonces para cualquier campo
vectorial Y € X(M), TF~'oY o F es también un campo vectorial en X (M) que se denota F*Y. Ademds
TFoXoF~! es también es un campo vectorial en X(M) y se denota F.X. Si f € ¢ (M) entonces
X(foF) = (FX)f.

Definicion 2.1.3. Sean V y V conexiones lineales sobre M y M respectivamente. Una aplicacion
F : M — M se dice afin si

F*VxY =VpxF*Y,  paratodoX,Y € X(M). 2.1)

Una transformacion afin de (M, V) es un difeomorfismo afin de M en si mismo. El conjunto de
transformaciones afines de una variedad M conexa es un grupo de Lie de dimension menor o igual
n? + n. Para mds detalles véase el libro [KN].

2.2. Geometria riemanniana. Conceptos.

Definicion 2.2.1. Una métrica de Riemann g sobre una variedad M es una aplicacion diferenciable
g:TMxyTM — R

tal que g, : TyM x T,,M — R define un producto escalar sobre T,,M, para todo m € M.

Definicién 2.2.2. (pullback) Sea F : M — M una aplicacién diferenciable y g una métrica de Rie-
mann sobre M. Se llama pullback de g por F a la aplicacion F*g : TM x; TM — R dada por

(F*8)im(u,v) = gr () (Tak (), TuF (v))
para todo u,v € TzM y todo m € M.

Recordemos que una inmersion es una aplicacion diferenciable entre variedades cuyo rango coin-
cide en todos los puntos con la dimension de la variedad de partida. Si F' es una inmersion entonces
F*g es una métrica riemanniana en M.

Definicion 2.2.3. Sea (M, g) una variedad de Riemann 'y F : M — M un difeomorfismo. Se dice que
F es una isometria si F*g = g.

Definicién 2.2.4. Una simetria de una variedad riemanniana (M, g) es una isometria de (M,g) en si
misma.

Ejemplo: Sea M un elipsoide en R? con la métrica inducida. Los giros de 7y las reflexiones
respecto a los planos ecuatoriales son simetrias. Si dos semiejes son iguales, cualquier giro alrededor
del otro eje es una simetria.

Se puede ver que el grupo de isometrias es grupo de Lie de dimensién menor o igual que n? +n
con n la dimension de M conexa y que su dlgebra de Lie son los campos de Killing completos. Para
mds detalles véase el libro [M].

2.3. Conexion de Levi-Civita.

El siguiente resultado se suele denominar teorema fundamental de la geometria riemanniana.

Teorema 2.3.1. En una variedad riemanniana (M, g) existe una vinica conexion lineal V que satisface
las dos siguientes propiedades:

Sistemas dinamicos con simetria
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. X(g(X,2)) =g(VxY,Z)+g(Y,VxZ), conexion métrica.
. VxY —VyX =[X,Y], conexion libre de torsion.
para todo X,Y,Z € X(M). Dicha conexion se denomina conexion de Levi-Civita.

Demostracion. Unicidad
Usando las propiedades exigidas a la conexién de Levi-Civita se tiene que:

8(VxY,Z) = Xg(Y,Z) — g(Y,VxZ) = Xg(Y,Z) = g(Y,VzX + [X, Z]) =
=Xg(V.Z) - Zg(X,Y) +g(VzY,X) +g(Y,[Z,X]) =
=Xg(Y.Z) —Zg(X,Y) +g(VyZ+[Z,Y].X) +g(Y,[Z,X]) =
=Xg(Y.Z) - Zg(X,Y)+Yg(Z,X) —g(Z,VyX) —g(X,[Y,Z]) +g(V,[Z,X]) =
=Xg(V.Z)+Yg(Z,X)—Zg(X,Y)+g(Z,[X,Y])+g(Y,[Z,X]) —g(X,[Y,Z]) — g(VxY,Z).
Por tanto:

g(VXY7Z) = %(Xg(Y,Z)+Yg(Z,X) *Zg(va)ng(Z’ [X,Y])+g(Y, [Z,X])*g(X,[Y,Z])).

Esta identidad, denominada indentidad de Koszul, se cumple para cualquier conexion métrica libre de
torsién, y como g es no singular para todo m € M, V es tnica.

Existencia
SeanX eY € X(M) fijosy u : X(M) — € (M) definida por:

E(Xg(Y,Z)—i-Yg(Z,X) _Zg(X7Y)+g(Zv [XvY])+g(Y7 [ZvX])_g(X7[Y7Z]))‘

nz)=5

Es fécil, pero tedioso, probar que se cumple que u(X +Y) = pu(X)+u(Y) y que u(fX) = f(u(X))
paratodo X, Y € X(M)y f € €= (M).
Asi u es lineal y por tanto, existe un inico campo vectorial VxY en M tal que:

g(VxY,Z)=u(Z), paratodoX,Y,Zc X(M).
0

Eligiendo un sistema de coordenadas locales ( ), la conexién de Levi-Civita queda caracterizada
por los coeficientes de Christoffel de la métrica F ; de la siguiente forma:

o 0
Vs~ Tigm

(98]/1 3gih agij)

Iy = -
omi  dmi  Imh”’

2

donde g/ es la inversa de la métrica g; ;.
La conexién de Levi-Civita es natural respecto a las isometrias, es decir, para la conexion de
Levi-Civita una isometria es una transformacién afin.

Proposicion 2.3.2. Si F : M —> M es isometria, entonces F es afin:

F*VyxY = Vp.xF*Y, para todoX Y € X(M).

Autor: Ana Rojo Echeburia



10 Capitulo 2. Geometria riemanniana y simetrias. Geodésicas.

Demostracion. Sean U,V,W € X(M) campos F-relacionados con X,Y,Z € X(M), respectivamente.
Por ser F isometria se tiene que:

Ug(V,W) =Ug(F*Y,F*Z) =U(g(Y,Z) o F) = F*Ug(Y,Z) = Xg(Y,Z).
Andlogamente se tiene que Vg(W,U) =Yg(Z,X) y que Wg(U,V) = Zg(X,Y). Por otro lado:
3(U,[V,W)) = g(F*U,F*[V,W]) = g(F*U, [F*V,F*W]) = g(X, [Y,Z)).

Andlogamente se tiene que (W, [U,V]) = g(Z,[X,Y]) y que g(V,[W,U]) = g(Y¥,[Z,X]). Teniendo en
cuenta la identidad de Koszul:

G(F*VyV,F*W) =g(VxY,Z)oF = g(Vp-yY,F*W) = g(VpyF*V,F*W),

para todo W € X(M), luego: )
F*VyV =VpyF*V.

Por tanto F es afin. O

2.4. Campos de Killing.

Un campo de Killing K es un campo vectorial en una variedad de Riemann (M, g) que define un
grupo uniparamétrico de isometrias.

Definicion 2.4.1. Sea K un campo vectorial en (M, g) y sea ¢, su flujo. Se dice que K es un campo de
Killing si cada aplicacion ¢, es una isometria, es decir:

¢'8=2g
Proposicion 2.4.2. Las siguientes tres afirmaciones son equivalentes:
i) Un campo vectorial K en (M, g) es de Killing.
ii) Yxg=0.
iii) g(VxK,Y)+g(VyK,X) =0, paratodoX,Y € X(M).

Demostracion. i) < ii)
Sea ¢ el grupo uniparamétrico asociado a K campo de Killing. Derivando ¢,"g con respecto de t
y usando (A.1.6):

d
(Pt 8= (Pt-‘rsg sl (Pt o;g= (])t ds ¢s g= 0 kg

ds

Supongamos primero que K es de Killing. Entonces, ¢,"g = g. Por tanto se tiene que ; d)t % g=0
y asi Zx g = 0. Reciprocamente, supongamos ahora que Zx g = 0. Entonces ¢, Zxg = 0y asi se tiene
que %q),* g = 0. Por tanto ¢,"g constante respecto a ¢, luego ¢, g = g y asi K es de Killing.

ii) < iii)
Utilizando (A.1.7), para todo X,Y € X(M) se tiene:

Zxg(X.Y) =Kg(X,Y)—g([K,X],Y)—g(X,[K,Y])
=g(VkX,Y)+g(X,VkY)—g(VkY =V, K.Y) — g(X,VkY — VyK)
=g(VkX,Y) +g(X,VkY) —g(VkX,Y) +8(VxK,Y) —g(X,VkY) +g(X,VyK)
=g(VxK,Y) +g(VyK,X),

de donde se deduce el resultado.

Sistemas dinamicos con simetria



2.5. Geodésicas 11

Expresemos en coordenadas Zxg. Usando otra vez (A.1.7) se tiene que para X = % y para

Y:%:
w2 0N (2 AN (e 2] 2N_.(2 [
K8\ omi ami ) = 8\ omi ami ) T8\ |" omi | ami ) T E\Omi” |7 om
dgi oK' oK’
_ pkY8ij . .
K ak+glkamj+gjkami7

puesto que {K i]: {9 K}—_gLK:_LK’ J

> Imk omk? Ews dmk 9m!
P K de Killing si y s6lo si se ti | i6n Kk 280 4 g, K. 9K
or tanto, K es campo de Killing si y sélo si se tiene que la expresién K*=>% + gi 55 + 8k 5,7 S€
anula.

2.5. Geodésicas

Sea (M, g) una variedad de Riemann de dimensién n.

Definicién 2.5.1. Una curva y: I C R — M sobre una variedad de Riemann (M, g) es una geodésica
si no hay variacion covariante del campo tangente a la curva a largo del tiempo, es decir:

Vj/(t) ')/(l) =0.

Lema 2.5.2. Si una curva y:1 C R — M es geodésica entonces el vector tangente en un punto de
la misma tiene mddulo constante, es decir:

g(7,7) = cte.

Demostracion. Derivando g(7, 7) respecto a t:

jt( (7:7) = &(Vy)¥(1), 1) + 87, Vyy 7(t)) = 28(Vyy 7(1),7) = O,

ya que por ser y: I C R — M geodésica, V) 7(t) = 0.Por tanto g(7,7) es constante. O

b
Esta constante ¢ es proporcional a la longitud de arco s ya que s = / g(v(t),y()) dt = (b—a)c.

a
Se dice que 7y estd parametrizada por un pardmetro natural. Si ¢ = 1 estd parametrizada por la longitud
del arco.

Proposicién 2.5.3. En un sistema de coordenadas locales, una curva y(t) = (y'(t),...,¥(t)) es geo-
désica si y solo si satisface el sistema de ecuaciones diferenciales:

d>¥*

dy dy!
‘L yardr 22)

r -
+( i © dt dt

Demostracion. Expresando 7 en coordenadas, 7 = ¥ a‘?n,-. Se tiene la siguiente expresion:

d>v 9
\% =7V
Yy ylaa ’}/a i ’}/ yjaml aml + dt2 amk

mi

a’yt 9 >y dy dy’\ 9

= vy , = k. .

=77 o amt+ dr> dm* <dt2 (e )dt dr > amk’

de donde se deduce directamente el resultado. OJ

Autor: Ana Rojo Echeburia



12 Capitulo 2. Geometria riemanniana y simetrias. Geodésicas.

Corolario 2.5.4. Sea v,, € TM. El campo vectorial correspondiente al sistema de ecuaciones anterior
se puede expresar como
d
I'lvp) = —
() dt =0
donde vy es la solucion del sistema V¥ que satisface Y = v,.

Demostracion. En coordenadas podemos escribir el sistema anterior como:

{m" =k
ko Tk g
VA Fi’jvv.

Por tanto el generador en coordenadas, al que denotaremos I, se expresa de la siguiente forma:

T
F:Vaixi—rl"jvlv]aivi.

Por el teorema de existencia y unicidad, si m € M y v € T;,,M, existe un intervalo maximal / € R
alrededor del 0 y una tnica geodésica y: I C R — M tal que:

{?((%)):—’ff

Luego para todo v, € TM se tiene que:

El sistema (2.2) se puede reescribir de forma mas cémoda de la siguiente forma:
ik +TF i = 0.

Definicion 2.5.5. El flujo asociado a T se denomina flujo geodésico y estd dado por ¢;: TM — TM
tal que ¢;(m,vy,) = (y(t),7(t)) para todo v, € TM y ¥(t) curva geodésica con y(0) = m, 7(0) = vy,

Proposicién 2.5.6. Un difeomorfismo F : (M,V) — (M, V) es afin si y solo si la imagen de cualquier
geodésica en M es una geodésica en M.

Demostracién. Supongamos que F es afin y sean Yy 7 una curvas en M de forma que Yy = F o
y.Sea Y € ¥(M) tal que Y oy = . Por (2.1.3) se tiene que F*V,Y = Vp:zF*Y para todo Y,Z €
X(M). Aplicando esta igualdad a Z = Y se tiene que F*VyY = Vpy F*Y. Evaluando en ¥(¢) el primer
miembro se obtiene que:

TF'oVyYoF o(t) = TF ' (Vyorey)¥) = TF ' (VyY) = TF ' (V4).

Evaluando en ¥(¢) el segundo miembro de la igualdad se obtiene que:

(?F*YF*Y) o ')_/(l') == v(F*Y)(J-/)F*Y - 6TF’IOYOFO}7(Z) (F*Y) - ﬁTF*lO’}"(I)F*Y - VJ—,(t)F*Y - V?(t)?(t)’
yaque F*Y o =TF~'oYoFoy=TF 'oYoy=4(F'oy)= 9 = y. Por tanto:

TF ' (Vi 1) = 67(;)7’(0-

Supongamos que ¥(¢) es geodésica. Se tiene que Vi,(t)?(t) =0, luego TF *I(V)-,(t) ¥(t)) = 0. Como
F es difeomorfismo, V) 7(t) = 0y asi y es también geodésica. Reciprocamente, si y es geodésica

V) ¥(t) =0y por ser F difeomorfismo TF~! (Vyn¥(t)) =0y asi @7@}/(0 =0y ¥ es geodésica. -

Sistemas dinamicos con simetria
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Proposicion 2.5.7. Si K es un campo vectorial de Killing, entonces la aplicacion ¢ : TM — R
definida por ¢ (vy,) = gm(K(m),vy) para todo v,, € TM, es constante de movimiento para el flujo
geodésico.

Demostracion. Sea y(t) curva geodésica. Derivando ¢ ((¢)) con respecto a ¢ se tiene que:

O0H0)) = < 8y (KOO, 7(0) = 810 (VK- 700)) + 80 (Vi K ((0).

Por ser y(f) geodésica se tiene que V;7 es cero, luego el segundo sumando es cero. Por (2.4.2)
tomando los campos X e Y como 7(7) se tiene que:

Lgg(7(1),7(1)) = 8(Vyn K, 7(1)) + &(Vy) K), (1)) = 28(Vy K, 7(2)) = 0

Luego el primer sumando también se anula y asi % (¢(7(z)) =0y por tanto ¢ (7(r)) = cte. O

Una aplicacién de la proposicion anterior se ve reflejada en el teorema siguiente:

Teorema 2.5.8. (de Clairaut) Sea y(t) = (x(t),y(t),z(t)) una curva geodésica de una superficie de
revolucion M C R3. Si 1(t) es la funcién que mide la distancia de y(t) al eje de rotacion y 0 (t)dngulo
que forma Y(t) con el paralelo que corta en el instante t, entonces r(t)cos(0(t)) es constante.

Demostracién. Nétese que la métrica es la heredada de R, es decir: g(u,v) = u-v donde u,v son
vectores tangentes a M en el mismo punto. El grupo de rotaciones respecto al eje z

cos(t) —sin(t) O
R, = sin(f) cos(t) O teR,
0 0 1

es un grupo uniparamétrico de isometrias ya que preserva tanto la variedad como la métrica — si
giramos cualquier dngulo la variedad respecto al eje z, la variedad no cambia y el dngulo formado
por dos vectores tangentes en el mismo punto tampoco. Luego tiene asociado un campo vectorial de
Killing.

Vamos a hallar ese campo de Killing:

J x sin(t) —cos(t) 0 X -y
K(y(t)) = ERI ol = cos(t) —sin(t) 0O y | =1 «x
B 0 0 1 =0 \ Z 0
K= —, que es tangente a los paralelos.

- _ya +xay7
Aplicamos ahora el anterior teorema. Se tiene que g(K,¥) = |K||7|cos(6(t)) es constante. Por

(2.5.2) y como |K| = (x> + yz)% es la distancia de un punto de la curva geodésica al eje de revolucion,
se tiene que r(7) cos(0(z)) es constante. O

En coordenadas cartesianas en R la expresién de dicha constante de movimiento es:
X
O(7(t)) = &y (K(¥(1), 7)) =K(y@))y(t) = ( =y x 0 )| y | =yx—an.
z
lo que en mecdnica se llama momento angular. Por tanto, el momento angular se conserva.

Autor: Ana Rojo Echeburia



14 Capitulo 2. Geometria riemanniana y simetrias. Geodésicas.

2.6. Mecanica newtoniana.

Sea M variedad diferenciable y consideremos una funcién, V: M — R, que llamaremos el poten-
cial. Definimos el gradiente de V con respecto a la métrica g como el campo vectorial gradV € X(M)
que satisface g(gradV (m),w) = dV (m)(w), para todo m € M. A partir de él, planteamos el siguiente
sistema de ecuaciones diferenciales:

Vyy = —gradV(y(1)).
Notese que este sistema coincide con la segunda ley de newton, F = ma, dondem =1y F = —gradV.

Proposicion 2.6.1. Si K es un campo de Killing tal que £xV = 0 entonces la funcion ¢ : TM — R
definida por ¢ (v,,) = g(K(m),vy,) es constante de movimiento para el sistema dindmico anterior.

Demostracion. Derivando g(K(7y(t)),¥(t)) con respecto a t:

%g(K(Y(f))J’(f)) =8(Vy K, 7(t)) + g(K(¥(1)), Vyy 7(2))-

Como K es campo de Killing se tiene por (2.4.2) que el primer sumando es cero. Por otro lado,
8(K(Y(1), Vi 1(1)) = —8(K(1(1)), grad V (y(1))) = —dV (y(1))K = =LV (¥(¢)) que es cero por hi-
potesis.
Por tanto el segundo sumando es cero y 4 g(K(¥(t)),7(t)) también es cero. Asi g(K(¥(t)),7(t)) es
constante.

O

Ejemplo: Supongamos que estamos las mismas condiciones del anterior ejemplo del teorema de
Clairaut salvo que, en este caso, suponemos que existe un campo gravitatorio V(x,y,z)=mgz. Es obvio
que ZxV=0 puesto que no hay componente z en K y el gradiente de V' es la proyeccion ortogonal de

d
92| (e2) , .
de movimiento, que es la misma que la del teorema de Clairaut.

sobre T{,,.yM. Asi podemos aplicar el teorema anterior y afirmar que g(K,v) es constante

x,),2)

Sistemas dinamicos con simetria



Capitulo 3

Formulacion geométrica de la mecanica
hamiltoniana.

En fisica, los sistemas mecdnicos suelen ser sistemas dindmicos hamiltonianos. La geometria sim-
pléctica es una herramienta que permite encontrar simetrias en estos sistemas de manera sistematica.
En este capitulo estudiaremos la invariancia de los sistemas dindmicos hamiltonianos bajo un cierto
grupo de simetrias y veremos que tiene consecuencias importantes, como por ejemplo el teorema de
Noether. También se verd el teorema de Marsden y Weinstein, que proporciona un método para cons-
truir, a partir de una variedad simpléctica sobre la que actda un grupo de Lie, otra variedad simpléctica
de dimension menor con las mismas propiedades que la de partida.

3.1. Variedades simplécticas. Formas simplécticas. Simplectomorfismos.

Sea M una variedad diferenciable.
Definicion 3.1.1. Una forma simpléctica @ en M es una aplicacion diferenciable
O:TMxyTM — R

tal que Wy, : TpyM X T,M — R define una forma bilineal en cada punto, antisimétrica, regular y
cerrada. El par (M, @) recibe el nombre de variedad simpléctica.

Nétese que @ es una 2-forma, es decir, 0 (u,v) = —®(v,u), cerrada, es decir, dw = 0, siendo d la
diferencial exterior, y no degenerada, es decir, para todo m en M, si existe u en T,,M tal que ®(u,v)
para todo v en 7;,M, entonces u = 0.

Definicion 3.1.2. Si (M, ®) y (N, p) son variedades simplécticas, una aplicacion diferenciable
F : M — N se dird simpléctica cuando F*p = @, es decir:

O (u,v) = Pp(m)(TF(u), TF(v)), paratodou,v € M.
Si F es difeomorfismo se dice que F es simplectomorfismo.

El ejemplo més sencillo de variedad simpléctica es R?" con coordenadas (ql,...,q", DlseeeyPn)
junto con la 2-forma diferencial @ = dg' A dp;. Es de gran importancia puesto que proporciona el
modelo local para una variedad simpléctica arbitraria. Este resultado es conocido como Teorema de
Darboux.

Teorema 3.1.3. (Darboux) Si @ es una forma simpléctica en una variedad diferenciable M, para
cada punto m € M existe una carta local coordenada (U, @) en torno a m en donde la aplicacion @
estd dada por (m) = (¢',...,q", p1,..., pn) tal que ® se expresa como:

o = dq' Ndp;.

15



16 Capitulo 3. Formulacion geométrica de la mecanica hamiltoniana.

Tales coordenadas (¢', p;) se denominan coordenadas canénicas. En mecdnica, a ¢’ se les llama
posiciones y a p; se les llama momentos. Para la demostracion y otros detalles véanse los libros [AM],
[M].

3.1.1. Estructura simpléctica canénica en un fibrado cotangente.

Sea Q una variedad tal que M=T Q*. Otro ejemplo de variedad simpléctica importante es el fibrado
cotangente de una variedad. Un covector tangente a una variedad Q en un punto g es una forma lineal
sobre T, Q. El conjunto de tales covectores constituye el espacio vectorial dual del espacio tangente
y se denomina espacio cotangente a Q en ¢, denotdndose por (7,0)*. El fibrado cotangente de una
variedad es la unién de todos los espacios cotangentes en cada punto de la variedad. Si la variedad
Q representa el conjunto de posiciones posibles g; en un sistema dindmico, entonces el espacio co-
tangente representa el conjunto de posibles posiciones ¢; y momentos p;. Asi el fibrado cotangente
describe el espacio de fases del sistema. La 1-forma de Liouville es una 1-forma definida en el espacio
contangente TQ* de Q. Su derivada exterior define una forma simpléctica dando a T Q* estructura de
variedad simpléctica.

Sea (U, ¢) una carta local de Q que induce una carta en 7Q*. Si las coordenadas en dicha carta se
denotan (q1 yees " D1y -, Pn), entonces la 1-forma de Liouville estd dada de la siguiente manera:

0= p,-dqi.

Sin recurrir a las coordenadas, podemos definir la 1-forma de Liouville como sigue: Sea T Q* el fibrado
contangente a la variedad Q y denotemos por 7 a la proyeccién & : TQ* — Q que a cada par (g, p)
le asocia g. Sea Tw : T(TQ*) — TQ la aplicacion tangente de 7. Para todo o € TQ* definimos la
aplicacion 6y : To(TQ*) — R de forma que 64 (v) = aT w(v) para todo v en T, (7TQ*). La forma
simpléctica, a veces denominada 2-forma de Poincaré estd dada por:

o =—d0 =dq' Ndp;.

3.2. Sistemas diniAmicos hamiltonianos y simetrias.

3.2.1. Sistemas dinamicos hamiltonianos

Definicion 3.2.1. Se llama sistema dindmico hamiltoniano a una terna (M,®,H) donde (M,®) es
una variedad simpléctica y H € €=(M). Esta funcion define un campo vectorial tinico dado por
ix, ® = dH. A dicho campo vectorial lo llamamos campo vectorial hamiltoniano definido por H.

Propiedades 3.2.2. i) El campo Xy correspondiente a H se escribe en coordenadas candnicas
como:

ii) Las curvas integrales del campo vectorial Xy son determinadas en coordenadas candnicas por
las ecuaciones diferenciales:
i OH
q = ‘95" ’
H

pi:_aqi-

iii) H es integral primera de Xy.

aip expresados en coordenadas candénicas. De-
1

Demostracion. i) Sean ® = dq' Adp; y X = A’é%,- + B;
terminemos A’ y B; para que este campo sea Xy . Para ello ha de cumplirse que ix, @ = dH. Expresando
dH y ix ® en coordenadas candnicas se tiene que dH = 3; dpi+ g;’i dg; y que ixw = Aldp; — Bidq'.

Igualando coeficientes se tiene que A’ = g—:{ yque B, = —3—;’_ y se obtiene el resultado.

Sistemas dinamicos con simetria
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ii) Es inmediato por la proposicién anterior y la definicién de curva integral.
iit) Es inmediato ya que XyH = dH (Xy) = @(Xu,Xn) = 0 por ser @ antisimétrica.

3.2.2. Simetrias en sistemas dinamicos hamiltonianos

Definicion 3.2.3. Se dice que ¢ es una simetria de @ si ¢* @ = o, es decir:
O (4, V) = @y () (T (), T (v)), para todo m € M,y para todo u,v € T,,M

Teorema 3.2.4. Sea Y un campo vectorial con ¢, su flujo. ¢, es un grupo uniparamétrico de simetrias
de w siy solo si la derivada de Lie de ® a lo largo de Y es cero.

Demostracion. Supongamos que ¢; es un grupo uniparamétrico de simetrias de @. Por (A.1.5) se
. . _ d _ d _ . s, . . .

t%ene que:p Lyw = E(P.,*a) = 70 =0,y como ¢ es un grupo uniparamétrico de simetrias de a) se
tiene que £y @ es también cero. Reciprocamente supongamos que .Zy @ = 0. Por (A.1.5) se tiene
que %q)t*w =0, luego ¢, w es constante con respecto a ¢t y asi ¢,"®w = @ y por tanto ¢ es un grupo
uniparamétrico de simetrias de ®. O

Definicion 3.2.5. Se dice que ¢ es una simetria de H € €=(M) si 9*H = H, es decir:

Teorema 3.2.6. Sea Y un campo vectorial con ¢, su flujo. ¢, es un grupo uniparamétrico de simetrias
de H siy solo si la derivada de lie de H a lo largo de Y es cero.

Demostracion. Supongamos que ¢, es un grupo uniparamétrico de simetrias de H. Por (A.1.5) se

tiene que: ¢, £yH = % VH = %H =0, y como ¢; es un grupo uniparamétrico de simetrias de H se

tiene que £y H es también cero. Reciprocamente supongamos que -ZyH = 0. Por (A.1.5) se tiene
que %@*H =0, luego ¢,*H es constante con respecto a ¢t y asi ¢H = H y por tanto ¢, es un grupo
uniparamétrico de simetrias de H. O

Definicion 3.2.7. Se dice que un campo vectorial X es hamiltoniano si existe H € €= (M) tal que X
es el campo vectorial hamiltoniano asociado a H, es decir:

ix(l):dH.

Nétese que si X es hamiltoniano 0 = d>H = d(ix ) = (dix +ixd) 0 = Zx®. El reciproco no es
cierto globalmente, pero si localmente:

Lema 3.2.8. (Poincaré) Si Zx @ = 0 existe un entono U € M para cada punto m € M y una funcion
f €€ (M) tal que ixw = df.

Por esta razén a un campo X tal que Zx @ = 0 se le llama campo localmente hamiltoniano.

Teorema 3.2.9. Si Y € X(M) es hamiltoniana con funcion hamiltoniana f, es decir, iy® = df y
ademds £yH = 0, entonces Xy f = 0, es decir, | es constante de movimiento por Xy.

Demostracion. En efecto,

XHf = df(XH) = iy(l)(XH) = CO(Y,XH) = —(D(XH,Y) = —dH(Y) = —ng =0.

El resultado anterior se llama Teorema de Noether en el formalismo hamiltoniano.

Autor: Ana Rojo Echeburia
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3.2.3. Paréntesis de Poisson

Los paréntesis de Poisson son operadores muy utilizados en la mecdnica hamiltoniana y conviene
mencionarlos puesto que permiten de manera cémoda encontrar las constantes de movimiento de un
sistema. Consideramos una variedad simpléctica fija (M, ).

Definicion 3.2.10. Llamaremos paréntesis de Poisson de dos funciones f,g € € (M) a :

{f.g} = 0(Xs,X,).

El paréntesis de Poisson de dos funciones f,g € ¢*°(M) puede escribirse como:

{fr8} =X = —Xps.

Se puede expresar lo visto en el apartado de sistemas dindmicos hamiltonianos en términos del
paréntesis de Poisson.

Nétese que {f,f} = @(Xy,Xy) = 0. Luego para H hamiltoniano se tiene que 0 = {H,H} =
oO(Xy,Xy) = Xy(H) = dH(Xy) = %x,H. Es decir, la derivada de lie de H a lo largo de su cam-
po hamiltoniano es nula.

Podemos expresar en términos del paréntesis de Poisson el Teorema de Noether: si f es constante
de movimiento se tiene, por (3.2.9) que: {f,H} = 0(X7,Xy) = Xuf =0.

El paréntesis de Poisson es no degenerado en el siguiente sentido: Las funciones f a las que
corresponde el campo vectorial nulo son las funciones constantes.

Teorema 3.2.11. El conjunto ¢ (M) queda dotado de estructura de dlgebra de Lie mediante el
producto definido por el paréntesis de Poisson.

Corolario 3.2.12. Si m'(t) son las coordenadas de una curva integral del campo Xy que parte de un
punto, se tiene que:

d i _ i
o (0) = {f, H}(m'())

Para la demostracion y otros detalles véase el libro [AM].

3.3. Ecuaciones de las geodésicas como sistema hamiltoniano.

Vamos a probar que las ecuaciones de las geodésicas son hamiltonianos. Veremos primero en el
caso en el que no haya potencial y luego en el caso en el que haya potencial. En cualquier caso, la
energia cinética viene dada por inversa de la métrica.

Sea g una métrica en una variedad Q y sea TQ* su variedad cotangente correspondiente. Sea
H € €=(T Q") la funcién hamiltoniana dada de la siguiente forma:

H(a) = 38 (@)

Expresado en las coordenadas canénicas (¢', p;),
H = 58"(q)pip;,
donde g es la inversa de la métrica g;;.

Las ecuaciones canénicas serdn por tanto:

.k oH ik
¢ = G = &
: JH 1 dg™
pr = 97 = —QagT/Per-

Sistemas dinamicos con simetria
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Derivando con respecto a ¢ la primera ecuacion se tiene:

o dg™* agh ik
§' == pite pi= P ——q"pi+g" pi
gk 13g
= aqnq Pi— 2 a i PrPm
agik s zkl a rm

=50 e 8" 350 4'816"gmp (%)

donde hemos usado que p; = g;;¢’.
Por otro lado se tiene que:

8" gpe = 8.
Derivando ambos miembros: 20 e
Sg7 8t 8qu g’ =0.
Multiplicando por g¢/:
%‘i;j gne8’ + %gﬁf g”’g’ =0

ag 6f+8gbc ab c

f—
dq? dq? =0

agaf — agbé ab cf

dq? dq?
Asi hemos obtenido una expresidon general de la derivada parcial de la inversa de la métrica con
respecto a una coordenada ¢¢ cualquiera.
Sustituyendo en el sustraendo de (x) se tiene que, agrupando los términos g"/ con sus inversas g;;:

8gbc ib ck 98he k -b
2" - 8°8°4"q’gis = — 2" - 844"

Por otro lado:
agrm — _ agblc‘/ 12/4
aq aq

Sustituyendo en el minuendo de (*) se tiene que, agrupando los términos g/ con sus inversas g; it

m

. 1ag /Al / / . la /Al /
ik L 985V pp Imj o .p 8v'c v . ik
8§ g & 8 et ey =575
Por tanto: 5 5
) 2 1080 1 o i
qk: ancgckqbqn_*_z 81 c lk‘

Como los indices en cada sumando son independientes - se pueden repetir indices en cada sumando-
se puede identificar ¥’ = by n=(/, y ast:

k I8be ck b n+laglm b€ ik

q" 2794 1
De la misma forma, identificando ¢ = i:
..k:_agbc ck~b.n+ lagbnqb .c ck
aq" 2 dg°
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20 Capitulo 3. Formulacion geométrica de la mecanica hamiltoniana.

Descomponiendo 5 g”‘ en parte simétrica y antisimétrica respecto a lo indices ¢ y n:

1 dgne  9gb 19g, .
"k:_, nc C Ck b -n n.b.c ck
2(8qh 8q) qq+2acq

_1 ck <_agnc agbc+agbn>q.bq.n

28 dgb  dq" | Iq°

_r‘C bq q )

donde I}, , son los simbolos de Christoffel.

Asi pbr tanto se obtiene el siguiente sistema de ecuaciones (2.5) que coincide con las ecuaciones
de las geodésicas Vy7 = 0.

Consecuencia: Nétese si el hamiltoniano es constante también lo es g(o, &), lo cual no era tan
inmediato desde el punto de vista de la geometria riemanniana.

Consideremos ahora el caso en el que el hamiltoniano tiene un potencial V (g), es decir, ahora:
|-
H() = 387! (0, 0) +V (m(a))
Expresado en coordenadas candnicas:

1 ..
H= ig” (@)pir;+V(q).

Las ecuaciones candnicas seran por tanto:

ko _ JH __ ik
¢ = g = &b

s oH _ 10g™ v
PLo= o4 T TaogbrPmt g

Derivando con respecto a ¢ la primera ecuacion se tiene:

4 dg* o 98" -
¢ =g pit g pi= 5 it g
g . w(19g™ av
= dq nqnpi—gl ETCI,-Per'F Tq‘
ag* wldg™ ; w9V

108 i, e ik OV
= 5108 8" 5% a8 s~ 8" 5

Por tanto, comparando con el caso en el que no hay potencial, se ve que excepto por el término g’k ‘W

la expresion es la misma. Asi, los cdlculos son andlogos y se obtiene:

av
kl
G +T,4'q" = —¢ e

que coincide con las ecuaciones del apartado de mecanica newtoniana (2.6).

3.4. Levantamiento completo.

Definicion 3.4.1. Sea X € X(Q) y sea ¢,: Q — Q el flujo que lo genera. La aplicacion contra-
gradiente (T¢)~': TQ* — TQ* es flujo en TQ*. Al generador infinitesimal de dicho flujo se le
denomina levantamiento completo y se denota por X°.

Nétese que (T¢;) "' =T*¢_,.

Sistemas dinamicos con simetria
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Proposicion 3.4.2. La expresion en coordenadas naturales (q',p;) de TQ* del levantamiento com-
pleto es de la siguiente forma:

. 9 oxi 9
J

Demostracion. Sea F: Q — Q aplicacién diferenciable con F(q) = F "(q)a%,- expresado en coorde-

nadas ¢'. A partir de F se contruye su aplicac10n tangente en el punto g de la siguiente forma:
T,F: T,0 — TpQcon TF(q,v) = F’(q) 7T 3'; (q)vj% con (g',v/) coordenadas del espacio tan-
gente de Q. Se puede también construir su dual en ¢ de la siguiente forma:
T,F*: Tpy) Q" — T,Q" con TF*(q, p) = Fi(q)aiqi +pj %Z,.j (q)a%j con (¢', p;) coordenadas del espa-
cio cotangente de Q .
Si F es difeomorfismo local, entonces existe la aplicacién (T,F*)~': T,0* — T;(q)Q.

En el caso en el que F sea ¢ flujo de X entonces, expresando ¢, en coordenadas asociadas a

una carta en Q, andlogamente se tiene que ¢ (gq) = (})"(t,q)a%,- y en la correspondiente carta de T Q*,

* d d
T*9-1(q,p) = 9/(1,q) 3 + P 5 (—1,9) 75
Asi podemos expresar el generador X de ¢, en coordenadas asociadas a una carta en Q de las

siguiente forma X'(g) = aaq; (1, q)‘ K . Por tanto el generador X¢ de 7'¢ se expresard en la correspon-

diente carta de 7Q* de la siguiente forma :

99! 2 2¢f 2 —xig 2 axi J

X“(g,p) = (707 (4.p)]

t=0

Definicién 3.4.3. Sea X € ¢~ (T Q") definida por X (0;) =< a,,X(q) > para todo &, € TQ*. A esta
funcion se le llama momento en la direccion de X € X(Q).

Expresado en coordenadas, X (¢, p) = piX'(q)
Teorema 3.4.4. X es hamiltoniano con funcién hamiltoniana X = p;X'

Demostracion. Es inmedianto ya que:

. i an i i %
Ixc@ ZXdPi—H?quid‘] :d[X pi] =dX.

Teorema 3.4.5. Sea H(ot) = 1¢7'(a, ). Un campo X es de Killing si'y solo si Lx<H = 0.

ag 3ng gtb gtk

Demostracion. En coordenadas H = g (q)pip; j se tiene que utilizando que

1 g’ 8Xf 8Xl
FyeH =~ <Xh E__ ghi >pzpj

ok & ag g dq)
1 08ch i i X/ ;09X
=3 (—X"a;kg‘bg”—gk o — gV 5 k>pzpj
1 Xkagcb an (9X‘
Pl VpVe — = VikPj — 5 ViDi
1 dgi aXf oX!
2 < Xka l] —8kj 5 a ; gkla /vle>

1 S .
=—5%svy), conv'=gpj yconp;=gi.

Supongamos ques X es campo de Killing entonces Zxg = 0 y asi ZxcH = 0. Reciprocamente, si
Zx<H = 0 se tiene que .%xg = 0y asi X es de Killing.
O
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3.5. Reduccion de Mardsen-Weinstein

En esta seccion se expondra el teorema de reduccién de Marsden-Weinstein sin dar la demostra-
cién y se verd un ejemplo en el que se aplicard el teorema.

Teorema 3.5.1. (Marsden-Weinstein) Sea ¢ una accion hamiltoniana libre y propia de G en una va-
riedad simpléctica (M, ®) con aplicacién momento equivariante J. Entonces el espacio Py =J 1 (1) /Gy
con W valor regular tiene una tinica forma simpléctica caracterizada por T, @y = i;, ®. Ademds, si H
es un hamiltoniano invariante en M y I:I“ es el hamiltoniano inducido en J='(u)/ Gy, los flujos ¢; y

&, correspondientes a Xy y XHu € X(Py) cumplen que my o ¢y = ¢ 0 Ty,.

Para la demostracién y otros detalles véase el libro [AM].

Este teorema nos permite reducir una variedad simpléctica, bajo ciertas condiciones, a una de
menor dimension que conserva la dindmica y la estructura de la variedad de la que procede. Podemos
cocientar la antimagen de la aplicacién momento por un subgrupo de simetrias resultando una variedad
que admite una estructura simpléctica tal que su pullback por la proyeccién coincide con la de la forma
simpléctica original restringida a la aplicacién momento.

Aunque no se dé la demostracion del teorema, vamos a dar unas definiciones que nos permitiran
entender el teorema.

Sea M una variedad.

Definicion 3.5.2. Una accion ¢: G X M — M se dice que es:
i) Libre si ¢g(m) =m para algiin m € M entonces g = e, donde e es el elemento neutro.
it) Propia si la aplicacion G x M — M x M tal que (g,m) — (m, @z(m)) es propia.
Recordemos que una aplicacién es propia si la antimagen de todo conjunto compacto es compacto.

Se puede ver que si G es compacto entonces la accién es propia.

Teorema 3.5.3. Sea (M, ®) variedad simpléctica 'y sea TM* su espacio cotangente. Si G es de Lie
y una accion es libre y propia, entonces el espacio cociente M /G admite una unica estructura de
variedad diferenciable tal que la proyeccion m: M — M /G es una submersion.

Definicion 3.5.4. ¢ es una accion simpléctica si 9, @ = @, para todo g € G. Una accion simpléctica
¢ es hamiltoniana si, para cada & € 9, el generador infinitesimal &y es Hamiltoniano.

En esta situacion, denotamos Jg; a la funcién hamiltoniana asociada al generador &y;. Por tanto se
cumple:
igMa) = djé .
La aplicacién que a cada elemento del dlgebra & le asocia Je es lineal. Asi podemos definir la aplica-
cién momento como sigue:

Definicion 3.5.5. Con la notacion anterior, la funcién J: M — 9* definida por Je =< J ,& > se
llama aplicacion momento para la accion Q.

Un automorfismo interno de G es una aplicacién I,: G — G dada por I,(h) = ghg~ ' parah € G.
Diferenciando en la identidad se obtiene la accién adjunta:

Adg: 9 — 9
S AdeS =T, 4(8)
Asi, podemos definir la accion coadjunta de G en ¢ como la contragradiente de la accion adjunta:
Coady: 9" — G~
u — Coadglt ::Ad;j_.,u.

Dadas acciones de G en A y en B, una funcién f: A — B se dice equivariante si f(gx) = gf(x) para
todo g € G y para todo x € A.

Sistemas dinamicos con simetria
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Definicion 3.5.6. La aplicacion momento J es equivariante si es equivariante respecto a la G-accion
¢ en M y la accion coadjunta en G*, Coad: G X §* — G*.

Vamos a ver un ejemplo en el que gracias a que se cumplen todas las condiciones necesarias para
aplicar el teorema de Marsden-Weinstein, podemos reducir una variedad de dimensién cuatro a una
de dimensién dos.

Ejemplo: Elroy’s beanie.

Se consideran dos cuerpos rigidos que estdn unidos en un punto de tal forma que pueden girar
respecto a ese punto. Se fijan dos semiejes de refrencia. La variedad a considerar serd Q = §! x S!
con coordenadas (0, ), donde 0 es el dngulo que forma el semieje x con el semieje de referencia
del primer cuerpo y ¢ es el dangulo que forma el semieje de referencia del primer cuerpo con el
semieje de referencia del segundo cuerpo. Asi, al girar el primer cuerpo, el segundo cuerpo se movera
conjuntamente con él de forma que el dngulo que hay entre los dos cuerpos es siempre el mismo.

El movimiento queda descrito por el lagrangiano, que es la diferencia entre la energia cinética y
la potencial,

1., 1 .
L=5h6+-h(0+¢)"=V(9p)
1 TR Y 1.
=5 (h+0)0*+h(6)*+2566 —V(9)
1, . L+DL I 6
==(0 -~ =V(9).
Yo p) ( FEEY(0) v
e . . o _( h+bhL b 11 I —b
La energia cinética es la asociada a la métrica g = < L b ) Y& =\ _p n+b

es la inversa de la métrica. Las constantes /; e I, son los momentos de inercia del primer y segundo
cuerpo respectivamente.
Se construye el hamiltoniano correspondiente:

=%( Pe Po )gl<p9 >—V(¢),

Po

H

donde (pg, pyp) son los momentos asociados a (6, ¢) respectivamente.
Se considera la transformacién que se produce al rotar ambos cuerpos conjuntamente un dngulo
o:

¢o: Q— 0
(6,9) — (6 +a,0).
Se tiene asi una accién de G = S' sobre Q = S! x S'. El dlgebra de Lie es 4 = R y su dual es también
9g* =R.
Si hubiésemos considerado el conjunto de isometrias

‘P(x,ﬁ t0—0
(6,9)— (6 +a,0+p).
con f distinto de cero, el potencial no seria invariante ya que el potencial al depender de ¢ iria
cambiando para cada par («, f3). El dngulo entre los dos cuerpos ya no seria el mismo.

Identificando TQ con S' x S' x Rx Ry TQ* con S' x S' x R x R, se construye la accién tangente
y cotangente respecto a la accion ¢ :

Toou: TO —TQ
(6,(P,V9,V(P> — (9+O‘7(P7V67V<p)7
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24 Capitulo 3. Formulacion geométrica de la mecanica hamiltoniana.

donde (vg,vy) son las velocidades asociadas a (0, @).

Yo =(T¢;) ' : TQ" — TQ"
(6,9,p0,pp) = (6 + 0, 0,p0,1¢),
donde (pg, py) son los momentos asociados a (0, ¢).

La accion es libre ya que si Wu(0,9,p9,p9) = (0,9,pg,pe) entonces o = e, donde e es el
elemento neutro.

La accién también es propia ya que G es compacto.

(Es el hamiltoniano invariante en Q? Hay que ver que H o Y, = H, lo que se cumple trivialmente
ya que H no depende de 0 y es la Unica variable que cambia en la accién. Por tanto al aplicarle la
accién a H, no varfa.

(Deja la accién cotangente invariante a la forma simpléctica candnica de 7Q*, ® = d60 Adpg +
do ANdpy. Hay que ver que Yy ,0 = @.

Haciendo el pullback de la forma por la accidn cotangente:

Vo0 =d(0+a)Ndpg+doNdpy=dO Ndpg+do Ndpy.

Sea £ € ¢. Hallemos el generador del espacio cotangente T Q*.

d d 0
‘:TQ*(Ga(PaPGan)) = EW(O,(p,pg,p(p)tg =0 = E(e +t§7(p7p97pfp> =0 = g%

Luego siv € T Q*:

(iz7p. ©(0)) (v) = 0(Erg- (@), v)
=do /\dpg(éTQ*(oc),v)—|—d(p/\dp<p(§TQ*(a),v)
=d6 Ndpg(Ero-(a),v) +d@ Ndpe(Ero-(@),v)
=< d@,éTQ*(OC) ><dpg,v>—<df,v>< dpg,éTQ*(Ot) >
+ <d,Ero- (@) ><dpy,v>— <do,v><dpg,Ero-(at) >
=<d0,Erp- () ><dpg,v>=& <dpg,v>.
Por tanto:
ig,,. ®=d < pe,§ >=d(Epy),
y se tiene que J = pg. Luego:
J:TO" — R
(97(P7P67P<p) = Do
Para cada u € 4*:
I~ (1) ={(6,9,p0,pp) |1 = po} = (S' x §' xR).

Nétese que tiene dimension tres.

Denotamos G, al grupo de simetria que deja u invariante. Pero como G = § I'es abeliano, se tiene
que Gy, =G=S§ !, ya que como gh = hg se tiene que I, es la identidad y por tanto, la accién adjunta
y la coadjunta son la identidad. y por tanto:

TN W)/Gu=T""(u)/G=5"xR=TS",

M T () = (ST x ST XR) — T (1) /Gy =~ (ST x R)
(97(Pano) = ((pvp(P)'

Sistemas dinamicos con simetria
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Por tanto ya tenemos todas las condiciones necesarias para poder aplicar el teorema de Marsden-
Weinstein y podemos asegurar que J (1) /G, tiene una tnica forma simpléctica caracterizada por:

n*

m .

L
oy =iy

Determinemos @y, . Esta forma ha de ser tener la expresion:

Wy =Ad@ Ndpy,
T, 0y =Ad@ Ndpe.

@ es de la forma d6 Adpe +d@ Ndpg. i;pe = I, luego dpg = 0y por tanto:
iy@=doNdp,.
Como 7,0y =Ad@ Ndpgy yi,® =d@ Adpg, se tiene que A = 1, y por tanto:

También se satisface la segunda parte del teorema y podemos asegurar que si H es el hamiltoniano
inducido en J~! () /Gy, los flujos ¢; y ¢; correcpondientes a Xy y Xy cumplen que:

Mo = ¢ omy
Hallemos H y Xp.

EnJ~!(u) el momento pg es una constante . Por tanto movimiento descrito por el hamiltoniano
es el siguiente:

7 _1 -1 H
H‘]—l(#)_i(;u p(p )g <pq)>_v((p)a
que no depende de 6 y pasa al cociente con la misma expresion.
Desarrollando:
~ 1 1 b b u
alo=3 — —v
I (W) 2( K pe )]1]2 < L L+ > ( Po ((P)
1 u
L1 -1 I +1 -V
b (wh—hpy —bp+pe(h+h) ) ( Po > (@)
L —2I L +1 V(o).
= 5.7 (W~ 2hpgps-+ P 1)) V(@)

Aplicando las ecuaciones de hamilton:

JoH
= e 21112( 2bu+2py(l + 1)),
. __OH _ JV
Pe="3¢ = "a¢°

Como la forma simpléctica inducida en J~! (1) / G, es la forma simpléctica en coordenadas cano-
nicas, Wy = d@ Adpg, se tiene que Xy = (b% +p'(p%. Por tanto:

. B 8 avV 4d
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Apéndice A
Derivada de Lie y diferencial exterior.

Se recogen en este apéndice algunas propiedades de la derivada de Lie que se han usado en este
trabajo.

Dada una variedad diferenciable M, denotaremos 7'M al espacio tangente de M y TM* al espacio
cotangente de M. Dada F : M — M la aplicacién diferenciable entre las variedades M y M quedardn
definidas de forma natural las aplicaciones diferenciables TF: TM — TM y TF*: TM* — TM*.

Denotaremos ¢~ (M) al conjunto de funciones diferenciables en M, X(M) al conjunto de campos
vectoriales de M y QP (M) al conjunto de p-formas sobre M.

A.1. Relacion entre sistemas dinamicos simétricos y el corchete de Lie.

Sea X € X(M) y ¢ su flujo local. Param € M y f € € (M) se tiene que:

Xm)(F) = 2| (Fog)(m)=Tlim~[(f o d)(m)— fm)].

" dtli—o 1—0 t
Definicion A.1.1. Dados X,Y € X(M), se define el corchete de Lie [X,Y] € 2 (M) por:
(X, Y](m)(f) = X (m)(Y (f)) =Y (m)(X(f))
con f € €= (M).

El corchete de dos campos de vectores cumple las siguientes propiedades :

» [X,Y]=-[V,X];

» X +XLY] =X, Y]+ [X,Y];

» [AX,Y]=A[X,Y];

» (XY, Z]]+[Y,[Z,X]]|+[Z,[X,Y]] =0

o [fX,gY] = fX(8)Y —gY (f)X + f5[X,Y];
paratodo X,Y,Z, X' € X(M), A€R yf,gc€.

Definicion A.1.2. Sean X,Y € X(M) y m € M. Se define la derivada de Lie de Y con respecto de X
como el campo de vectores sobre M que en el punto m € M vale:

¥ (m) = im LTy g9 ) (¥ (9:(m) ¥ (m)] = & (977)(m)

1—0 Cdt =0

27
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Proposicion A.1.3. Sean X,Y € X(M). Entonces:
AY =[X,Y]. (A.1)
Demostracion. Sea o (r,s) =Y (¢,(m))(f o @s). Se tiene que:
(0,5) =Y (m)(f o 9y),
a(r,0) =Y (¢:(m))f = (Y f(9(m)).
De aqui:

do d
SL0,0)= i Y(m)(fogy)| | =Ym)(Xf)=Y(Xf)(m)

2% 0.0)= Ly fg.m)|_ =xX(xp)m).

Por tanto: 4
LY (f(m)) = (67 (m)f

d
— ET(]LzY(d)t(m)))f‘;:o

d
= EY((Pt(m))(fo ¢—r)

d
= —0olt,—t
dt e, )z:O

do do
=5, 005
=X (Y f)(m) =Y (Xf)(m)
= [X,Y](m)f,
de donde %Y = [X,Y]. O

t=0

(0,0)

El paréntesis de Lie mide la conmutatividad de los flujos.

Proposicion A.1.4. Sean X,Y € X(M) y ¢, y; sus flujos respectivamente. Entonces, son equivalentes
las siguientes condiciones:

i) ¢oYs=y;0¢.
ii) [X,Y]=0.
i) T¢0Y =Y oy

Demostracion. i) = iii) Se ha probado en (1.2.5) y se omite.

i) = ii)
Si ¢ o y; = Y 0 @se tiene que Y es invariante por ¢;. Luego para todo m € M se tiene que:
.1 o1
ZxY (m) = M —[(Ty, () 9—) (Y (¢4 (m))) =¥ (m)] = lim —[Y (im) — ¥ (m)] = 0.
0t t—0 1
i) = i)

Supongamos que [X,Y] = 0. Luego, si m € M se tiene que:

0= (Tyso[X,Y]oy s)(m)
=[TysoXoy s, TysoY oy J(m) = [X,Tys0Y oy_g|(m)

:1fml(Tw,s(m)%)(Y(W—s(m)))—( VD) Ty ) W) (Y (W15 (m)))
:—}%%(TW oy () Wis) (Y (W 45) () = (T () W) (Y (W= (m)))

d
= %(T‘VSOYO Vo) (m).

Sistemas dinamicos con simetria
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Tomando s = 0 en (Ty;0Y oy_g)(m) se tiene que (TypoY o yp)(m) =Y (m). Por tanto, Y es

invariante por ; v, asi ¢; o W; = y; o ¢;.
O

Definicion A.1.5. Sea U un tensor covariante y sea X campo vectorial con @ su flujo. Se define la
derivada de Lie de U a lo largo de X por:

d .
D%XU:E(P[U

t:OI

Proposicion A.1.6. Sea U tensor covariante y X,Y1,...,Y, campos vectoriales. Se tiene que:
(LU)(1,....Y,) = LU, 7)) = Y UM, ..., LY, X)),

Proposicion A.1.7. Sea U un tensor covariante y sea X campo vectorial con ¢; su flujo. Entonces:
d U = 0* %,
Eq)z U= (Pt xU.
Como vimos en Analisis II:

Definicion A.1.8. Sea U una abierto de R" y sea @: U — AP(R") una p-forma diferencial de clase
€. Si
,-pdxil A... /\dxi,,,

.....

se llama diferencial exterior de ® a la (p+ 1)-forma
dw: U — APTI(RY)

dada por
dw = (dP,

,'p) Adxii N ... /\dx,-p

P, ...,
= axj dxj/\dxl-l/\.../\dx,-p.

La diferencial exterior se extiende de manera natural a formas diferenciales en variedades diferen-
ciables sin mas que tomar cartas coordenadas. Se comprueba que el resultado no depende de la carta
elegida, obteniendo un operador d : Q7 (M) — QP*1(M) que llamamos diferencial exterior en M.

Definicién A.1.9. Se define la aplicacion contraccion para p-formas ix : QP (M) — QP~1 (M) de
forma que ixw(Y1,....Y,) = o(X,11,....Y,), paratodoX.Yi,....Y, € X(M).

Teorema A.1.10. Para cualquier X € X(M) y ® una p-forma en una variedad M se tiene:

Lo = ix(d(l)) —I—d(ix(l)).

Esta identidad suele llamarse formula de Cartan. Para la demostracion véase el libro [M].

Autor: Ana Rojo Echeburia
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