arXiv:hep-th/0610152v1 12 Oct 2006

PROCEEDINGS

OF SCIENCE

CPT/Lorentz Invariance Violation and Quantum Field
Theory

Jorge Gamboa*

Departamento de Fisica, Universidad de Santiago de Chile
Casilla 307, Santiago 2, Chile
E-mail:[jgamboa@lauca.usach.c]]

Paola Arias

Departamento de Fisica, Universidad de Santiago de Chile
Casilla 307, Santiago 2, Chile
E-mail:jpacla.arias@gmail . cor

Ashok Das

Department of Physics and Astronomy, University of RoelneRbchester, NY 14627-0171, USA
and

Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Ciitlcd00064, India.
E-mail:das@pas.rochester.edy

Justo Lopez-Sarrion

Department of Physics, City College of CUNY
New York, NY 10031, USA
E-mail:[justinux75@gmail . corm

Fernando Mendez

Departamento de Fisica, Universidad de Santiago de Chile
Casilla 307, Santiago 2, Chile

E-mail:| fmendez@lauca.usach.cl|

Analogies between the noncommutative harmonic oscillaor noncommutative fields are ana-
lyzed. Following this analogy we construct examples of quarfields theories with explicit CPT
and Lorentz symmetry breaking. Some applications to bagesgis and neutrino oscillation are
also discussed.

Fifth International Conference on Mathematical Method®Mmysics — IC2006
April 24-28 2006
Centro Brasilerio de Pesquisas Fisicas, Rio de Janeirozra

*Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/


http://arxiv.org/abs/hep-th/0610152v1
mailto:jgamboa@lauca.usach.cl
mailto:paola.arias@gmail.com
mailto:das@pas.rochester.edu
mailto:justinux75@gmail.com
mailto: fmendez@lauca.usach.cl

Noncommutative fields Jorge Gamboa

1. Introduction

The Lorentz and CPT symmetries are fundamental cornerstonine twentieth century for
which there are not clear indications if persists at veryilggergies. By other hand, from effective
theories point of view, it seems natural to think that thesprdly quantum field theories (QFT)
and the symmetry principles they are based on, remain vadiifpr a given range of energies
beyond which, possibly new and unexpected phenomena codcye. For example, the relativistic
invariance itself could be broken or deforméj [1].

If QFT describes fundamental interactions for any energgeathen it seems natural to think
that any QFT —seen as effective theory— must incorporatestvengy scales, namely, the infrared
and ultraviolet ones. Both scales might give rise to non entignal implications.

There are at least two examples of the previous idea, wheréntfared scale can be very
important. The first one, is the physics involved in the irdthsector of QED where still several
technical aspects need to be understood as well as manyptoacproblems still remain opefi [2].

The infrared sector of QED is the natural link between quanfield theory and quantum
mechanics and then we ask which are the problems and how candeestand the physics in this
interface?, what are the most convenient approximatidar@f In spite of many efforts performed
during the fifties and sixties this problem still have notroetrified.

In the same context, another important example is QCD wHerephysical picture in the
infrared limit is nontrivial because, at low energy, thedheis nonperturbative and phenomena
such as confinement or hadronization should be solved usngnmethods beyond perturbation
theory.

In this paper we would like to report our previous results be idea of how the Lorentz
symmetry could be broken in a QFT and also to point out newrpssgin the application of this to
neutrino physics.

In order to expose our results, we will start in section lla#sng noncommutative mechanics
and the harmonic oscillator in order to introduce, in thesapgttion, the notion of noncommutative
scalar and gague fields. In section Il we we will report owrergt progress in neutrino physics
when noncommutative fermion fields are introduced. Sedtbis devoted to resume the results
of previous ideas when they are applied to the study of eanilyeuse physics. In the last section,
conclusion and outlook is presented.

2. Noncommutative quantum mechanics and noncommutative fiés

In this section we will study the non commutative quanturntaric oscillator and how it
can be used to define a non commutative field theory. As a waraxegzise let us consider first
the standard bidimensional quantum harmonic oscillatscideed by the following Hamiltonian
operator

w
H = S [pf + P+ + ), (2.1)
with standard commutation relatioris j(= 1, 2)
[qlvqj] = [piv pj] = 07
[0, pj] = 6. (2.2)
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Note that variableqq, p;} are dimensionless and are related with usual diigsP;} by g =
VMwQ; andp; = (mw) V2R,
The dynamics of this system is described by the Heisenbergtieqs

.do

i = [OH] (2.3)
which, specified to[(21 1) andl (2.2) give rise to

4 = wpi, (2.4a)

P = —wq;. (2.4b)

The system[(2]4) is equivalent to the very well known secawiédifferential equation

g= —O.)zqi. (25)
Therefore, the solution of (3.4) turn out to be

gt) = A ei‘*’t+Bi e‘i‘*’t,

pi(t) = iA X —iB;j e 't (2.6)

The algebra of operatord; and B; can be fixed using the canonical algeldra](2.2). Indeed,
replacing [2.6) in[(2]2) we find that

[A,Aj] = [B;,Bj] =0,
[ALBj] = —%dj- (2.7)

Then we can identify
V2A —al, V2B —a, (2.8)

and the algebrd (3.7) becomes
aa) - [4.a]] -0
[au,aﬂ = 3. (2.9)
In terms ofaiT anda;, as is well known, one find that the Hamiltonian becomes
H = w(ala; +ajap + 1), (2.10)

The construction of the Hilbert space is straightforward.
Using these results let us solve the noncommutative haanostillator described by the
Hamiltonian [2.]1) but commutation relations deformed disvies:

[qhqj]zlegljv [plvpj]zh@vglj [thj]:I&]v (211)

where8 and % are parameters “measuring” noncommutativitg iand p respectively.

INote that this parameters are dimensionless in our notalisnthey actually have dimensions in the standard
variables.
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Using the Hamiltonian[(2} 1) and (2]11) one find that equatioihmotion are

g = w(pi+0&jq;)), (2.123)
P = w(—a+ A&jp;). (2.12b)

Following the same procedure previously discussed, onelfisicthe analogous t¢ (2.5) turn
out to be now

G = w(0+ PB) & dj + W (B0 —1)q. (2.13)
Although this set of equations are coupled ones, one deedhpse equations using the following
trick: let us define the complex variabfe= q; + igy, then [2.1B) can be written as

Z=-iwO0+B)Z+w(BO-1)Z, (2.14)

and a similar equation for the conjugaté&. This problem is formally is equivalent to the damped
harmonic oscillator.
As in the standard case, we look now for a solution with thgpsha

Z(t) =e™,
which imply that
a’+iw(0+%B)a— w*(#6—-1)=0,

and as a consequence the possible valuesare

a, [ 6+% 60— B\
o (Zi,m (T) ) (2.15)

Thus, the general solution of the noncommutative harmosadlator is
Z(t)=A, %+ A ot (2.16)

whereA.. are complex operators. Note that there is a redefinitian.agince we have factorized the
i in (2.15%). Itis interesting to note also that the solutiprL@ is a superposition of two oscillation
modes, one positive (because > 0) and other negative (because < 0). Therefore, the solution
has the same structure of the standard case, but there igrama$ry due to the fact thidr_ | # o, .

Of course from[(2.16) it is possible to compudgt), and from the equation of motion we
obtainp;

aj = (_i;l [a+b—(—)i(aT+bT)}, (2.17a)
pj = _(_Zi)j [)\+(a+(—)jaT)+/\(b+(—)ij)} (2.17b)

witha=A,d%! b=A d%tandA. =0 +a./w
Following the example of the commutative case, we must fiedcttmmutation relation be-
tween operatord.. andAl_ from the known relationd (Z]L1).
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Since the result of this commutators do not depend on tineefalfowing condition fulfills

A, A ]=0=[A;,A"]

Note that the remaining commutatof,., A’] are obtained from the conditiorig; , ] = i6 and
[p1, p2] = iB and then, the conditioft, p1] =1 is just a consistency check. After a straightforward

calculation we obtain 1101
A AL = 725 20F (2.18)
AL —A_

This equation shows that non commutative harmonic osailiattwo dimensions is equivalent
to two one-dimensional harmonic oscillator.
In fact, by a rescaling oA operators

Koo (A NP a Ao (A NP
2(1+6A.) + o\ 2(1+6A,) -

and similar relations foA+", we find

A Al =1=[A AT,
OperatorsA. play the role of standard lowering and rising operator ahiéndommutative case.
The Hamiltonian of this two dimensional non commutativenhamnic oscillator is
H=c, (A A +1/2)+w (AAT +1/2). (2.19)
with o, = \/1+ (%52)° + (458),
Previous result is the starting point for constructing rmnmutative complex scalar field the-
ory [B]. Consider the standard relativistic Hamiltoniamsigéy for a complex scalar field

2 =0"M+0e'0e 4+ P’ (2.20)

plus non standard commutation relations

[D(x),dT(X)] = 833 (x—X), (2.21a)
Mx),NTx)] = B&3(x—x), (2.21b)
[D(x),N(X)] = 33(x—X), (2.21c)

where 8 and B parameterizes the non commutativity in the field space and Hamensions of
energy ! and energy, respectively.

In the standard cas@ = 0 = B), quantized fields are a superposition of quantum harmonic
oscillators with frequencyo(p) = +/p2 -+ m?, one for each value of momenpa The structure of
these linear superpositions are given py](2.6).

For non commutative fields, the constructions proceeds im#as way. The analog of[(2.6)
is given by [2.]7) once they are expressed in terms of opsrAta Therefore we consider now a
linear superposition with

dp 1 . .
) = [ g [ne1z ¢ exbf e . (2.22a)
i d3p ipx T o—ipx
n(x) = l/W\/B[_Elap P+ neb) e, (2.22b)
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where coefficients) andg; are those appearing in the previously mentioned linearrpopéion,

but with w replaced byw(p). We are following notation of[3] wherg = A, and 812 = A+ +

B)(A2+1)"tande? = (A, — 6)(A% +1)"1. Note that dependences prare inherited fromw(p).
Operatorsa, b, by other hand, satisfy the canonical algebra

lap,al] = (2m)°3%(p—p'),  [bp,bl] = (2m38%(p - '),

and are in correspondence with.. Is straightforward to prove that fields constructed in thisy
satisfy the commutation relations (2.21).
The Hamiltonian of this theory

H :/d3x,%”(x),

with the density[(2.20) expressed in terms of the non comtiwetéields (2.2R) is a superposition
of two anisotropic oscillator9) where frequenciesreoww(p). That is

- / { (apap + = > +E_(p) (bgbp + %)] : (2.23)

where energies are

2
E. = \/wZ(p) + %1 [B— 9w2(p)} + % (B+68w?(p)). (2.24)

This shows that the free non commutative complex scalarsfisléh theory with two types
of particles with different dispersion relation. This asyetry can be interpreted as a particle-
antiparticle asymmetry and their phenomenological comseces were explored iff [, 5].

A natural question raised by this approach is what happetts ather fields as gauge and
fermionic fields. Let us discuss gauge fields in next subsecind postpone fermionic fields and
its phenomenology to subsequent sections.

2.1 Non commutative Gauge Fields

We start the discussion with thi 1) gauge field. As in the previous case, the theory is defined
by the standard Hamiltoniaf] [6] (for a previous approachasse{T]).

1, 1. =
H:/d3x<§n2+éBz+AoD-n>, (2.25)
plus a set of deformed Poisson bracket structure

[A(X); A (Y)]lpg = O,
AR), 5(Y)]pg = 6j0(X=Y), (2.262)
T5(Y)]ps = 6j0(X-Y),

where8; is the most general antisymmetric three dimensional ma#yix= &« 6. Note that this
term modifies the infrared sector of the theory due to the dgiom of 6.

=]

~~
)

=
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Poisson bracketg (2]26) break Lorentz invariance and hésgauge symmetry (GS). In fact,
gauge transformation is generated by the Gauss law, whicistishe condition that primary con-
strain preserves in time. The primary constrain is not medjfbut its time preservation indeed
changes because of extra terms coming from the modifiedd?oisacket structure.

In order to study just LIV, preserving gauge symmetry, a rfiediGauss law must be intro-
duced. A direct calculation shows that

x=0-m—6-B, (2.27)

with 6 - B = 6 & d;A« is the modified generator for the gauge symmetry. That ig,(¥) is an
arbitrary and real function, then

OAI(X) = [Ai(X),Lalpg

_ da(x), (2.28a)
OTE(X) = [15(X),Aalpg

o (2.28b)

where the gauge transform operafgyis

Bo = [y a(y)imy) + 6 xA(Y). (2.29)

This last relation allows to write the modified Hamiltoniahieh includes now this new gauge
symmetry generator, namely

H:/‘d3x<%n2+%Bz+AoD{n+9xAD. (2.30)

The Hamiltonian [[2.30) with the Poisson bracket struct@@§) defines & (1) gauge field
theory which breaks Lorentz symmetry.
This model originates modified Maxwell equations

A = 11— dAo, (2.31)
7.'5 = (T[X Q)i—(DXB)i. (2.32)

First equation is the electric field definition

—E =A+3dA,

which allow to write the remaining equations in the usuahfomcluding the modified Gauss law
they read

0-E=-6-B, (2.33a)
0.B =0, (2.33b)
OxE+ ‘;—? =0. (2.33c)
DxB—%:BxE. (2.33d)
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In this equationd plays the role of a “source ” term that can be interpreted aslarigation
charge and induced current in a medium, in a similar way tethndard electromagnetic theory.
In section IV we will discuss the physical implications ofstifact.

Now we would like to discuss other issue, related with therbagian formulation of our
approach. From here, the generalization for other gauggpgrwill be straightforward[[8].

The set of equation$ (2]33) can be obtained from a Lagrangich is constructed from the
Hamiltonian [2.3D) in the standard way only if dynamicaliabtes are canonical. Then, we need
to find a transformation from variablgsg, A; } to variables{fw,,&j} such that the Poison bracket
structure [2.26) maps to the canonical one.

This procedure is completely analog to the change of vashbh previous section, which
takes the non commutative phase space variables to a sahdbstl rising and lowering operators.
In the present case, transformations read

1 -
T=T+50xA), A=A (2.34)

and the Lagrangian turn out to be
L = /d3x(qui —H),

- /d3x<E2—BZ+%A09.B—%A-exE)>. (2.35)

Using the standard definition 6, andFH = JeHVAPF, 5, (u,v,..=0,1,...3) one finds that
1 uv 1 = uv 3

This approach can be generalized to others gauge groupmstamce in[[B], the&sU(2) gauge
group was studied and it was shown that the Lagrangian gethsit generalizeg (236) is

1 2
L=—5tr {FuFHY} +26 g patr <A"Fp° + ggA"A"A°'> : (2.37)

Finally, let us point out that the Chern-Simons term appeam this formulation is not a
perturbative contribution, it appears indeed at the samiénig asF? in the g expansion.

We would like now to call the attention on the fact that here vage considered commu-
tator deformations only in the momenta, although we startdiscussion with the complex non
commutative scalar field where deformations in fields conatiaus also appears.

Itis natural to ask, therefore, what kind of modificationffens Maxwell theory if we consider
a Poisson bracket structure modified as

[AI(X), A} (X)] = &k BO(X—Y), (2.38)

with 6 a Lorentz violating vector which plays a role of ultraviokriergy scale. The rest Poisson
brackets are canonical.

This theory was considered iff [9] and we will not give detaifsits construction. We would
like just to say that, as cases presented before, is possitéstore the gauge symmetry.
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The main phenomenological feature of this approach is th@esents a birefringence effect
with polarization planes shifted by an amount proportidoal

w?6cosa,

where8 is the modulus o anda, the angle between the wave veckoand 6. This frequency
dependent behavior is distinctive and it does not appeanwbacommutativity in space-time is
considered. It is a pure field theory result.

Our last example of non commutative fields is the fermionsgecd he next section is devoted
to this issue.

3. Neutrino physics and noncommutative fermionic fields

A natural question, considering all the previous discugss®what happens with the fermions
fields under a deformation of Poisson structure.

From the phenomenological point of view, our approach is ahaeism that offers an alter-
native way out to the problem of neutrino oscillations. Letamphasize that several papers have
already dealt with effects of Lorentf [10] and CPT violatigid]] in this scenario, however the
model we present here has the advantage that depends on arwgpers, as was discussed in
previous sections.

Since we are mainly interested in the neutrino sector, artccpkarly in the problem of oscil-
lations, let us briefly review the situatioh [12]. Neutrinscilation is a phenomenological model
proposed to explain the deficit of solar and atmosphericrimastin fluxes measured on earfh|[13].

The key idea of this mechanism is to assume that neutrino assiue particles which, upon
propagation, oscillates between different flavor eigaastaln its simplest form, the oscillation
between two flavors, j is considered and it is shown that the probabiRty,;(t) for speciei to
oscillates toj after a timet is

R (1) = sin?(26y ) sir? (@) , (3.1)

where@;j is the mixing anglé andE;(j) is the energy of(j) species.

It is interesting to note that non vanishing oscillation @bility occurs in free space only if
there is a non zerEj; = E; — Ej and@; # 0. Then, if neutrino have equal masses or they are zero,
oscillation does not come out.

The standard scenario assumes that neutrino species hallensasses and therefore, the
probability for oscillation of two neutrin®;, vj, in traversing a path lengthturns out to be

1.27Anﬁ- L
E

Py, (L) = sir?(26;) sir? ( , (3.2)

whereAn¢ = n¢ —n¥ is taken in (eVJ, the neutrino energ§ in MeV andL in meters.

2This angle is introduced to take into account the fact thaityghopagates is a linear superposition of mass eigen-
states.
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Clearly, with three families of neutrino there can be onlptindependent combinations of
squared mass differences, lets gay2,, Am2, from which a solution for solar neutrino as well as
atmospheric neutrino puzzles is found. The bounds for tliss@s in this scenario afe][12]

Amg, <10 %V?, 1073 < eV2PAmg, < 10 %eV2. (3.3)

From here, the bound fdxmz; is fixed.

LSND (Liquid Scintillator Neutrino Detector at Los Alamof}4] is one of the several ex-
periments that have looked for neutrino oscillations. I$ lnided muon sources from the decay
mt — u* +vy,. These muons decay through — €™ + ve+ v, and, after a 30 meters long path,
the experiment finds the oscillation channgl— ve at 20 MeV< Ey, <582 MeV with probability
of 0.26%. According to[(3]2), the mass difference involved is fiiocess should be

An? < 1eV. (3.4)

Analysis of the MiniBooNE experimenft [[IL5] will confirm or diard this result. However, if it
is true, we must face a puzzle within the context of three liamneutrinos. An explanation of this
anomaly, compatible with the standard model, may requizeettistence of sterile neutrinds J16].

There is a different approach that might solve the puzzlewAs pointed out first by Cole-
man and Glashow[[17] and more extensively developed by kKt and collaboratord []L8], a
departure from Lorentz and/or CPT symmetry in the neutrgias, gives raise to oscillations as
neutrino propagates in free space, even for masslessmuasitri

From (3.1) is clear that the oscillation probability does wanish if the mixing angle is not
zero and the energy of specie 1 is different from specie & dtndition satisfies if neutrino masses
are different in a theory respecting Lorentz and CPT symyrgie standard case), but if one of
these symmetries is broken, a non zero probability can tearedat.

Note that it is enough to have different dispersion relatifom different neutrino species in or-
der to fulfill previous requirements. But this is indeed thsefor noncommutative fields approach
if we choose non standard commutators among differentgi@agpecies. In fact, noncommutative
scalar field is the first example of this kind, since there figldnd its conjugatep’ have a non
standard Poisson bracket.

The final result is that, due to non standard anticommutdtmrsnassless fermionic fields,
dispersion relations are species dependent and a non vanisttillation probability is obtained.
In what follows we will discuss the technicalities of thispapach [19].

In the chiral basis, which is more convenient for our analyfie Hamiltonian density has the
form

7 =i(y'e- Dyl - wifo- Dyk), (3.5)
where the superscript= {1,2} runs over the flavor quantum number (sum over repeated isjlexe
The non-commutative theory is obtained by deforming theonaral anti-commutation re-

lations while maintaining the form of the Hamiltonian depns{3.5). We postulate the deformed
equal-time anti-commutation relations to have the forntl{\ail others vanishing)

{00, 9l" (1)} = AV 89 (x—y), (3.6)
(W), g (v)} = BT 6@ (x—y), (3.7)

10
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whereAll andB'l are 2x 2 matrices with constant, complex elements in general flou¢ iwant to
maintain rotational invariance, they can be chosen to Haéarms

([ 1la (1B
(29) e(2) e

so that the complex parametarsf can be thought of as the parameters of deformation. Clearly,
these deformed anti-commutation relations reduce to theerdional ones when the parameters
of deformation vanish.

Equation of motions in the momentum space read

Eyl = AT (3-p ), (3.9)
Eyl = Bl (6- B wg;) . (3.10)

The energy spectrum can be find independently[fot (3.9) prA@)3/f we take the first one, it
is straightforward to find a diagonalization matrix fiar

1 il)
D=—_| ¢ , (3.11)
A%
and then

Ef = +(1+]al)|pl,
EZ = +(1—|a])|@l, (3.12)

are the eigenvalues ifi (B.9).
A similar analysis for[(3.]0) gives

Ef = +£(1+|B))|P,
EZ = +(1-(B]) Pl (3.13)

Since t,Uli_ does not diagonalize the Hamiltonian —eigenvectorsmpé, which are a linear
combination ofy! and t,UE— the time evolution of this field gives rise to a linear conattion of
species 1 and 2, namely a neutrino initially in the statavould evolve in time as

Y (t) = cosbuz Pl(t) —sinbyz PE(t)
— [(cos2 61, e BN 1 sin? 6y, efiEit) W(0)

+ Lsin 2615 (e‘iEit - e‘iE3t> L/JE(O)} érX,
2
Therefore, after a path of length the probability of finding the stauqaf in the beam is given by

Py, sy, = SIN? (2612) sir?(ja| E L), (3.14)

where we have used the fact that fai < 1,E ~ |f|.

11
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Same arguments demonstrate that, for antineutrino préipagthe probability for oscillations

Py, v, = SiM? (2612) sir?(|B|E L). (3.15)

The important thing to note here is that

PV1—>V2 7& P\71—>\727 (316)

which is a consequence 6P T and Lorentz invariance violation.

Two comments are in order here. First, noncommutative famioifields have a mixing angle
equalsrt/4, and then is consistent with the so called Large Mixing Arn@gIMA) scenario. How-
ever, we have introduced in all the discussiof;a in order to mimic that standard case, but it
does not appear in a pure noncommutative fermionic theagoi&ly, our description has a linear
dependence on the energy, what could be disturbing, but éusat consequence of the fact that
we have incorporated two dimensionless parameters onsperdion relation.

From previous results we can compute bounds for deformatiwameters as follow. Assum-
ing that flavor oscillations involve only pairs of neutrinaghen dealing with three families we
must generalize the parameteito aj; (and the same for antineutrinos). Therefore, flavor oscilla
tion probabilities are

Py, = sir? <29.,-> sin? (yai,- \EL), (3.17)
Ps_y = Sint <29.,->sin2 <|Bij|E|_>. (3.18)

From the solar neutrino experiments, oscillations of theofla 1— 2 are involved, while the
channel 2- 3 is related with atmospheric neutrino oscillations. Thene from (3.1]7) next bounds
on a parameter is found

lags| < 10717 (3.19)
lags| < 1022 (3.20)

LSND, by other hand, due to the fact that involves antinaos] gives a bound fg@ parameter
|Biz < 10718, (3.21)

It is clear that within this scenario, all the experimentdults can be naturally explained.

Finally we would like to call the attention on the fact thatdn@eutrino are massless particles
and, looking at dispersion relations, we realize that thgimrmof the energy difference between
species can be understood also as a difference in the ptapagalocities. Since particles are
massless, we would say that particles propagates withreliffespeed of light.

4. Phenomenological consequences of noncommutative fieldghe early universe.

This section is devoted to analyze possible phenomena@bgensequences derived from
models based on noncommutative fields.

12
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A consequences of this model which is common for scalars aaskless fermions is the
asymmetry of the dispersion relation for particles andpanticles.

For the scalar field, situation is rather simple and the asgimntan be checked at the level of
quantum Hamiltonian[(2.23) or at the level dispersion ietaf2.24). This theory has two scales,
one infrared and other ultraviole®. At momentunp such thaB << w(p) << 6~ energy [2.24)
satisfyE, ~ E_ ~ w(p) and we are in the Lorentz invariant region.

Consider a system with this two types of particles in thergpmadnical equilibrium at temper-
atureT. The densityn/V of each specie contained in a voluMdwith zero chemical potential) is

[]

o0 2
p-dp
o0 2
p=dp
n_— :47'[ 0 m (42)

For a temperatur@ such thathT << B/T << m/T << 1, there is a tiny asymmetry in the
dispersion relation due to the infrared scale and thenyaasgmmetry in the content of baryonic
matter-antimatter content in the volurde In fact

n.—n_. B
n T
as it is expected if CPT violating effects are tiny.

This example shows that a baryon asymmetry can be generétenitndeparture from thermal
equilibrium and it suggests a critical reevaluation of thiedtcriterion of Sakharov for baryogenesis
[2a).

Since this effect is related only with the asymmetry on tiepéision relation for particles and
antiparticles, one could wonder what happens with fermions

Situation is similar to the previous one. There is an asymyrtiie to the different dispersion
relations for neutrinos and antineutrifasnd therefore a the ratio of the neutrino density to the
antineutrino density, in equilibrium at certain temperatis different from one.

Calculation in this case is more involved due to the presendéferent flavors and to the os-
cillations between them. For two species, however, thiblpro is formally equivalent to a quantum
mechanical two level system with a Hamiltonian which is msgble for the for inducing transition
between levels.

The crucial step is to identify this Hamiltonian responsifar the transitions, lets say — v,,.
According to Stodolsky{[32] and others [23] this Hamiltamia

—

H=5-V, (4.4)

(4.3)

with V| = |[Ey — E3|.
Following the results of previous section, we find that therl@nian for a system violating
CPT and Lorentz symmetries can be written in this two dinmaradi space as

H, =2/a|d-p, (4.5)
H_ =2|B|d-p. (4.6)

3In this case, however, the distinction between particlesantiparticles is more subtle, but the quantum Hamilto-
nian of the theory can also be written as two types of pagialigh different frequencieﬁkl]
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Then, if there is a CPT and Lorentz invariance violation,illzgmons neutrino-neutrino and
antineutrino-antineutrino take place with different paiblities leading to a neutrino asymmetry.

With present data on neutrino experiments, this asymmaetwdcbe evaluated, however, it
seems to premature to carry this analysis at this stage, wfilebhSND experiment requires a
confirmation.

We will finish this section with some comments on the cosmicllgmplications of noncom-
mutativeU (1) gauge field. As we mentioned in section Il.A, modified Maxvegjuations[(2.33)
mimics standard Maxwell equations with sources, but treemiimportant difference:electrostatic
and magnetostatic appears mixed and then the presenceadzptibn implies a magnetization and
viceversa.

Remarkably, is this structure which offers an alternativthe dynamo mechanism to generate
the so callegrimordial magnetic fieldin fact, it was shown in[[8] that modified equations admits
a solution with the shape

B=BO+B@4+B@4+.. . B@ 4 | 4.7)
E=EOQO+E®4+EO® 4+ B4 (4.8)

where superindices stand for the exponerfl in the series expansion. In accordance with experi-
ments.E is always a lower order of magnitude that the magnetic field.

Similarly to a ferromagnetic media, the system might evitva stable state with permanent
magnetic and/or electric field because the previous expamsit necessarily converges.

Previous mechanism, therefore, is a possible candidatarf@iternative explanation to the
dynamo mechanism of the primordial magnetic field obsermadiverse.

5. Conclusions and outlook

We have explored phenomenological consequences of LaedtZPT symmetries violation
through the so called non commutative field theory.

For complex scalar field we have shown how quantum noncontiveitiield theory can be
constructed as a superposition of anisotropic harmonitlatscs. Quantum fermionic fields can
be constructed in a similar way and will be reported in a feothing paper{[31].

The common feature of these approaches is their partitipagticle asymmetry manifested
in dispersion relations. We have explored the possibilitysing this as a possible mechanism to
generate baryon-antibaryon asymmetry as well as neutritimautrino. In the firs case, we have
shown how that can be compatible with thermal equilibriumnseio.

For neutrinos, this asymmetry is also the mechanism thatvdlbavor oscillations and then,
two apparently disconnected problems could be explaindddogame mechanism. In other words,
if CPT and Lorentz are violated, would be possible, in ppieito calculate the excess of neutrinos
respect antineutrinos in the universe.

In the gauge field sector, noncommutative fields offers arradtive process to the dynamo
mechanism in order to explain interstellar magnetic fields.

In conclusion, a tiny Lorentz symmetry violation open dotorsexplain observations which
can not be accommodate in the conventional physics. Nonedative fields, by other hand, is a
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description that incorporate this properties in econothmieg, that is, it depends on a small number
of parameters and, just at level of free theory exhibitsuiest that might explain these phenomena.

Acknowledgments

This work was supported in part by US DOE Grant number DE-R&DER40685, FONDECYT-
Chile grants 1050114, 1060079 and 2105016 and a FULBRIGHitgdL).

References

[1] For areview see.g.J. Kogut and K. WilsonPhys. Reptl2, 75 (1974).

[2] See for example, C. Itzikson and J. B. Zub@gantum Field Theory(1980)

[3] J.M. Carmona, J.L. Cortes, J. Gamboa and F. MendldP 0303 058 (2003).

[4] J.M. Carmona, J.L. Cortes, J. Gamboa and F. Meritess. Lett.B565, 222 (2003).

[5] J. M. Carmona, J. L. Cortes, A. Das, J. Gamboa and F. Meded. Phys. LettA21, 883 (2006).
[6] J. Gamboa and J. Lopez-Sarriéiys.Red71, 067702 (2005).

[7] S. Carroll, G. B. Field and R. Jacki®whys. RevD41, 1231 (1990); A. A. Andrianov, P. Giacconi and
R. Soldati,JHEP 0202 030 (2002).

[8] H. Falomir, J. Gamboa, J. Lopez-Sarrion, F. Mendez andl Ala SilvaPhys. LettB632, 740 (2006)
and ibidPhys. RevD74, 047701 (2006).

[9] J. Gamboa, J. Lopez-Sarrion and A. P. Polychron&Xoss.LettB634, 471 (2006).

[10] M. GasperiniPhys. RevD38, 2635; S. L. Glashow, A. Halprin, P. I. Krastev, C. N. Leungldn
PantaleoneRhys. RevD56, 2433 (1997); R. Foot, C. N. Leung and O. Yasuglys. LettB443 185
(1998).

[11] S. Coleman and S. L. GlashoRhys. LettB405, 249 (1997).

[12] For a recent review on neutrino data and experimengsfaeaxample A. Strumia and F. Vissani,
hep-ph/0606054nd references therein.

[13] G. L. Fogli, E. Lisi, A. Marrone and G. SciosciBhys. RevD60, 053006 (1999); B. Pontecorva,
Exp. Theor. Phys. (USSRY, 247 (1958); L. WolfensteirRhys. RevD17, 2369 (1978); S. P.
Mikheyev and A. Yu. Smirnovsov. J. Nucl. Phy<l2, 913 (1985).

[14] LSND collaboration, C. Athanassopoulos et Bhys. Rev. LetB1, 1774 (2003); LSND
collaboration, A. Aguilar et alPhys. RevD64, 112007 (2001).

[15] MiniBooNE collaboration homepage:www-boone.fnakg

[16] See S. L. GlashovwRhys. LettB256, 255 (1991); J. W. F. Valle and D. Tommasini and J. T.
PeltoniemiPhys. LettB298 383 (1993).

[17] S. Coleman and S. L. GlashoRhys. Rev.D59, 116008 (1999).

[18] V. A. Kostelecky and M. Mewes iRhys. RevD69, 016005 (2004), T. Katori, A. V. Kostelecky and R.
Tayloe, hep-ph/0606154.

[19] P. Arias, Ashok Das, J. Gamboa, J. Lopez-Sarrion anddndéz e-Print Archive: hep-ph/0608007

15



Noncommutative fields Jorge Gamboa

[20] A. D. SakharovJETP Lett6, 24 (1967).
[21] P. Arias, Ashok Das, J. Gamboa, J. Lopez-Sarrion anddndézjn preparation
[22] L. Stodolsky,Phys. RevD36, 2273 (1987); L. Stodolsky, preprint MPI-PAE/PTh 33/88.

[23] V. A. Kostelecky and M. Mewes iRhys. RevD69, 016005 (2004), T. Katori, A. V. Kostelecky and R.
Tayloe, hep-ph/0606154.

16



