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Abstract

The Yang–Mills theory with non-commutative fields is constructed following Hamiltonian and Lagrangian methods. This modifica
the standard Yang–Mills theory produces spatially localized solutions very similar to those of the standard non-Abelian gauge theo
modification of the Yang–Mills theory contain in addition to the standard contribution, the termθ εµ

µνρλ(A Fν ρλ + 2
3A A A )ν ρ λ whereθµ is

a given space-like constant vector with canonical dimension of energy. TheAµ field rescaling and the choiceθµ = (0,0,0, θ), suggest the
equivalence between the Yang–Mills–Chern–Simons theory in 2+ 1 dimensions and QCD in 3+ 1 dimensions in the heavy fermionic excitatio
limit. Thus, the Yang–Mills–Chern–Simons theory in 2+ 1 dimensions could be a codified way to QCD with only heavy quarks. The clas
solutions of the modified Yang–Mills theory for theSU(2) gauge group are explicitly studied.
 2005 Elsevier B.V.Open access under CC BY license.
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1. Introduction

It has been shown that non-commutative geometry is an
portant mathematical ingredient that could be a clue for sev
important unsolved problems in theoretical physics[1]. One of
the consequences of non-commutative geometry is the Lo
invariance symmetry breaking that, as was pointed out by
eral authors, could happen at very high or very low energie
a consequence of the IR/UV property, implying that interes
new phenomenological possibilities could appear[2,3] and new
possible extensions of the Standard Model[4].

In Ref. [5], an approach to a Lorentz invariance viol
ing quantum field theory has been proposed, inspired in
commutative geometry, where the fields (instead of satisf
the standard canonical commutators) obey

(1)
[
φi(x),φ� j (y)� =]

iθ δ(xij � − �y),
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(2)
[
π (x),πi � j (y)� =]

iB δ(xij � − �y),

(3)
[
φ (x),πi � j (y)� =]

iδ δ(xij � − �y),

where i, j, . . . = 1,2,3, . . . are internal indices andθ and B

are scales with dimensions of (energy)−1 and energy, respec
tively. These scales correspond to ultraviolet and infrared w
Lorentz invariance violations, respectively.

These small deviations of the Lorentz symmetry (ultravio
and infrared) imply modifications to the relativity principle.
the ultraviolet sector[6], for example, it allows to describe a
interesting phenomenology for UHECR, where possible n
effects could be studied[7].

The present approach does not correspond to the
commutative geometry in the true sense, where one adopt
commutator

[x, y] ∼ θ.

Rather, while the commutator(1) violates the microcausalit
principle imposing an ultraviolet scale,(2) affects the physics
in the infrared sector. This is relevant in the infrared secto
quantum field theory[8], where other phenomena could be e
plained.
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Indeed, in the infrared region new windows could eme
to largely unsolved problems, such as the dark matter and
ergy puzzle[9], matter–antimatter asymmetry[10], primordial
magnetic fields[11] and other interesting phenomena. Ho
ever, important open questions concerning the meaning o
infrared scales are still unsolved[12].

Although there are no definitive general answers to th
problems, one can consider particular examples which eve
ally could be confronted with phenomenology or experime
results.

The purpose of the present research is to extend our p
ous work for electrodynamics[13] to the non-Abelian case. I
[13] we shown that, by deforming the canonical algebra in
infrared sector, one rediscover the Carroll–Field–Jackiw the
proposed fifteen years ago[14].

Although in the context of our approach we do not kn
how to treat fermionic degrees of freedom, we will consider t
this modified Yang–Mills theory hide the fermions in a Cher
Simons term. From this point of view, it seems to be reason
to think that confinement could be a phenomenon mainly
to the classical behavior of the gluonic fields.1

The aims of the present Letter are the following:

(1) To present a non-Abelian gauge field theory that can
understood as a Hamiltonian system where the commutato
or Poisson brackets at the classical level—are deformed
similar way to those of a non-commutative system (altho
we strength that this non-commutativity is in the field spa
not in the spacetime as in non-commutative geometry),

(2) To show that our approach can also be understood
standard Yang–Mills Lagrangian plus the term

(4)θµεµνρλ

(
AνFρλ + 2

3
AνAρAλ

)
,

where vectorial fieldsAν satisfy canonical commutations r
lations andθµ is a given space-like vector having dimensio
of energy. One should also emphasize that this Chern–Sim
term not only violate Lorentz invariance, but also C, P an
symmetries[16].

(3) To discuss how the modified Yang–Mills equations
four dimensions can be understood in three dimensions
Yang–Mills–Chern–Simons system and how the behavior o
gauge fields is very similar to the Nielsen–Olesen vortices.

(4) To give arguments that suggest that this modified Ya
Mills–Chern–Simons theory could be understood as a kin
“bosonized” QCD theory at low energy.

2. Yang–Mills theory with non-commutative fields

In this section we will construct the Yang–Mills theory wi
non-commutative fields following similar arguments to tho
given in Ref.[13] (in other context see also Ref.[19]). In this
Letter, Latin indices denote spatial components and the m
is taken as diag(−1,1,1,1).

1 In another context, this problem was studied in[15].
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Essentially, one starts considering the following modifi
Poisson brackets

(5)
{
Aa

i (x),Ab
j (x

′)
}
P.B

= 0,

(6)
{
Aa

i (x),Πb
j (x′)

}
P.B

= δabδij δ
3(x − x′),

(7)
{
Πa

i (x),Πb
j (x′)

}
P.B

= εijkθ
kδabδ3(x − x′),

where the parameterθk (k = 1,2,3) is a vector in the spac
that is responsible for the Lorentz invariance violation. Al
the indicesa, b, c, . . . represent internal indices, correspon
ing to the gauge group. In our analysis we will take theSU(2)

group as an example whose structure constants are justiεabc,
i.e., the total antisymmetric tensor. One should note that a
like εabcγcδij δ

3(x − x′) could also be added to the right-ha
side of(7), but since we are looking for terms which violate t
Lorentz symmetry, this contribution would be irrelevant in t
following analysis.

Following [13], we will keep the gauge symmetry exac2

while breaking the Lorentz invariance. Therefore, the first s
is to find in this context the correct generators for the ga
transformations in terms ofA andΠ fields.

We then modify the standard Gauss law,

(8)Ψa(x) ≡ �∇ · �Πa + gεabc �Πb · �Ac = 0,

by adding a new term,Λ(x), to get

(9)Ψ ′(x) = Ψ (x) + Λ(x).

This new term should depend only on the gauge poten
in order to reproduce the usual gauge transformation onA.

Taking into account the commutation relations{
Πa

i (x),Bb
k (x′)

}
= −εijk

(
δab∂j δ3(x − x′) + gεabcA

j
c (x)δ3(x − x′)

)
,

and{
Πa

i (x),Ψ b(x)
}

= −gεabcΠicδ
3(x − x′)

(10)− εijkθ
k
(
∂j δ3(x − x′)δab + gεabcA

j
c δ

3(x − x′)
)
,

whereBb
k = 1

2εijkF
bij , one finds that the commutator betwe

Πa
i andΨ a(x) is given by

{
Πa

i (x),Ψ b(x′) − �θ · �Bb(x′)
} = −gεabcΠci(x)δ3(x − x′).

Therefore, the correct generator of the gauge transfor
tions in this theory becomes

(11)Ξ ′
Ω = −

∫
d3x Ωa(x)

( �∇ · �Πa + gεabc �Πb · �Ac − �θ · �Ba
)
,

or equivalently

(12)Ξ ′
Ω = −

∫
d3x Ωa(x)

(
( �D · �Π)a − �θ · Ba

)
,

where �D is the covariant gradient.

2 This condition allows us to discard in(7) the term previously mentioned
otherwise we would be forced to include it.
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Similarly to the commutative case, one can propose
Hamiltonian

H =
∫

d3x
1

2

( �Πa · �Πa + �Ba · �Ba
)

(13)+
∫

d3x Aa0( �∇ · �Πa + gεabc �Πb · �Ac − �θ · �Ba
)
.

Therefore, the equations of motion becomes

�Πa = �̇Aa + �∇Aa0 + gεabcAb0 �Ac,

(14)
{
Πa

i (x),H
} = εijk

(
DjBk

)a − gεabcAb0Πi
c − �θ × �Πa.

The first equation establishes thatΠa
i = −Fa0

i . The second
equation can be written as

(D0Πi)
a = εijk

(
DjBk

)a − �θ × �Πa,

where the last term introduces a modification with respec
the commutative case.

Finally, one can find an equivalent Lagrangian which
produces the same equations of motion by identifying a se
commuting fieldsP [18] such that theA’s andP ’s be canoni-
cally conjugate variables. These linear combination ofΠ ’s and
A’s can be identified as

P a
i ≡ Πa

i − 1

2
εijkA

jaθk,

which satisfy the canonical algebra

(15)
{
Aa

i (x),P b
j (x′)

} = δij δ
abδ3(x − x′),

(16)
{
P a

i (x),P b
j (x′)

} = 0.

In terms of these new variables the Lagrangian become

L =
∫

d3x P a
i Ȧa

i − H,

where the only modifications comes from the terms prop
tional to �θ .

Thus, the equivalent Lagrangian density becomes

(17)L = L0 + 1

2
θkCk,

whereL0 is the Yang–Mills Lagrangian density,

L0 = −1

4
Fa

µνF
aµν,

with

Fµν = ∂µAν − ∂νAµ + g[Aµ,Aν],
andCk given by,

(18)Ck = −εijk

(−Ȧa
i A

a
j + Aa0Fa

ij

)
.

UsingȦi = ∂0Ai and the definition ofFa
ij , one finds,

∫
d3x Ck =

∫
d3x εijk

(−Aa
i ∂0A

a
j − Aa

0∂iA
a
j + Aa

0∂jA
a
i

− gεabcAa
0A

b
i A

c
j

)

(19)=
∫

d3x 2εkνρσ tr

(
AνFρσ + 2

3
gAνAρAσ

)
.

e

o

f

-

Collecting all the terms one finds that(17)can be written as

(20)

L = −1

2
tr
{
FµνF

µν
} + 2θµεµνρσ tr

(
AνFρσ + 2

3
gAνAρAσ

)
,

where theAF andA3 non-Abelian contributions coincides wit
the Chern–Simons term andθµ is a space-like vector[19].

Thus, (20) shows the equivalence between a Hamilton
formulation with deformed commutators (or Poisson brack
and a standard Lagrangian formulation which explicitly bre
down Lorentz invariance.

Finally, we note that the Chern–Simons term should
treated as a non-perturbative contribution. Indeed, if
rescalesAa

µ → g−1Aa
µ then the action becomes

S =
∫

d4x

[
1

2g2
tr
(
F 2)+ θµ

g2
εµνρσ tr

(
AνFρσ + 2

3
AνAρAσ

)]
.

Therefore, the Chern–Simons term must be considered a
same foot as the standard kineticF 2 part in theg expansion.

As an example of this last fact, we think it is instructive
check a simple case. Let us consider the plane wave solu
given by Coleman[20].

This solution of the Yang–Mills theory is given by th
ansatz,

Aa+ = f a
(
x+)

x1 + ga
(
x+)

x2 + ha
(
x+)

.

Here we are using light-cone coordinates,Aa± = Aa
0 ± Aa

3
andx± = x0 ± x3. The functionsf a , ga andha are arbitrary
but decreasing like|x|α , with α a negative constant, for larg
arguments|x|. So, the strength tensor becomesFa

+1 = f a and
Fa

+2 = ga .
Then, we can consider a correction of this solution depe

ing on θ perturbatively. This will give a perturbative ansa
for F ,

Fa
µν = F (0)a

µν + F (1)a
µν + O

(
θ2),

whereF (0) is the Coleman solution andF (1) is the first order
correction inθ . Then, the equations of motion up to first o
der are,

∂µF (1)aµν + gεabc
(
A(0)b

µF (1)cµν + A(1)b
µF (0)cµν

)
(21)− 1

2
θµεµνσρF (0)a

σρ = 0.

It is easy to see that, for large|x+|, the perturbationF (1)

goes as|x+|α+1 and then, for large distances, it is bigg
than the zeroth order contribution to the perturbative solut
Hence, it is not justified to take the non-commutative contri
tion as a perturbation to the Yang–Mills equations.

In the next section, we will deal with an exact solution
the complete (sourceless) equations of motion onR

2\{0}. We
will find that it corresponds to non-perturbative vortex config
rations.

3. Vortex solutions of the modified Yang–Mills theory

Generally speaking one should note that the modificatio
(20) breaks rotational invariance, and the equations of mo



H. Falomir et al. / Physics Letters B 632 (2006) 740–744 743

on
-

ns

ow

en

a
tz

au

ta

di

n–

x s
y if

a

es

te
ric

e

ug

net

at

t is

the

con-

e
us
the

ark
uld
w-
on-
time

-

rk”

-
and

s

s
er-
mi-
iggs
ten
avy

to

rane
n the
ctifica-
become equivalent to a coupled Yang–Mills–Chern–Sim
system if the space-like vectorθµ is chosen in a particular spa
tial direction.

This last fact is quite interesting. Indeed, if one chooseθµ =
(0,0,0, θ), one finds an almost Yang–Mills–Chern–Simo
theory with non-commutative gauge fields in 2+ 1 dimensions
after to use a suitable rescaling of fields. The difference, h
ever, is that theAµ field depend on(x0, x1, x2, x3) instead of
(x0, x1, x2) as usual. This result seems to be completely g
eral.

One should also note that, in analogy with the quantum H
effect, physical excitations like quarks in a Yang–Mills Loren
symmetry breaking theory necessarily must live in 2+1 dimen-
sions (although theAµ field is four-dimensional).

The above discussion can also be extended to any g
group.

Now, we will discuss an exact solution for the non-commu
tive SU(2) Yang–Mills theory with a vortex behavior.

The modified Yang–Mills equations are,

(22)
(
DνF

µν
)a − θν

2
εµνρσ F a

ρσ = 0.

The solutions for these equations have been extensively
cussed in the literature (for a review see, e.g. Ref.[17]) and,
in particular, the vortex-like solutions for Yang–Mills–Cher
Simons are well known.

However, we emphasize here that, although these vorte
lutions fit perfectly in our problem, they are also mandator
the canonical commutators are modified as in(5)–(7). Indeed,
theθ parameter imply the choice of a particular plane and—
we are interested in the infrared limit—one could neglectmu-
tatis mutandis the short distances effects.

In order to solve(22), let us consider a set of coordinat
in R

3, and the unitary vectors in the planex3 = const,φ̂i =
εij x

j /ρ, ρ̂i = xi/ρ, whereρ is the standard radial coordina
in the plane. Let us consider the following axially symmet
ansatz for the gauge fields

(23)Aa
0 = φ̂aψ2(x0, �r), Aa

i = φ̂aφ̂iψ1(x0, �r) + δa
3φ̂i

1

ρ
,

andA0
3 = 0.

Using(22), one finds that

(24)ψ1 = ce−αx0K1(Mρ),

(25)ψ ′
2 = θψ1,

whereψ ′
2 = dψ2/dρ andK1(x) is the Bessel function of th

second kind.
The coefficientM is defined as

M =
√

θ2 + α2,

andc andα are constant with dimensions of energy. The ga
potential given in(23) fall exponentially to zero whenρ → ∞.

For the configuration discussed above, the chromomag
energy is finite

(26)Em = 1
∫

d2x Ba · Ba = πc2

.

2 2
s

-

-

ll

ge

-

s-

o-

s

e

ic

But the chromoelectric energy is logarithmically divergent
the ultraviolet region:

Ee = 1

2

∫
d2x �Ea · �Ea = π

∞∫
Λ

dρ ρ
[
(Ψ ′

2)
2 + (Ψ̇1)

2]

(27)= πc2

∞∫
Λ

duuK2
1(u),

whereΛ is a given cutoff. However, one should notice that i
at the infrared region whereθ is relevant.

Thus, we see that in four dimensions one finds that
energy of these solutions increases linearly withL for large
distances and, therefore, the gluonic fields would appear as
fined along thez direction.

Finally, we would like to sketch a possible origin of th
“four-dimensional” Chern–Simons term. In so doing, let
consider massless QCD in four dimensions, described by
Lagrangian

(28)L = −1

4
F 2 + ψ̄(i/D)ψ,

where a sum over flavor indices is assumed.
Naively, one could expect that, by integrating the qu

fields to find an effective action at low energies, one co
obtain contributions different from a Chern–Simons term. Ho
ever, one also can argue the following: at very low energy, c
sidering only heavy quarks, let us suppose that the space–
is compactified so that the quark field could be written as

ψ(x0, x1, x2, x3) = ei
x3
� ϕ(x0, x1, x2),

where� is the compactification radius3 (for a more detailed dis
cussion see[21]).

Once this compactification is assumed, the “heavy qua
acquires an effective massm = 1/�, and Eq.(28) in this effec-
tive description becomes

(29)L = −1

4
F 2 + ϕ̄(i/D − m)ϕ,

where ϕ̄(i/D − m)ϕ is a fermionic three-dimensional La
grangian. Here, the fermionic determinant can be calculated
the result at the lowest order in 1/m = � is the Chern–Simon
term[22].

It is worthwile to notice that this kind of topological term
coming from integrated-out fermions appear also in diff
ent contexts. For example, D’Hoker and Farhi consider fer
ons getting large masses through Yukawa couplings to H
fields [23], obtaining at low energies a Wess–Zumino–Wit
term as a relic of the quark degrees of freedom in the he
mass limit.

Another interesting point is how this(2 + 1)-dimensional
case is related to the(3 + 1)-dimensional one. The answer

3 This compactification occur when we consider, for example, a memb
vibrating in the space. If the transversal amplitude is small enough, the
phonons propagate only on the surface of the membrane, and the compa
tion is a good approximation.
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03)

Phys.

D 72
this question is quite simple: the connection between the g
field in three and four dimensions is

A(3)
µ → √

�Aµ,

then with this rescaling the four-dimensional measure beco

d4x

�
→ d̃3x.

We conclude this section emphasizing that the anal
here presented could be a new route to understand some
perturbative aspects of QCD.

4. Conclusions

In this Letter we have shown that deforming the Pois
brackets for the canonical momenta in a Yang–Mills theory,
resulting theory is equivalent to a Yang–Mills–Chern–Sim
system. The classical theory—taking theSU(2) group—has
vortex-like solutions similar to the Nielsen–Olesen ones.
difference, however, is that in our case they appear as a co
quence of Lorentz invariance violation.

However, we emphasize that our result does not imply
quarks fields are absent in our approach. Rather, the Ch
Simons term contains the information about the fermionic
grees of freedom and, in this sense, our procedure could pro
an alternative route to study non-perturbative effects.
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