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Abstract

The Yang—Mills theory with non-commutative fields is constructed following Hamiltonian and Lagrangian methods. This modification of
the standard Yang—Mills theory produces spatially localized solutions very similar to those of the standard non-Abelian gauge theories. This
modification of the Yang—Mills theory contain in addition to the standard contribution, theé€em, (AVFP* 4 %AVA,,A,\) whered,, is
a given space-like constant vector with canonical dimension of energyAJhield rescaling and the choiag, = (0,0, 0, #), suggest the
equivalence between the Yang—Mills—Chern—Simons theoryi 2imensions and QCD in-8 1 dimensions in the heavy fermionic excitations
limit. Thus, the Yang—Mills—Chern—-Simons theory in-2l dimensions could be a codified way to QCD with only heavy quarks. The classical
solutions of the modified Yang—Mills theory for ti8k) (2) gauge group are explicitly studied.

0 2005 Elsevier B.MOpen access under CC BY license

1. Introduction [7: (%), 7;(3)] =i Bij8 (X — ), )

It has been shown that non-commutative geometry is an im[¢i %), 7 (y)] =138 =), ®)
portant mathematical ingredient that could be a clue for severatherei, j,... =1,2,3,... are internal indices and and B
important unsolved problems in theoretical phygids One of  are scales with dimensions of (energy)and energy, respec-
the consequences of non-commutative geometry is the Lorentiely. These scales correspond to ultraviolet and infrared weak
invariance symmetry breaking that, as was pointed out by seu-orentz invariance violations, respectively.
eral authors, could happen at very high or very low energies as These small deviations of the Lorentz symmetry (ultraviolet
a consequence of the IR/UV property, implying that interestingand infrared) imply modifications to the relativity principle. In
new phenomenological possibilities could apd@s3] and new  the ultraviolet sectof6], for example, it allows to describe an
possible extensions of the Standard Mddé! interesting phenomenology for UHECR, where possible new

In Ref. [5], an approach to a Lorentz invariance violat- effects could be studigd].
ing quantum field theory has been proposed, inspired in non- The present approach does not correspond to the non-
commutative geometry, where the fields (instead of satisfyingommutative geometry in the true sense, where one adopts the
the standard canonical commutators) obey commutator

[¢i (%), ¢, (F)] =i6;;8(X — ¥). @D [k yl~e.
Rather, while the commutatt) violates the microcausality
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Indeed, in the infrared region new windows could emerge Essentially, one starts considering the following modified
to largely unsolved problems, such as the dark matter and efRoisson brackets
ergy puzzlg9], matter—antimatter asymmetf§0], primordial B b s
magnetic fieldd11] and other interesting phenomena. How- {Ai (x), Aj(x )}P.B =0, ®)
ever, important open questions concerning the meaning of theA? (x), n?(x/)}P 5= (Sab(sij(gs(x —x), (6)
infrared scales are still unsolvtR]. o

Although there are no definitive general answers to thesa!Ti' (¥); 7N} p g = €0 8083 — 1), @
problems, one can consider particular examples which eventuvhere the paramete, (k = 1, 2, 3) is a vector in the space
ally could be confronted with phenomenology or experimentathat is responsible for the Lorentz invariance violation. Also,
results. the indicesa, b, c, ... represent internal indices, correspond-

The purpose of the present research is to extend our previRg to the gauge group. In our analysis we will take 8i&2)
ous work for electrodynamidd.3] to the non-Abelian case. In group as an example whose structure constants aretfst
[13] we shown that, by deforming the canonical algebra in thd.e., the total antisymmetric tensor. One should note that a term
infrared sector, one rediscover the Carroll-Field—Jackiw theorjike e“bcycaij83(x — x’) could also be added to the right-hand
proposed fifteen years adip4]. side of(7), but since we are looking for terms which violate the

Although in the context of our approach we do not knowLorentz symmetry, this contribution would be irrelevant in the
how to treat fermionic degrees of freedom, we will consider thafollowing analysis.
this modified Yang—Mills theory hide the fermions in a Chern—  Following [13], we will keep the gauge symmetry exact
Simons term. From this point of view, it seems to be reasonablahile breaking the Lorentz invariance. Therefore, the first step
to think that confinement could be a phenomenon mainly dués to find in this context the correct generators for the gauge
to the classical behavior of the gluonic fiefds. transformations in terms of and /T fields.

The aims of the present Letter are the following: We then modify the standard Gauss law,

. berr 7 _
(1) To present a non-Abelian gauge field theory that can p&a(x) =V - Il + g™ Iy - Ac =0, ®)
understood as a Hamiltonian system where the commutators-y adding a new termj (x), to get
or Poisson brackets at the classical level—are deformed in a
similar way to those of a non-commutative system (although? (x) = ¥ (x) + A(x). 9)

we strength that this non-commutativity is in the field space, Thjs new term should depend only on the gauge potentials

not in the spacetime as in non-commutative geometry), in order to reproduce the usual gauge transformatiod on
(2) To show that our approach can also be understood as a Taking into account the commutation relations

standard Yang—Mills Lagrangian plus the term
, {117 (), B ("}

0" €up1 (A”Fp* + éA”A”AA>, 4 = —€;jx (578783 (x — x') + g™ AL (0)83(x — 1)),
where vectorial fieldsA, satisfy canonical commutations re- and
lations and,, is a given space-like vector having dimensions{n;l(x), q/b(x)}
of energy. One should also emphasize that this Chern—Simons abe 3 p
term not only violate Lorentz invariance, but also C, Pand T~ 8¢ n""fs =x) ,
symmetrieg16]. — k0" (9763 — x84 ge“" AlS3(x — X)), (10)

(3) To discuss how the modified Yang-Mills equations in . o p» e, FP | one finds that the commutator between
four dimensions can be understood in three dimensions as g, and,&/“(xz) i]s given by
Yang—Mills—Chern—-Simons system and how the behavior of the !
gauge fields is very similar to the Nielsen—Olesen vortices. {18 (), whby—46. éb(x/)} = —ge" . (x)83(x — x').

(4) To give arguments that suggest that this modified Yang—
Mills—Chern—Simons theory could be understood as a kind of Therefore, the correct generator of the gauge transforma-

“bosonized” QCD theory at low energy. tions in this theory becomes

6]

/ 3 a v 74 abc 17 e o pa
2. Yang-Mills theory with non-commutative fields 2 _/d x Q4(x) (V- 11" + g™ Iy - Ac — 0 - B), (11)

: . . ) _or equivalently
In this section we will construct the Yang—Mills theory with

non-commutative fields following similar arguments to thoseE_;2 — —/d3x _Qa(x)((ﬁ ) —6- BY), (12)
given in Ref.[13] (in other context see also R¢19]). In this

Letter, Latin indices denote spatial components and the metrighere D is the covariant gradient.

is taken as diag-1,1, 1, 1).

- 2 This condition allows us to discard {{T) the term previously mentioned,
1 In another context, this problem was studiedig]. otherwise we would be forced to include it.
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Similarly to the commutative case, one can propose the Collecting all the terms one finds th@t7) can be written as
Hamiltonian 1 2
1 . - L L=—_tr{Fu,F"} + 20" €,,p0 tr(A"F"" + —gA"A"A"),
H:/d3x—(H“~H“+B“-B“) 2 3
2 (20)
+ / 43 Aao(ﬁ ) GNPy L Ed), (13) wheretheAF andA3 non-Abelian contributions coincides with
the Chern—-Simons term afd is a space-like vectdd 9.

Therefore, the equations of motion becomes Thus, (20) shows the equivalence between a Hamiltonian
T O be . 2 formulation with deformed commutators (or Poisson brackets)
IT% = A® + VAT + g™ ApoA,, and a standard Lagrangian formulation which explicitly breaks

{H{‘(x), H} — e,-,-k(Dka)“ _ geabcAbOHé' — 8 % . (14)  down Lorentz invariance.

Finally, we note that the Chern—-Simons term should be
treated as a non-perturbative contribution. Indeed, if one
rescalesdf — g_lAZ then the action becomes

1 0 2
_ o _ S:/d“x[—ztr(Fz)Jr—’;e“W tr(AvaJr—AvApAa)]
where the last term introduces a modification with respect to 2g 8 3

the commutative case. Therefore, the Chern—Simons term must be considered at the
Finally, one can find an equivalent Lagrangian which re-same foot as the standard kine#ié part in theg expansion.

produces the same equations of motion by identifying a set of As an example of this last fact, we think it is instructive to

commuting fieldsP [18] such that thed’s andP’s be canoni-  check a simple case. Let us consider the plane wave solutions

cally conjugate variables. These linear combinatiof/&f and  given by Colemarfi20].

A’s can be identified as This solution of the Yang-Mills theory is given by the

ansatz,

Ai=f“(x+)x1+g“(x+)x2+h“(x+).
Here we are using light-cone coordinatets, = Aj = A%
{A¢(), PP} = 8;;89083(x — x), (15)  andx® = x9 + x3. The functionsf?, g* andh? are arbitrary
T .
{Pia (x), sz_v(x/)} -0 (16) but decreasing likéx|*, with « a negative constant, for large

argumentgx|. So, the strength tensor becoméé, = f¢ and
In terms of these new variables the Lagrangian becomes F9, = g4,

The first equation establishes thal’ = —Fi“O. The second
equation can be written as

(DolT;)" = €ijx (D7 BY)* — 6 x 119,

1 1

1 .
Pi=" — Ee,-jkAJ”Qk,

which satisfy the canonical algebra

+27~
5 . Then, we can consider a correction of this solution depend-
L =/d x P'A} — H, ing on 6 perturbatively. This will give a perturbative ansatz
for F,
where the only modifications comes from the terms propor- 0 1 )
tional tod. Fi,=FO%, + FY%, 1+ 0(6%),

Thus, the equivalent Lagrangian density becomes where F© is the Coleman solution anB@ is the first order

1 correction inf. Then, the equations of motion up to first or-
L=Lo+ EQka, A7) ger are,
whereLg is the Yang—Mills Lagrangian density, 3MF(1)uuv + geubc(A(O)ZF(l)cuv + A(l)ﬁF(O)clw)
1 1
Lo= _Zpgv Famy, _ Eeueuvop F(O)gp —0. (21)
with It is easy to see that, for large™|, the perturbationF®
+e+1 and then, for large distances, it is bigger
Fu=0,A, — 8,A Ap AV, goes aslxT["' an » for 1arg » L1S bigg
po =0 Ay = Ay + 8l v] than the zeroth order contribution to the perturbative solution.
andCy given by, Hence, it is not justified to take the non-commutative contribu-
. tion as a perturbation to the Yang—Mills equations.
— e (— AT A a0 pa . . . .
Cio = —eiju(=Af A] + ATF). (18) In the next section, we will deal with an exact solution for
Using A; = dpA; and the definition 01:5,, one finds, the complete (sourceless) equations of motiorR3R{0}. We
will find that it corresponds to non-perturbative vortex configu-
/ d3x Cr = / d%x eiji(— Ao AY — AGO; AY + AGD; AY rations.
- géabcAgAf?A?) 3. Vortex solutions of the modified Yang-Mills theory
= /d3x 2€1vpo tr(A"FP" + ggAvApAa) (19) Generally speaking one should note that the modification in
3 (20) breaks rotational invariance, and the equations of motion
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become equivalent to a coupled Yang—Mills—Chern—Simon®8ut the chromoelectric energy is logarithmically divergent at
system if the space-like vectdy, is chosen in a particular spa- the ultraviolet region:
tial direction. 0
This last fact is quite interesting. Indeed, if one choggse- 1 2. 2a pa_ 2 .5
(0,0,0,0), one finds an almost Yang—MiIIs—Chern—SimonsEe -5 dxET-EC=m [ dpp[(#2)"+ (¥0)°]
theory with non-commutative gauge fields ir-2L dimensions A

after to use a suitable rescaling of fields. The difference, how- w
ever, is that thed,, field depend on(xo, x1, x2, x3) instead of :JTCZ/du qu(u), (27)
(x0, x1, x2) as usual. This result seems to be completely gen- %

eral.
One should also note that, in analogy with the quantum Hal
effect, physical excitations like quarks in a Yang—Mills Lorentz
symmetry breaking theory necessarily must live ia 2dimen-
sions (although the , field is four-dimensional).
The above discussion can also be extended to any gau

hereA is a given cutoff. However, one should notice that it is
t the infrared region whergis relevant.

Thus, we see that in four dimensions one finds that the
energy of these solutions increases linearly withor large
distances and, therefore, the gluonic fields would appear as con-
$fed along the direction.
group. I . Finally, we would like to sketch a possible origin of the

Now, we will discuss an exact solution for the non'commUta"‘four—dimensional“ Chern—Simons term. In so doing, let us

tive U(2) Yg_ng—MiIIs the_ory with e_lvortex behavior. consider massless QCD in four dimensions, described by the
The modified Yang—Mills equations are, Lagrangian

v\a 01} vpo — 1 U
(DoF™)" = Z e Fiy =O. #2 L=l yapy. (28)

The solutions for these equations have been extensively digshere a sum over flavor indices is assumed

cussed in the literature (for a review see, e.g. REf]) and, Naively, one could expect that, by integrating the quark
in particular, the vortex-like solutions for Yang-Mills—Chern— fiaids to find an effective action at low energies, one could
Simons are well known. obtain contributions different from a Chern—Simons term. How-

However, we emphasize here that, although these vortex S@yer one also can argue the following: at very low energy, con-

lutions fit perfectly in our problem, th.e_y are also mandatory ifsidering only heavy quarks, let us suppose that the space—time
the canonical commutators are modified a¢ip-(7). Indeed, g compactified so that the quark field could be written as
the® parameter imply the choice of a particular plane and—as

we are interested in the infrared limit—one could neglaat (xg, x1, x2, x3) = eiXTscp(xo,xl,xz),
tatis mutandis the short distances effects.

In order to solve(22), let us consider a set of coordinates
in R3, and the unitary vectors in the plang = const,¢; =
Gijxj/p, 0i = x;/p, wherep is the standard radial coordinate
in the plane. Let us consider the following axially symmetric
ansatz for the gauge fields

wheret is the compactification radidgfor a more detailed dis-
cussion se@1]).

Once this compactification is assumed, the “heavy quark”
acquires an effective mass= 1/¢, and Eq.(28) in this effec-
tive description becomes

1, _.
Ag=uatoF).  AT=d o +5shs. (@3 T gl HIWPmme 29
P where @(ilp — m)p is a fermionic three-dimensional La-

andA% =0. grangian. Here, the fermionic determinant can be calculated and

Using(22), one finds that the result at the lowest order iy = ¢ is the Chern—Simons

—ax term[22].

Y1=ce TOKLUMp), (24) It is worthwile to notice that this kind of topological terms
Yy =011, (25)  coming from integrated-out fermions appear also in differ-

ent contexts. For example, D’Hoker and Farhi consider fermi-
ons getting large masses through Yukawa couplings to Higgs
fields [23], obtaining at low energies a Wess—Zumino-Witten
term as a relic of the quark degrees of freedom in the heavy
M =02+ a2, mass limit.

Another interesting point is how thi€ + 1)-dimensional
ase is related to the8 + 1)-dimensional one. The answer to

wherey, = dy2/dp and K1(x) is the Bessel function of the
second kind.
The coefficientM is defined as

andc anda are constant with dimensions of energy. The gauge,
potential given in(23) fall exponentially to zero whep — oc.
For the configuration discussed above, the chromomagnetic
energy is finite 3 This compactification occur when we consider, for example, a membrane
vibrating in the space. If the transversal amplitude is small enough, then the

e phonons propagate only on the surface of the membrane, and the compactifica-

1 2
En= 2 / d°x By - By = 5 (26) tion is a good approximation.
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