000150453 001__ 150453
000150453 005__ 20251017144637.0
000150453 0247_ $$2doi$$a10.1016/j.biombioe.2025.107633
000150453 0248_ $$2sideral$$a142567
000150453 037__ $$aART-2025-142567
000150453 041__ $$aeng
000150453 100__ $$aAntorán, Daniel$$uUniversidad de Zaragoza
000150453 245__ $$aScalable synthesis of heteroatom-doped carbons from waste hemp hurd with enhanced sodium-ion and potassium-ion storage capabilities
000150453 260__ $$c2025
000150453 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150453 5203_ $$aIn this study, we applied an easily scalable two-step process comprising hydrothermal pretreatment with simultaneous mild heteroatom doping (N, N-S, and N-P) followed by carbonization at 800 °C to synthesize hard carbons (HCs) from waste hemp hurd for Na-ion and K-ion storage. The proposed synthesis pathway represents a viable alternative to the more energy-intensive, environmentally harmful, and/or challenging to scale up processes reported in the literature. The resulting carbons, particularly the dual NP-doped and single N-doped varieties, demonstrated improved electrochemical performance in terms of specific capacity (indicating more reversible ion storage sites) and rate capability (reflecting faster ion transport kinetics). These enhancements can be attributed to structural and surface chemistry modifications introduced during hydrothermal pretreatment. For Na-ion storage, the N-doped HC achieved a specific capacity of 293.6 mAh g−1 at 0.1 A g−1 (and 125 mAh g−1 at 1 A g−1) with an initial coulombic efficiency (ICE) of 73.5 % using an ester-based electrolyte. The same material showed an enhanced rate capability when an ether-based electrolyte was employed, achieving 155 mAh g−1 at 1 A g−1. For K-ion half-cells, the dual N-P-doped HC exhibited the best performance at low current rates, delivering a specific capacity of 260 mAh g−1 at 0.1 A g−1 in ester-based electrolytes. However, the N-doped HC showed the best rate capability at 2 A g−1 (57 mAh g−1), which is a reasonable value given the lack of mesopores in produced HCs.
000150453 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T22-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PDC2022-133866-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-127847OB-I00$$9info:eu-repo/grantAgreement/ES/MCINN/PID2022-137218OB-I00
000150453 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000150453 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/submittedVersion
000150453 700__ $$0(orcid)0000-0002-5526-3962$$aAlvira, Darío$$uUniversidad de Zaragoza
000150453 700__ $$0(orcid)0000-0002-6873-5244$$aSebastián, Víctor$$uUniversidad de Zaragoza
000150453 700__ $$0(orcid)0000-0002-0118-3254$$aManyà, Joan J.$$uUniversidad de Zaragoza
000150453 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000150453 773__ $$g194 (2025), 107633$$pBiomass bioenergy$$tBIOMASS & BIOENERGY$$x0961-9534
000150453 8564_ $$s9233953$$uhttps://zaguan.unizar.es/record/150453/files/texto_completo.pdf$$yPreprint
000150453 8564_ $$s2434859$$uhttps://zaguan.unizar.es/record/150453/files/texto_completo.jpg?subformat=icon$$xicon$$yPreprint
000150453 909CO $$ooai:zaguan.unizar.es:150453$$particulos$$pdriver
000150453 951__ $$a2025-10-17-14:29:55
000150453 980__ $$aARTICLE