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Abstract—Atherosclerotic cardiovascular disease results in mil-
lions of sudden deaths annually, and coronary artery disease ac-
counts for the majority of this toll. Plaque rupture plays main
role in the majority of acute coronary syndromes. Rupture has
been usually associated with stress concentrations, which are de-
termined mainly by tissue properties and plaque geometry. The aim
of this study is develop a tool, using machine learning techniques
to assist the clinical professionals on decisions of the vulnerability
of the atheroma plaque. In practice, the main drawbacks of 3-D
finite element analysis to predict the vulnerability risk are the huge
main memories required and the long computation times. There-
fore, it is essential to use these methods which are faster and more
efficient. This paper discusses two potential applications of compu-
tational technologies, artificial neural networks and support vector
machines, used to assess the role of maximum principal stress in
a coronary vessel with atheroma plaque as a function of the main
geometrical features in order to quantify the vulnerability risk.

Index Terms—Artificial neural network (ANN), coronary dis-
ease, parametric finite element analysis, support vector machine
(SYM).

1. INTRODUCTION

ARDIOVASCULAR diseases related to atherosclerosis

are the first cause of death in the western world; more
people die annually from cardiovascular diseases than from
any other cause [1]. This relevant fact has motivated the de-
velopment of numerical models for arterial behavior in order to
understand better cardiovascular pathologies. The use of finite
element methods (FEMs) for the analysis and design of bioengi-
neering processes often requires long computational time cost;

the simulation time can be significantly reduced combining this
technique with machine learning techniques.

Atherosclerosis is a diffuse disease process that results in the
accumulation of fatty, fibrous, calcific, and inflammatory tissue
within the arterial wall. As an atheromatous lesion expands,
it causes narrowing (stenosis) of the arterial lumen, hardening
of the arteries, and loss of their elasticity. Furthermore, the
worst damage occur if the plaque becomes fragile and ruptures
(vulnerable plaque). The final result is myocardial infarction,
stroke, or organ failure [1].

Over the past years, various methods have been used to quan-
tify atherosclerosis: invasive methods such as intravascular ul-
trasound (IVUS), and noninvasive methods, like X-ray angiog-
raphy, both based on the detection of classical risk factors [2].
Identifying vulnerable patients before plaque rupture occurs
would help clinicians to provide early treatment taking preven-
tive measures. The term “vulnerable patient” is proposed for the
identification of individuals with a high likelihood of developing
cardiac events in the near future [3]. Despite major advances on
the treatment of coronary artery disease, the available screening
and diagnostic methods are insufficient to identify the victims
before the event occurs.

Regarding the mechanical forces, some authors [4] consider
peak circumferential stress as the most important biomechanical
factor in the mechanisms leading to rupture of the atheroscle-
rotic plaque and it has often used as a predictor of atheroscle-
rotic plaque rupture location. Traditionally, only the fibrous cap
thickness and the stenosis ratio have typically been identified as
the key predictor of vulnerability and likelihood of rupture, and,
generally, the clinical staff identify the vulnerable plaque just
based on these parameters. However, some clinical and biome-
chanical studies [5]-[7] shown that the fibrous cap thickness
alone is not a sufficiently accurate predictor for plaque stability.
The lipid core length and width are also very important and in-
fluential parameters on maximal principal stress (MPS). Thus,
these parameters should also be measured during the clinical
test.

Procedures to detect plaque prone to rupture and to pre-
dict rupture location are very valuable for clinical diagnosis.
Nowadays, clinical procedures for detection of these vulnerable
plaques are only performed by image analysis. The use of FEM
computations presents the disadvantage of very high compu-
tational cost, usually hours or even days, when an immediate
response is required. However, FEM analysis is used in preop-
eratory surgical planning when clinical staff have enough time
to perform the computational model and analyze the results.
The main objective of this paper is to search for alternatives to
direct FEM simulations in a specific clinical field, detection of



vulnerable plaques, when an instantaneous response is needed.
Thus, this paper focuses on the uses of different machine learn-
ing techniques, such as artificial neural networks (ANNs) and
support vector machines (SVMs), applied to study the role of
stress in plaque vulnerability in order to reduce the very long
computation times and memory consumption required for 3-D
finite element (FE) analysis. The clinical validation of these
results is out of the scope of this paper. The SVMs [8] give
rise to a new class of theoretically elegant learning machines
that use a central concept of SVMs—kernels—for a number
of learning tasks. Kernel machines provide a modular frame-
work that can be adapted to different tasks and domains by the
choice of the kernel function and the base algorithm [9]. Mul-
tilayer perceptron (MLP), as a representation of the ANNS, is
a feed-forward network characterized by its layered structure,
each layer consisting of a set of perceptron neurons and its train-
ing algorithm [10]. These techniques have been previously used
by researchers to solve different classification and regression
engineering problems [11]-[13].

The machine learning techniques use an intelligent algo-
rithm to model the atheroma plaque rupture in terms of four
of the most influential geometrical factors in the plaque rupture:
1) fibrous cap thickness; 2) stenosis ratio; 3) lipid core width;
and 4) lipid core length. The output predicted is the maximum
MPS occurred in an atherosclerotic coronary vessel with the
input dimensions. For this purpose, an idealized and parametric
coronary vessel model has been performed using FEM in order
to train the machine learning.

The ultimate goal of this paper is to develop a quantitative
method for cumulative risk assessment of vulnerable patients
based on atheroma plaque morphology which could replace the
time-consuming biomechanical simulations used in cardiovas-
cular mechanics. Summing up, the procedure proposed would
be carried as follows: for a specific patient, clinical staff should
measure just four parameters in standard IVUS images, and
then, by using the ANN or SVM techniques, they would have
an immediate response on the atheroma plaque vulnerability.
Parametric FEM analysis would have been performed before in
order to feed the ANN or SVM algorithms and the database.
Furthermore, a comparison of the performance of SVMs and
ANNSs is provided. To the best of the authors knowledge, this is
the first publication concerning this kind of analysis. A paramet-
ric tool based on machine learning techniques, used to predict
the atheroma plaque rupture, has not yet been carried out.

II. ATHEROMA PLAQUE PROBLEM
A. 3-D Parametric Study

A 3-D parametric study of the geometric factors used to check
the vulnerability of atherosclerotic plaque was performed. A
3-D idealized geometry corresponding to a coronary vessel
with atheroma plaque was modeled. Such plaques are char-
acterized by a large lipid pool with a thin fibrous cap [14]-[16].
Atherosclerotic vessel morphology and average dimensions
were obtained from Versluis ef al. [4] and Bluestein et al. [17]. A
vessel length of 20 mm, external radius of 2 mm, and vessel wall
thickness of 0.5 mm were considered as basis geometry. A 3-D

(a) Atheroma plaque

Fig. I. (a)Idealized geometry of an atherosclerotic arterial model. Transversal
section. (b) Geometrical parameters shown on the cross central section of the
atherosclerotic vessel.

FEM was developed using the commercial FE code ABAQUS
6.9, taking into account both the composition and dimensions
of the different layers of the tissue (media and adventitia), the
fibrous plaque, and the lipid core.

The arterial wall was approximated as a hollow cylinder with
a circular lumen. The atherosclerotic plaque was modeled as
a symmetric volume with respect to the central cross section
(longitudinal axis), located inside the vessel. Finally, the lipid
core was approximated as a blunt volume (see Fig. 1). In areas
with atheroma plaque, the whole media layer was considered as
fibrotic, whereas only the adventitia was considered as a healthy
layer. All tissues were considered to be nonlinear, hyperelastic,
and incompressible materials [18]. The behavior of the tissue
was modeled by the Gasser, Ogden, and Holzapfel strain en-
ergy function [19]. In order to obtain the material parameters
for the constitutive law of the tissue, experimental data pre-
sented in previous works (adventitia and media properties from
Holzapfel et al. [18] and plaque and lipid core properties from
Versluis et al. [4]) were fitted using the Levenberg—Marquardt
minimization algorithm [20].

Regarding the boundary conditions, the longitudinal displace-
ments were constrained at the end of the vessel, whereas the
radial displacement was allowed. Symmetry conditions were
imposed in the corresponding symmetry planes. In order to in-
troduce the longitudinal residual stress, the model was stretched
a 4.4% of the vessel length (longitudinal direction), represent-
ing in vivo conditions [18]. Then, a constant internal pressure of
140 mmHg (18.7 kPa) was imposed in the inner surface of the
lumen, simulating the blood flow pressure [21].

The parametric model consists of a series of idealized plaque
morphology models, mimicking different stages and variations
in atherosclerotic lesion growth. According to previous works
[7], [16], [21]-[23], the most influential geometric parameters
considered were fibrous cap thickness (fc), stenosis ratio (sr),
which is obtained by dividing the lumen radius by the lumen

radius of a normal artery (R = 1.5 mm), sr(%) = ;((1;111;)) 100,
lipid core length /, and lipid core width w. Lipid core width w
was defined as the ratio between the percentage of the atheroma
plaque width w,; and the distance from the inner point of the
lipid core to the outer point of the fibrotic plaque ws, w(%) =
Zl;gﬁi; 100. The central section of the 3-D model is shown

in Fig. 1(b) where the lipid core length was measured in the
perpendicular direction [see Fig. 1(a)].




TABLEI
VARIATIONS OF THE GEOMETRICAL PARAMETERS ANALYZED

Level Imm) sr(%) fe(mm) w(%)
1 1 46.7 0.025 30
2 2 533 0.05 45
3 4 56.7 0.1 60
4 6 60 0.15 75
5 8 66.7 0.25 90

Five variations or levels for each parameter were considered
with a total of 5% = 625 idealized eccentric vessel models with
atherosclerotic lesions. Realistic morphological data were inves-
tigated by varying lipid core length (1 mm < [ < 8 mm), stenosis
ratio (46.7% < sr < 66.7%), fibrous cap thickness (0.025 mm
< fe <0.25 mm), and lipid core width (30% < w < 90%) [24].
The different level values of the geometrical parameters used
to define the idealized coronary plaque models are included in
Table I.

B. Source Data

MPS was considered as the mechanical factor for the pur-
pose of comparison in the parametric study in order to define
vulnerability risk.

Regarding the vulnerability of the plaque, different threshold
stress values have been proposed by several authors [22], [25]. In
this study, a threshold value of 247 kPa has been used according
to the set of experimental data obtained by Loree et al. [25],
supposing a normal distribution of the data. This threshold value
indicates that the probability of having plaque rupture is 0.95
for the cases whose combination of parameters have maximum
MPS equal or higher than 247 kPa.

Maximum MPS for each combination of parameters is shown
in Fig. 2. The two most influential parameters, fibrous cap thick-
ness and lipid core width, fc and w, were chosen as the variables
represented by the surfaces approximation. In each subfigure,
five surfaces are presented, one for each / variation, where the
safety threshold plane at 247 kPa is presented [25]. The geomet-
rical parameters and MPS represented in Fig. 2 were selected as
inputs and output, respectively, to predict the atheroma vulner-
ability risk using ANNs and SVM methods.

III. MATHEMATICAL METHODS FOR REGRESSION

In the following sections, we briefly present the methods
that are used in our comparative study. The machine learning
techniques are concerned with the design and development of
algorithms that allow computers to evolve behaviors based on
empirical data.

A. ANN

ANNs are mathematical models that are inspired by the struc-
ture and functional aspects of biological neural networks [26].
It is a useful and robust computational tool for prediction which
can acquire, store, and utilize experimental knowledge.

This model consists of two basic elements.

1) A structure consisting a set of basic units, called neurons,

organized in layers. The network consists of three lay-

ers: input, hidden, and output. Each unit consists of the
following neuronal components.
a) A set of input connections, along with a set of
weights that regulate the input signals intensity.
b) The activation threshold, which is subtracted from
the aggregation of the input signals transmitted.
¢) An activation function which focuses on the input
signals.
d) The output of the neuron as a function of the input
signals, called transfer function.
This structure is often called the network architecture, be-
ing able to make a classification of the networks as a func-
tion of the number of networks layers, the interconnection
degree of the structure, or according to the character of
the connections.

2) A training algorithm for calibrating the network weights
and other parameters as a function of deviations of the
outputs provided by the network and the actual values.

When considering the network functional model, we focus on

the feed-forward network (network architecture in which each
layer is connected with the following forward direction only,
so that it can be represented by an acyclic graph), with specific
activation functions and weights. So, the network implements
a function f :X C R? — ) C R® where d is the input space
dimension and c is the output space dimension. The functions
implemented by a network feed forward can be formulated by
the following general model:

£(x) = p(¥(x)) = (po¥)(x)
p: XCR—UCR™
p:UCR" — Y CR° (1

where U/ is the hidden variables space with dimension m (num-
ber of neurons of this layer), and it is called feature space. A
particular case of neural networks is the MLP with a layered
structure where each neuron is a perceptron. Thus, based on the
architecture defined previously for the case of MLP [10] (see
Fig. 3), we have

D 9;(x) = 1/)(WJ-TX +wjo) with 7 being the hidden layer
activation function, w; € R? being the parameter vector
of the hidden layer, and wj( € R is its threshold value. The
function ¢ can be a sigmoid, a logistic, or a hyperbolic
tangent.

2) ¢j(u) = cp(cJTu + ¢jo) with ¢ being the output layer ac-
tivation function, ¢; € R™ being the weights, and c;o € R
is its threshold value. The activation function ¢ can be the
identity function, Heaviside function, or any dichotomous
function.

The sigmoid type and the linear functions have been selected
for the hidden layer and the output layer, respectively, among
all the possible transfer functions [10].

A typical feature of MLP is the training algorithm of back-
propagation [10] which minimizes a combination of squared
errors and weights starting from randomly distributed weights,
and then determines the correct combination. Once an MLP is
trained, it has input data fed into it, and from that, generates an
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appropriate output. The structure of the MLP, combined with
the nonlinearity and its weights, adjusted by the training algo-
rithm, creates general function approximations that allow for
the generation of practically any nonlinear function.

A cross-validation process was implemented in order to min-
imize the selection of the test set. The original set of training
data is split into three groups: the first group consists of a train-
ing dataset with the 80% of the data patterns; the remaining
groups are the validation dataset with 10% of the patterns and
the remaining 10% of the data patterns are used to evaluate
the performance of the MLP. The weight configuration for the
best performance reached is stored and only replaced if a better
performance has occurred. In this way, the best weight config-
uration can be determined. This process is repeated ten times
(fold cross validation) [27].

B. SVM

Vapnik [8] is considered as the pioneer in introducing the
concept of optimum separating hyperplane of a sample of data
in a classification problem, which is the core of the SVM method
(SVM).

Different historical facts can be highlighted in the develop-
ment of SVMs.

1) The feature space generation from input space by the trans-

formation ¢ : X C RY — Z C R® with s > d (can be
00). By the reverse transformation, the linear boundaries
of the separating hyperplanes in the feature space result in
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nonlinear boundaries in the input space. This transforma-
tion is called the kernel trick.

2) The appearance of soft-margin algorithm for problems
where perfect separability is not reachable (problems with
noise in the sample data).

3) The SVM generalization to regression problems by way
of Vapnik’s e-insensitive loss function [28].

Given a sample of data {(x;, y;) }"_,, the SVM problem [28]

can be formulated as follows:

1

n 5 ]|w2H+C;£7+£

< W) +b—yi Z e+ &

— (W, ¥ (xi)+b) ze+§
5175;’20

m'»j

=1y e M

where &;, &/, are slack variables that ensure that the solution does
not contain, within the band of radius ¢, all the points (x;, y;)
of the sample (thus avoiding possible outliers and overfitting),
where the parameter C' expresses the importance of the slack
variables in each point, and where ¥ : X — Z is a transforma-
tion of the input space into a new space Z usually of larger
dimension, where we define an inner product by means of a
positive definite function k (kernel)

Z?/)I )i (

The kernel function can be linear, polynomial, radial basis,
or sigmoidal. The linear and the polynomial kernel functions
are used in problems without high nonlinearity; however, the
sigmoid and the radial basis kernel functions are indicated for
problems with high nonlinearity, as is the case of this research.
Therefore, radial basis kernel function has been selected due to
its better performance against the sigmoid kernel function.

The solution, which can be obtained from the dual problem, is
a linear combination of a subset of sample points denominated

(¥ (x),4 x)=kxx). 3



support vectors (s.v.) and it can be written as follows:

w=> Bix)=

Fap(x) =) Biltp(x:), (%)) +b=>_ Bik(xi, ) +b. (4)

It is possible to introduce a parameter in the SVM regression
model (Nu-SVR) in order to control the number of support
vectors determined [29].

A tenfold cross validation has been implemented in order to
determine the optimal SVM parameters according to the best-fit
criterion.

C. Linear Regression
The linear regression model can be formulated as follows:
Y=a+bX+e¢ (5)

where € is the error to explain the variable 'Y by the hyperplane
a + bX. a, b are the constants of the regression model estimated
from the sample data. In order to prove the nonlinearity of the
problem, the results have been fitted by a linear regression.
In addition, regression models were implemented between the
explanatory variable and each predictor variables in order to
establish the order of importance of each variable of the problem
by analyzing the coefficient of determination

L n

R? — 1 _ hZi=1 (yi —5i)?
Sy
where y;, 7; are the real and estimated values, respectively,
and S% is the variance of Y. The coefficient R? can assume
values between 0 and 1 and it measures how good the estimated
regression is.

(6)

IV. RESULTS

A normalized variation of each parameter has been defined for
all of the techniques. This parameter v is obtained as v = ﬁ
where the variable “a” represents each of the four parameters
(lipid core length v, lumen radius v, fibrous cap thickness vy,
and lipid core width v, ) in whatever position, and a and a; are
the lowest and highest values, respectively, of each parameter.

In order to predict the accuracy of the technique, the absolute

of relative error (ER) and the correlation coefficient (RSQ) have

been used
ER:abs<0;0> (7
RSQ = 2 ®)
Ox Uy

where @ is the predicted MPS, 6 is the real MPS, o, is the
covariance, and o, and o, are the standard deviations.

In the following, the results obtained by the different methods
used in this study (linear regression, MLP, and SVM) are pre-
sented. Regarding simple regression, Table II shows the results
of the coefficient R? for each simple regression model imple-
mented between the explanatory variable and each predictor

TABLE II
COEFFICIENTS R? FOR THE DIFFERENT PREDICTOR VARIABLES

Variable R2

P 0.01506
vy 0.01533
Ve 0.7181

Vap 0.04774

TABLE III
ER AND RSQ FOR THE LINEAR REGRESSION MODEL
Test size 5 Test size 10
Test  RSQ 0.4792 0.4585
ER 0.5458 0.5580

variable. Taking this data into account, we can conclude that the
variable vy is the most influential of the explanatory variables
since its coefficient is clearly the closest to 1.

Henceforth, the results are calculated based on the test and
train sets. The train set is used to generate the model; so, a high
fit accurate (R? value closes to 1) in this set indicates that the
model has been well trained, while the test set is used to validate
it; therefore, a high fit accurate between the estimated and the
actual values indicate that the model is appropriate to simulate
the problem.

In order to strengthen the use of ANN and SVM techniques,
the classical linear regression model has been included, and the
results obtained are shown in Table III. Two test set sizes of 5
and 10 observations were used to contrast the different presented
models, with the aim of deciding if the test size has influence
in the error for each technique. The low value of RSQ and the
high relative error of this model indicate the high nonlinearity
of the problem and justify the use of these techniques.

Inorder to play up the importance of computational efficiency,
the computational costs of the different methods studied can be
compared. For the ANN and SVM, the computation train time
is 7+ 3 and 5 & 2 min, respectively (once the optimal parame-
ters have been chosen by tenfold cross validation and depending
on the stopping criterion used), and the validation process time
is negligible due to ANN and SVM techniques, which only
evaluate a function, provided an immediate estimated response.
However, once the FEM model has been constructed, the com-
putational cost of each structural analysis is 10 &+ 3 h.

The absolute of relative errors and the correlation coefficients
for MLP and SVM techniques are shown in Tables IV and
V, respectively. For the MLP technique, the optimum number
of neurons in the hidden layer has been chosen by trial and
error approach so that the error in prediction is minimized.
In that case, the most accurate prediction has been for 100
neurons in the hidden layer neuron (test ER = 6.76% and RSQ =
0.9953). Increasing the number of neurons in the hidden layer
increases the computation time, but the ER remains constant.
However, decreasing the number of neurons in the hidden layer
increases the ER. Conversely, for the SVM method, the Gaussian
distribution with Nu-regression is the best combination (test
ER =4.14% and RSQ = 0.9997). In addition, SVM has greater
updating capacity than the MLP, because once the model is
generated and presented a new observation to itself, if the model
is unable to estimate correctly the value, it simply adds this



TABLE IV
ER AND RSQ FOR THE MPL TECHNIQUE

Test size 5 Test size 10
Neurons 50 75 100 150 100 150
Train RSQ 0.965 0.978  0.9996  0.9995  0.9997 1
ER 0.053  0.047 0.0013  0.0125 0.0112  0.0013
Test RSQ 0.92 0.924  0.9953 09952  0.9513  0.9465
ER 0.125  0.101  0.0676  0.0692  0.1097  0.1153
TABLE V
ER AND RSQ FOR THE SVM TECHNIQUE
With Nu regression Without Nu regression
Gaussian Normal  Gaussian Normal
Train  RSQ 1 1 1 1
ER 5.13E-06 5.13E-06 0.000281 0.000281
Test RSQ 0.9997 0.9997 0.9995 0.9995
ER 0.041442 0.041442 0.073469 0.073469
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Fig.4. Comparison of real points (0) and estimated points by linear regression
(*), SVM (x) and MLP (<)) models in a set of 50 observations.

observation to the support vectors set without the need of a new
training loop. However, MLP would need a new training to build
anew model which includes information on the new observation
presented.

In order to compare the results obtained by the three predic-
tion methods, Fig. 4 shows the comparison of real points and
estimated points by using linear regression, SVM, and MLP
methods in a set of 50 observations. The SVM and MLP models
present very accurate fits between the real and the estimated
points with a high correlation between them. The results ob-
tained by SVM are in fact even better than the MLP ones.
However, the linear regression model provides a very poor fit
between the real and estimated points.

V. DISCUSSION

Quantifying the mechanical stress in the wall of an atheroscle-
rotic vessel and, more specifically, in the fibrous cap is a vital
step in predicting the risk of plaque rupture based on biome-
chanical features. FEM is playing an increasing role in medical
practice, being used in preoperatory surgical planning when
clinical staff have enough time to perform the computational
model and analyze the results. However, FEM presents the dis-
advantage of very high computational cost. From the results of

this study, we can conclude that both ANN and SVM techniques
represent a powerful tool to replace FEM simulations used in
cardiovascular mechanics to quantify the vulnerable risk since
they provide an immediate response and the relative errors ob-
tained are less than 10% for both methods.

The presence of high nonlinearities in the problem, as
reflected by the results of classical linear regression model,
reinforces the use of such alternative techniques to solve the re-
gression problem. It was demonstrated that the SVM technique
used in this study has the capacity to produce higher overall
prediction accuracy than a particular specific MLP architecture
since the relative error obtained is 4.14% and 6.76% in the SVM
and ANN techniques, respectively. Based on this observation,
we could conclude that SVM represents a useful method for
vulnerable atheroma plaque detection. On the contrary, linear
regression is not an appropriate technique to solve this problem
due to the extremely high relative error obtained (55%).

A particular advantage of SVM is that a SVM classifier de-
pends only on the support vectors, and the classifier function is
not influenced by the whole dataset, as it is the case for many
neural network systems. Additionally, SVMs are faster in train-
ing, but requires an appropriate choice of kernel function and
parameters.

Some limitations of this study should also be mentioned. First,
anidealized straight geometry has been used to perform the para-
metric analysis; thus, the local curvature and other features such
as the blood pressure have not been considered. Second, the ma-
terial constitutive properties has not been considered. However,
these assumptions have been widely accepted as allowable for
the assessment of the biomechanical properties of atheroscle-
rotic lesions [22]. Third, global RS has been considered since
there is any technique to measure the RS pointwise. Fourth, a
huge set of real clinical data should be used in conjunction with
the data obtained from the idealized geometry to train the ANN
or SVM in order to quantitatively validate the results.

Despite these limitations, and according to the results ob-
tained, we come to the following conclusion; the ANN and
SVM techniques are able to replace FEM simulations to predict
the maximum MPS on an idealized coronary model with a good
error tolerance and avoiding the time-consuming 3-D FE anal-
ysis. However, the use of both techniques, FEM and MLT, in
clinical practice remains unclear because it is necessary to clar-
ify the real role of stress in plaque vulnerability and to perform
a quantitative validation with clinical data.
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