000150385 001__ 150385
000150385 005__ 20250203171510.0
000150385 0248_ $$2sideral$$a62043
000150385 037__ $$aART-2009-62043
000150385 041__ $$aeng
000150385 100__ $$0(orcid)0000-0002-0118-3254$$aManya, J. J.$$uUniversidad de Zaragoza
000150385 245__ $$aReview of the Apparent Molar Heat Capacities of NaCl(Aq), HCl(Aq), and NaOH(Aq) and their Representation using the Pitzer Model at Temperatures from (298.15 to 493.15) K
000150385 260__ $$c2009
000150385 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150385 5203_ $$aIn this study, a new estimation of the standard state partial molar heat capacity (Cp0) of three binary systems [NaCl(aq), HCl(aq), and NaOH(aq)] for temperatures ranging from (298.15 to 493.15) K is performed. From experimental data (available in the literature to date) corresponding to the apparent molar heat capacities of the above-mentioned electrolytes, a procedure based on the assumption of Pitzer’s ion interaction model was applied to calculate these important Cp0 values at a given temperature. Results obtained for each electrolyte (or ion) were correlated as functions of temperature by commonly used polynomial equations. Use of the hydrogen ion convention enabled estimates of the temperature-dependent values of Cp0 of the individual ions Na+(aq), Cl−(aq), and OH−(aq). When used to calculate the temperature-dependent values of the Gibbs free energy of formation of OH−(aq), the formula for Cp0(T) of OH−(aq) given herein provides good agreement with values derived from independent measurements of the ion constant of water at elevated temperatures. In the specific case of NaCl, a considerable disagreement was observed between the estimations performed using Archer’s model (Archer, D. G. J. Phys. Chem. Ref. Data1992, 793−829) and some experimental data published years later. This fact can be explained, among other factors, by the dependence of the model parameters on the experimental uncertainty and systematic errors, which can be incurred during calorimetric experiments. For this reason, continuous revisions and updating of the proposed correlations are required when new experimental data become available.
000150385 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000150385 590__ $$a1.695$$b2009
000150385 591__ $$aENGINEERING, CHEMICAL$$b40 / 125 = 0.32$$c2009$$dQ2$$eT1
000150385 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b53 / 139 = 0.381$$c2009$$dQ2$$eT2
000150385 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000150385 700__ $$aAntal, M. J.
000150385 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000150385 773__ $$g54, 8 (2009), 2158-2169$$pJ. chem. eng. data$$tJOURNAL OF CHEMICAL AND ENGINEERING DATA$$x0021-9568
000150385 8564_ $$s309615$$uhttps://zaguan.unizar.es/record/150385/files/texto_completo.pdf$$yPostprint
000150385 8564_ $$s801398$$uhttps://zaguan.unizar.es/record/150385/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000150385 909CO $$ooai:zaguan.unizar.es:150385$$particulos$$pdriver
000150385 951__ $$a2025-02-03-14:50:02
000150385 980__ $$aARTICLE