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Noncommutative fields Jorge Gamboa

1. Introduction

The Lorentz and CPT symmetries are fundamental cornerstones in the twentieth century for
which there are not clear indications if persists at very high energies. By other hand, from effective
theories point of view, it seems natural to think that the presently quantum field theories (QFT)
and the symmetry principles they are based on, remain valid just for a given range of energies
beyond which, possibly new and unexpected phenomena could emerge. For example, the relativistic
invariance itself could be broken or deformed [1].

If QFT describes fundamental interactions for any energy range, then it seems natural to think
that any QFT –seen as effective theory– must incorporate twoenergy scales, namely, the infrared
and ultraviolet ones. Both scales might give rise to non conventional implications.

There are at least two examples of the previous idea, where the infrared scale can be very
important. The first one, is the physics involved in the infrared sector of QED where still several
technical aspects need to be understood as well as many conceptual problems still remain open [2].

The infrared sector of QED is the natural link between quantum field theory and quantum
mechanics and then we ask which are the problems and how can weunderstand the physics in this
interface?, what are the most convenient approximation criteria? In spite of many efforts performed
during the fifties and sixties this problem still have not been clarified.

In the same context, another important example is QCD where the physical picture in the
infrared limit is nontrivial because, at low energy, the theory is nonperturbative and phenomena
such as confinement or hadronization should be solved using new methods beyond perturbation
theory.

In this paper we would like to report our previous results on the idea of how the Lorentz
symmetry could be broken in a QFT and also to point out new progress in the application of this to
neutrino physics.

In order to expose our results, we will start in section II describing noncommutative mechanics
and the harmonic oscillator in order to introduce, in the same section, the notion of noncommutative
scalar and gague fields. In section III we we will report our recent progress in neutrino physics
when noncommutative fermion fields are introduced. SectionIV is devoted to resume the results
of previous ideas when they are applied to the study of early universe physics. In the last section,
conclusion and outlook is presented.

2. Noncommutative quantum mechanics and noncommutative fields

In this section we will study the non commutative quantum harmonic oscillator and how it
can be used to define a non commutative field theory. As a warm upexercise let us consider first
the standard bidimensional quantum harmonic oscillator described by the following Hamiltonian
operator

H =
ω
2
[p2

1+ p2
2+q2

1+q2
2], (2.1)

with standard commutation relations (i, j = 1,2)

[qi ,q j ] = [pi , p j ] = 0,

[qi , p j ] = iδi j . (2.2)
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Note that variables{qi , p j} are dimensionless and are related with usual ones{Qi,Pj} by qi =√
mωQi andpi = (mω)−1/2Pi.

The dynamics of this system is described by the Heisenberg equations

i
dO

dt
= [O,H] (2.3)

which, specified to (2.1) and (2.2) give rise to

q̇i = ω pi , (2.4a)

ṗi = −ωqi . (2.4b)

The system (2.4) is equivalent to the very well known second order differential equation

q̈i =−ω2qi . (2.5)

Therefore, the solution of (2.4) turn out to be

qi(t) = Ai eiωt +Bi e−iωt ,

pi(t) = iAi eiωt − i Bi e−iωt . (2.6)

The algebra of operatorsAi and Bi can be fixed using the canonical algebra (2.2). Indeed,
replacing (2.6) in (2.2) we find that

[Ai ,A j ] = [Bi,B j ] = 0,

[Ai ,B j ] = −1
2

δi j . (2.7)

Then we can identify √
2Ai → a†

i ,
√

2Bi → ai , (2.8)

and the algebra (2.7) becomes

[ai ,a j ] =
[

a†
i ,a

†
j

]

= 0,
[

ai ,a
†
j

]

= δi j . (2.9)

In terms ofa†
i andai , as is well known, one find that the Hamiltonian becomes

H = ω(a†
1a1+a†

2a2+1), (2.10)

The construction of the Hilbert space is straightforward.
Using these results let us solve the noncommutative harmonic oscillator described by the

Hamiltonian (2.1) but commutation relations deformed as follows:

[qi ,q j ] = iθεi j , [pi , p j ] = iB,εi j [qi , p j ] = iδi j , (2.11)

whereθ andB are parameters “measuring" noncommutativity inq andp respectively1.

1Note that this parameters are dimensionless in our notation, but they actually have dimensions in the standard
variables.
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Using the Hamiltonian (2.1) and (2.11) one find that equations of motion are

q̇i = ω(pi +θ εi j q j), (2.12a)

ṗi = ω(−qi +B εi j p j). (2.12b)

Following the same procedure previously discussed, one findthat the analogous to (2.5) turn
out to be now

q̈i = ω(θ +B)εi j q̇ j +ω2(Bθ −1)qi . (2.13)

Although this set of equations are coupled ones, one decouple these equations using the following
trick: let us define the complex variableZ = q1+ iq2, then (2.13) can be written as

Z̈ =−i ω(θ +B) Ż+ω2(Bθ −1)Z, (2.14)

and a similar equation for the conjugateZ†. This problem is formally is equivalent to the damped
harmonic oscillator.

As in the standard case, we look now for a solution with the shape

Z(t) = eαt ,

which imply that
α2+ iω(θ +B)α −ω2(Bθ −1) = 0,

and as a consequence the possible values ofα are

α±
ω

= i



−θ +B

2
±

√

1+

(

θ −B

2

)2


 . (2.15)

Thus, the general solution of the noncommutative harmonic oscillator is

Z(t) = A+eiα+t +A−eiα−t , (2.16)

whereA± are complex operators. Note that there is a redefinition ofα± since we have factorized the
i in (2.15). It is interesting to note also that the solution (2.16) is a superposition of two oscillation
modes, one positive (becauseα+ > 0 ) and other negative (becauseα− < 0). Therefore, the solution
has the same structure of the standard case, but there is an asymmetry due to the fact that|α−| 6=α+.

Of course from (2.16) it is possible to computeqi(t), and from the equation of motion we
obtainpi

q j =
(−i) j−1

2

[

a+b− (−) j(a†+b†)

]

, (2.17a)

p j = −(−i) j

2

[

λ+(a+(−) ja†)+λ−(b+(−) jb†)

]

. (2.17b)

with a= A+eiα+t , b= A−eiα−t andλ± = θ +α±/ω
Following the example of the commutative case, we must find the commutation relation be-

tween operatorsA± andA†
± from the known relations (2.11).

4



Noncommutative fields Jorge Gamboa

Since the result of this commutators do not depend on time, the following condition fulfills

[A+,A−] = 0= [A+,A
†
−].

Note that the remaining commutators,[A±,A
†
±] are obtained from the conditions[q1,q2] = iθ and

[p1, p2] = iB and then, the condition[q1, p1] = i is just a consistency check. After a straightforward
calculation we obtain

[A±,A
†
±] =∓2

1+θλ∓
λ+−λ−

. (2.18)

This equation shows that non commutative harmonic oscillator in two dimensions is equivalent
to two one-dimensional harmonic oscillator.

In fact, by a rescaling ofA± operators

Ã+ =

(

λ+−λ−
2(1+θλ−)

)1/2

A†
+, Ã− =

(

λ+−λ−
2(1+θλ+)

)1/2

A−,

and similar relations forÃ±†
, we find

[Ã+, Ã
†
+] = 1= [Ã−, Ã

†
−].

OperatorsÃ± play the role of standard lowering and rising operator as in the commutative case.
The Hamiltonian of this two dimensional non commutative harmonic oscillator is

H = ω+(Ã+Ã†
++1/2)+ω−(Ã−Ã†

−+1/2). (2.19)

with ω± =

√

1+
(θ−B

2

)2±
(θ+B

2

)

.
Previous result is the starting point for constructing noncommutative complex scalar field the-

ory [3]. Consider the standard relativistic Hamiltonian density for a complex scalar field

H = Π†Π+∇Φ†∇Φ+m2Φ†Φ (2.20)

plus non standard commutation relations

[Φ(x),Φ†(x′)] = θδ 3(x−x′), (2.21a)

[Π(x),Π†(x′)] = Bδ 3(x−x′), (2.21b)

[Φ(x),Π(x′)] = δ 3(x−x′), (2.21c)

whereθ and B parameterizes the non commutativity in the field space and have dimensions of
energy−1 and energy, respectively.

In the standard case(θ = 0 = B), quantized fields are a superposition of quantum harmonic
oscillators with frequencyω(p) =

√

p2+m2, one for each value of momentap. The structure of
these linear superpositions are given by (2.6).

For non commutative fields, the constructions proceeds in a similar way. The analog of (2.6)
is given by (2.17) once they are expressed in terms of operators Ã±. Therefore we consider now a
linear superposition with

Φ(x) =
∫

d3p
(2π)3

1√
ω
[

ηε1ap eipx + ε2b†
p e−ipx] , (2.22a)

Π(x) = i
∫

d3p
(2π)3

√
ω
[

−ε1ap eipx +ηε2b
†
p e−ipx] , (2.22b)

5
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where coefficientsη andεi are those appearing in the previously mentioned linear superposition,
but with ω replaced byω(p). We are following notation of [3] whereη = λ+ and ε2

1 = (λ+ +

B)(λ 2
++1)−1 andε2

1 = (λ+−θ)(λ 2
++1)−1. Note that dependences onp are inherited fromω(p).

Operatorsa,b, by other hand, satisfy the canonical algebra

[ap,a
†
p′ ] = (2π)3δ 3(p−p′), [bp,b

†
p′ ] = (2π)3δ 3(p−p′),

and are in correspondence withÃ±. Is straightforward to prove that fields constructed in thisway
satisfy the commutation relations (2.21).

The Hamiltonian of this theory

H =
∫

d3xH (x),

with the density (2.20) expressed in terms of the non commutative fields (2.22) is a superposition
of two anisotropic oscillators (2.19) where frequencies are nowω(p). That is

H =
∫

d3p
(2π)3

[

E+(p)
(

a†
pap +

1
2

)

+E−(p)
(

b†
pbp +

1
2

)]

, (2.23)

where energies are

E± =

√

ω2(p)+
1
4

[

B−θω2(p)
]2

± 1
2

(

B+θω2(p)
)

. (2.24)

This shows that the free non commutative complex scalar fields is a theory with two types
of particles with different dispersion relation. This asymmetry can be interpreted as a particle-
antiparticle asymmetry and their phenomenological consequences were explored in [4, 5].

A natural question raised by this approach is what happens with other fields as gauge and
fermionic fields. Let us discuss gauge fields in next subsection and postpone fermionic fields and
its phenomenology to subsequent sections.

2.1 Non commutative Gauge Fields

We start the discussion with theU(1) gauge field. As in the previous case, the theory is defined
by the standard Hamiltonian [6] (for a previous approach seealso[7]).

H =

∫

d3x

(

1
2
~π2+

1
2
~B2+A0

~∇ ·~π
)

, (2.25)

plus a set of deformed Poisson bracket structure

[Ai(~x),A j(~y)]PB = 0,

[Ai(~x),π j(~y)]PB = δi j δ (~x−~y), (2.26a)

[πi(~x),π j(~y)]PB = θi j δ (~x−~y),

whereθi j is the most general antisymmetric three dimensional matrixθi j = εi jkθk. Note that this
term modifies the infrared sector of the theory due to the dimension ofθk.

6
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Poisson brackets (2.26) break Lorentz invariance and also the gauge symmetry (GS). In fact,
gauge transformation is generated by the Gauss law, which isjust the condition that primary con-
strain preserves in time. The primary constrain is not modified, but its time preservation indeed
changes because of extra terms coming from the modified Poisson bracket structure.

In order to study just LIV, preserving gauge symmetry, a modified Gauss law must be intro-
duced. A direct calculation shows that

χ = ∇ ·π −θ ·B, (2.27)

with θ ·B = θiεi jk∂ jAk is the modified generator for the gauge symmetry. That is, ifα(x) is an
arbitrary and real function, then

δAi(x) = [Ai(x),∆α ]PB

= ∂iα(x), (2.28a)

δπi(x) = [πi(x),∆α ]PB

= 0. (2.28b)

where the gauge transform operator∆α is

∆α =

∫

d3y α(y)∇[π(y)+θ ×A(y)]. (2.29)

This last relation allows to write the modified Hamiltonian which includes now this new gauge
symmetry generator, namely

H =

∫

d3x

(

1
2

π2+
1
2

B2+A0∇
[

π +θ ×A
])

. (2.30)

The Hamiltonian (2.30) with the Poisson bracket structure (2.26) defines aU(1) gauge field
theory which breaks Lorentz symmetry.

This model originates modified Maxwell equations

Ȧi = πi −∂iA0, (2.31)

π̇i = (π ×θ)i − (∇×B)i. (2.32)

First equation is the electric field definition

−Ei ≡ Ȧi +∂iA0,

which allow to write the remaining equations in the usual form. Including the modified Gauss law
they read

∇ ·E = −θ ·B, (2.33a)

∇ ·B = 0, (2.33b)

∇×E+
∂B
∂ t

= 0. (2.33c)

∇×B− ∂E
∂ t

= θ ×E. (2.33d)

7
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In this equationθ plays the role of a “source ” term that can be interpreted as a polarization
charge and induced current in a medium, in a similar way to thestandard electromagnetic theory.
In section IV we will discuss the physical implications of this fact.

Now we would like to discuss other issue, related with the Lagrangian formulation of our
approach. From here, the generalization for other gauge groups will be straightforward [8].

The set of equations (2.33) can be obtained from a Lagrangianwhich is constructed from the
Hamiltonian (2.30) in the standard way only if dynamical variables are canonical. Then, we need
to find a transformation from variables{πi ,A j} to variables{π̃i , Ã j} such that the Poison bracket
structure (2.26) maps to the canonical one.

This procedure is completely analog to the change of variables, in previous section, which
takes the non commutative phase space variables to a set of standard rising and lowering operators.
In the present case, transformations read

π̃i = πi +
1
2
(θ ×A)i, Ãi = Ai. (2.34)

and the Lagrangian turn out to be

L =

∫

d3x (π̃iȦi −H),

=

∫

d3x

(

E2−B2+
1
2

A0θ ·B− 1
2

A ·θ ×E)
)

. (2.35)

Using the standard definition forFµν andF̃µν = 1
2ε µνλρFλρ , (µ ,ν , ..= 0,1, ...3) one finds that

L =

∫

(

−1
4

FµνFµν +
1
2

θµ F̃µνAν

)

d3x. (2.36)

This approach can be generalized to others gauge groups. Forinstance in [8], theSU(2) gauge
group was studied and it was shown that the Lagrangian density that generalizes (2.36) is

L =−1
2

tr
{

FµνFµν}+2θ µεµνρσ tr

(

AνFρσ +
2
3

gAνAρAσ
)

, (2.37)

Finally, let us point out that the Chern-Simons term appearing in this formulation is not a
perturbative contribution, it appears indeed at the same footing asF2 in theg expansion.

We would like now to call the attention on the fact that here wehave considered commu-
tator deformations only in the momenta, although we start the discussion with the complex non
commutative scalar field where deformations in fields commutators also appears.

It is natural to ask, therefore, what kind of modifications suffers Maxwell theory if we consider
a Poisson bracket structure modified as

[Ai(x),A j(x)] = εi jkθkδ (x−y), (2.38)

with θk a Lorentz violating vector which plays a role of ultravioletenergy scale. The rest Poisson
brackets are canonical.

This theory was considered in [9] and we will not give detailson its construction. We would
like just to say that, as cases presented before, is possibleto restore the gauge symmetry.

8
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The main phenomenological feature of this approach is that it presents a birefringence effect
with polarization planes shifted by an amount proportionalto

ω2θ cosα ,

whereθ is the modulus ofθk andα , the angle between the wave vector~k andθk. This frequency
dependent behavior is distinctive and it does not appear when noncommutativity in space-time is
considered. It is a pure field theory result.

Our last example of non commutative fields is the fermionic case. The next section is devoted
to this issue.

3. Neutrino physics and noncommutative fermionic fields

A natural question, considering all the previous discussion, is what happens with the fermions
fields under a deformation of Poisson structure.

From the phenomenological point of view, our approach is a mechanism that offers an alter-
native way out to the problem of neutrino oscillations. Let us emphasize that several papers have
already dealt with effects of Lorentz [10] and CPT violation[11] in this scenario, however the
model we present here has the advantage that depends on a few parameters, as was discussed in
previous sections.

Since we are mainly interested in the neutrino sector, and particularly in the problem of oscil-
lations, let us briefly review the situation [12]. Neutrino oscillation is a phenomenological model
proposed to explain the deficit of solar and atmospheric neutrinos in fluxes measured on earth [13].

The key idea of this mechanism is to assume that neutrino are massive particles which, upon
propagation, oscillates between different flavor eigenstates. In its simplest form, the oscillation
between two flavorsi, j is considered and it is shown that the probabilityPi→ j(t) for speciei to
oscillates toj after a timet is

Pi→ j(t) = sin2(2θi j )sin2
(

(Ei −E j)t

2

)

, (3.1)

whereθi j is the mixing angle2 andEi( j) is the energy ofi( j) species.
It is interesting to note that non vanishing oscillation probability occurs in free space only if

there is a non zero∆Ei j = Ei −E j andθi j 6= 0. Then, if neutrino have equal masses or they are zero,
oscillation does not come out.

The standard scenario assumes that neutrino species have small masses and therefore, the
probability for oscillation of two neutrinoνi , ν j , in traversing a path lengthL turns out to be

Pνi→ν j (L) = sin2(2θi j )sin2

(

1.27∆m2
i j L

E

)

, (3.2)

where∆m2
i j = m2

i −m2
j is taken in (eV)2, the neutrino energyE in MeV andL in meters.

2This angle is introduced to take into account the fact that what propagates is a linear superposition of mass eigen-
states.

9
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Clearly, with three families of neutrino there can be only two independent combinations of
squared mass differences, lets say∆m2

12,∆m2
23 from which a solution for solar neutrino as well as

atmospheric neutrino puzzles is found. The bounds for this masses in this scenario are [12]

∆m2
12 ≤ 10−4eV2, 10−3 ≤ eV2∆m2

23 ≤ 10−2eV2. (3.3)

From here, the bound for∆m2
13 is fixed.

LSND (Liquid Scintillator Neutrino Detector at Los Alamos)[14] is one of the several ex-
periments that have looked for neutrino oscillations. It has used muon sources from the decay
π+ → µ++νµ . These muons decay throughµ+ → e++νe+ ν̄µ and, after a 30 meters long path,
the experiment finds the oscillation channelν̄µ → ν̄e at 20 MeV≤Eνµ ≤ 58.2 MeV with probability
of 0.26%. According to (3.2), the mass difference involved in this process should be

∆m2 < 1 eV. (3.4)

Analysis of the MiniBooNE experiment [15] will confirm or discard this result. However, if it
is true, we must face a puzzle within the context of three families neutrinos. An explanation of this
anomaly, compatible with the standard model, may require the existence of sterile neutrinos [16].

There is a different approach that might solve the puzzle. Aswas pointed out first by Cole-
man and Glashow [17] and more extensively developed by Kostelecky and collaborators [18], a
departure from Lorentz and/or CPT symmetry in the neutrino sector, gives raise to oscillations as
neutrino propagates in free space, even for massless neutrinos.

From (3.1) is clear that the oscillation probability does not vanish if the mixing angle is not
zero and the energy of specie 1 is different from specie 2. This condition satisfies if neutrino masses
are different in a theory respecting Lorentz and CPT symmetry (the standard case), but if one of
these symmetries is broken, a non zero probability can be obtained.

Note that it is enough to have different dispersion relations for different neutrino species in or-
der to fulfill previous requirements. But this is indeed the case for noncommutative fields approach
if we choose non standard commutators among different particle species. In fact, noncommutative
scalar field is the first example of this kind, since there fieldφ and its conjugateφ† have a non
standard Poisson bracket.

The final result is that, due to non standard anticommutatorsfor massless fermionic fields,
dispersion relations are species dependent and a non vanishing oscillation probability is obtained.
In what follows we will discuss the technicalities of this approach [19].

In the chiral basis, which is more convenient for our analysis, the Hamiltonian density has the
form

H = i
(

ψ i†
L ~σ · ~∇ψ i

L −ψ i†
R~σ · ~∇ψ i

R

)

, (3.5)

where the superscripti = {1,2} runs over the flavor quantum number (sum over repeated indexes).
The non-commutative theory is obtained by deforming the canonical anti-commutation re-

lations while maintaining the form of the Hamiltonian density (3.5). We postulate the deformed
equal-time anti-commutation relations to have the form (with all others vanishing)

{ψ i
L(x),ψ

j†
L (y)} = Ai j δ (3)(x−y), (3.6)

{ψ i
R(x),ψ

j†
R (y)} = Bi j δ (3)(x−y), (3.7)

10
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whereAi j andBi j are 2×2 matrices with constant, complex elements in general, but if we want to
maintain rotational invariance, they can be chosen to have the forms

A=

(

1 α
α∗ 1

)

, B=

(

1 β
β ∗ 1

)

, (3.8)

so that the complex parametersα ,β can be thought of as the parameters of deformation. Clearly,
these deformed anti-commutation relations reduce to the conventional ones when the parameters
of deformation vanish.

Equation of motions in the momentum space read

Eψ i
L = −Ai j

(

~σ ·~p ψ j
L

)

, (3.9)

Eψ i
R = Bi j

(

~σ ·~p ψ j
R

)

. (3.10)

The energy spectrum can be find independently for (3.9) and (3.10). If we take the first one, it
is straightforward to find a diagonalization matrix forA

D =
1√
2

(

|α |
α 1

− |α |
α 1

)

, (3.11)

and then

E1
± = ±(1+ |α |) |~p|,

E2
± = ±(1−|α |) |~p|, (3.12)

are the eigenvalues in (3.9).
A similar analysis for (3.10) gives

E1
± = ±(1+ |β |) |~p|,

E2
± = ±(1−|β |) |~p|. (3.13)

Sinceψ i
L does not diagonalize the Hamiltonian –eigenvectors areDψ i

L, which are a linear
combination ofψ1

L andψ2
L– the time evolution of this field gives rise to a linear combination of

species 1 and 2, namely a neutrino initially in the stateψ1
L would evolve in time as

ψ1
L(t) = cosθ12 ψ̃1

L(t)−sinθ12 ψ̃2
L(t)

=

[

(

cos2θ12 e−iE1
+t +sin2 θ12 e−iE2

+t
)

ψ1
L(0)

+
1
2

sin2θ12

(

e−iE1
+t −e−iE2

+t
)

ψ2
L(0)

]

ei~p·~x.

Therefore, after a path of lengthL, the probability of finding the stateψ2
L in the beam is given by

Pν1→ν2 = sin2 (2θ12) sin2(|α | E L) , (3.14)

where we have used the fact that for|α | ≪ 1,E ≈ |~p|.

11
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Same arguments demonstrate that, for antineutrino propagation, the probability for oscillations
is

Pν̄1→ν̄2 = sin2 (2θ12) sin2(|β | E L) . (3.15)

The important thing to note here is that

Pν1→ν2 6= Pν̄1→ν̄2, (3.16)

which is a consequence ofCPT and Lorentz invariance violation.
Two comments are in order here. First, noncommutative fermionic fields have a mixing angle

equalsπ/4, and then is consistent with the so called Large Mixing Angle (LMA) scenario. How-
ever, we have introduced in all the discussion aθi j , in order to mimic that standard case, but it
does not appear in a pure noncommutative fermionic theory. Secondly, our description has a linear
dependence on the energy, what could be disturbing, but is a natural consequence of the fact that
we have incorporated two dimensionless parameters on the dispersion relation.

From previous results we can compute bounds for deformationparameters as follow. Assum-
ing that flavor oscillations involve only pairs of neutrinos, when dealing with three families we
must generalize the parameterα to αi j (and the same for antineutrinos). Therefore, flavor oscilla-
tion probabilities are

Pνi→ν j = sin2
(

2θi j

)

sin2
(

|αi j |EL

)

, (3.17)

Pν̄i→ν̄ j = sin2
(

2θi j

)

sin2
(

|βi j |EL

)

. (3.18)

From the solar neutrino experiments, oscillations of the flavors 1→ 2 are involved, while the
channel 2→ 3 is related with atmospheric neutrino oscillations. Therefore, from (3.17) next bounds
on α parameter is found

|α12| ≤ 10−17. (3.19)

|α23| ≤ 10−22. (3.20)

LSND, by other hand, due to the fact that involves antineutrinos, gives a bound forβ parameter

|β12| ≤ 10−16. (3.21)

It is clear that within this scenario, all the experimental results can be naturally explained.
Finally we would like to call the attention on the fact that here neutrino are massless particles

and, looking at dispersion relations, we realize that the origin of the energy difference between
species can be understood also as a difference in the propagation velocities. Since particles are
massless, we would say that particles propagates with different speed of light.

4. Phenomenological consequences of noncommutative fieldsin the early universe.

This section is devoted to analyze possible phenomenological consequences derived from
models based on noncommutative fields.

12
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A consequences of this model which is common for scalars and massless fermions is the
asymmetry of the dispersion relation for particles and antiparticles.

For the scalar field, situation is rather simple and the asymmetry can be checked at the level of
quantum Hamiltonian (2.23) or at the level dispersion relation (2.24). This theory has two scales,
one infraredB and other ultravioletθ . At momentump such thatB<<ω(p)<< θ−1 energy (2.24)
satisfyE+ ∼ E− ∼ ω(p) and we are in the Lorentz invariant region.

Consider a system with this two types of particles in thermodynamical equilibrium at temper-
atureT. The densityn/V of each specie contained in a volumeV (with zero chemical potential) is
[5]

n+ = 4π
∫ ∞

0

p2dp

eE+/T −1
, (4.1)

n− = 4π
∫ ∞

0

p2dp

eE−/T −1
. (4.2)

For a temperatureT such thatθT << B/T << m/T << 1, there is a tiny asymmetry in the
dispersion relation due to the infrared scale and then, a tiny asymmetry in the content of baryonic
matter-antimatter content in the volumeV. In fact

n+−n−
n−

∼ B
T
, (4.3)

as it is expected if CPT violating effects are tiny.
This example shows that a baryon asymmetry can be generated without departure from thermal

equilibrium and it suggests a critical reevaluation of the third criterion of Sakharov for baryogenesis
[20].

Since this effect is related only with the asymmetry on the dispersion relation for particles and
antiparticles, one could wonder what happens with fermions.

Situation is similar to the previous one. There is an asymmetry due to the different dispersion
relations for neutrinos and antineutrinos3 and therefore a the ratio of the neutrino density to the
antineutrino density, in equilibrium at certain temperature is different from one.

Calculation in this case is more involved due to the presenceof different flavors and to the os-
cillations between them. For two species, however, this problem is formally equivalent to a quantum
mechanical two level system with a Hamiltonian which is responsible for the for inducing transition
between levels.

The crucial step is to identify this Hamiltonian responsible for the transitions, lets sayνe→ νµ .
According to Stodolsky [22] and others [23] this Hamiltonian is

H = ~σ ·~V, (4.4)

with |~V|= |E1−E2|.
Following the results of previous section, we find that the Hamiltonian for a system violating

CPT and Lorentz symmetries can be written in this two dimensional space as

H+ = 2|α |~σ ·~p, (4.5)

H− = 2|β |~σ ·~p. (4.6)
3In this case, however, the distinction between particles and antiparticles is more subtle, but the quantum Hamilto-

nian of the theory can also be written as two types of particles with different frequencies[21]

13
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Then, if there is a CPT and Lorentz invariance violation, oscillations neutrino-neutrino and
antineutrino-antineutrino take place with different probabilities leading to a neutrino asymmetry.

With present data on neutrino experiments, this asymmetry could be evaluated, however, it
seems to premature to carry this analysis at this stage, whenstill LSND experiment requires a
confirmation.

We will finish this section with some comments on the cosmological implications of noncom-
mutativeU(1) gauge field. As we mentioned in section II.A, modified Maxwellequations (2.33)
mimics standard Maxwell equations with sources, but there is an important difference:electrostatic
and magnetostatic appears mixed and then the presence of polarization implies a magnetization and
viceversa.

Remarkably, is this structure which offers an alternative to the dynamo mechanism to generate
the so calledprimordial magnetic field. In fact, it was shown in [8] that modified equations admits
a solution with the shape

B = B(0)+B(2)+B(4)+ . . .B(2n)+ . . . , (4.7)

E = E(0)+E(1)+E(3)+ . . .B(2n+1)+ . . . , (4.8)

where superindices stand for the exponent inθ in the series expansion. In accordance with experi-
ments,E is always a lower order of magnitude that the magnetic field.

Similarly to a ferromagnetic media, the system might evolveto a stable state with permanent
magnetic and/or electric field because the previous expansion not necessarily converges.

Previous mechanism, therefore, is a possible candidate foran alternative explanation to the
dynamo mechanism of the primordial magnetic field observed in universe.

5. Conclusions and outlook

We have explored phenomenological consequences of Lorentzand CPT symmetries violation
through the so called non commutative field theory.

For complex scalar field we have shown how quantum noncommutative field theory can be
constructed as a superposition of anisotropic harmonic oscillators. Quantum fermionic fields can
be constructed in a similar way and will be reported in a forthcoming paper [21].

The common feature of these approaches is their particle-antiparticle asymmetry manifested
in dispersion relations. We have explored the possibility of using this as a possible mechanism to
generate baryon-antibaryon asymmetry as well as neutrino anti-neutrino. In the firs case, we have
shown how that can be compatible with thermal equilibrium scenario.

For neutrinos, this asymmetry is also the mechanism that allow flavor oscillations and then,
two apparently disconnected problems could be explained bythe same mechanism. In other words,
if CPT and Lorentz are violated, would be possible, in principle, to calculate the excess of neutrinos
respect antineutrinos in the universe.

In the gauge field sector, noncommutative fields offers an alternative process to the dynamo
mechanism in order to explain interstellar magnetic fields.

In conclusion, a tiny Lorentz symmetry violation open doorsto explain observations which
can not be accommodate in the conventional physics. Noncommutative fields, by other hand, is a
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description that incorporate this properties in economical way, that is, it depends on a small number
of parameters and, just at level of free theory exhibits features that might explain these phenomena.
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