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1.1. Base matemática . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Los observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3. El espacio complejo proyectivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4. La dinámica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5. La información espectral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. Efecto Zenón Cuántico. QZE 13
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Resumen

Las aproximaciones usuales a la mecánica cuántica y clásica son bastante diferentes. Por un lado
tenemos una estructura lineal que se nos presenta en un espacio de Hilbert H, estructura que es considerada
realmente importante para la formulación posterior; y por otro lado nos encontramos con las ecuaciones de
Hamilton, que nos definen trayectorias en un espacio de fases. Sin embargo desde los años 70, ha surgido
una formulación alternativa de la mecánica cuántica análoga a la perspectiva geométrica de la mecánica
clásica no relativista. Para un estudio de esta rama completo e introductorio se recomienda la lectura de
los art́ıculos [1],[2] y [3].

Una vez se haya introducido esta formulación, se pasará al estudio del efecto Zenon cuántico (QZE),
primeramente abordado por Von Neumann [4] y unos veinte años más tarde, desarrollado teóricamente por
B. Misra y G. Sudarshan [5], los cuales acuñaron el nombre con el que hoy se le conoce, QZE. Destacar
que pese a que académicamente se hab́ıa hecho uso de los sistemas inestables para probar dicho efecto,
la primera validación experimental fue hecha por Itano et al. [6], basándose en el experimento propuesto
por Cook[7]. Para este apartado nos centraremos en el art́ıculo de P. Facchi y S. Pascazio [8]. Además
se aplicará la formulación geométrica aprendida al estudio del efecto Zenón cuántico, de forma análoga a
como se desarrolla en [9]. Cabe resaltar que entre las aplicaciones prácticas existentes hasta la fecha de
este efecto están la preservación de la polarización de spin en gases y el control de la decoherencia en
computación cuántica.

Para el lector que no esté familiarizado con los términos geométricos que aqúı se utilizan, se puede
encontrar en el apéndice A, una descripción resumida de dichos conceptos. En el siguiente apéndice se
anexa una breve descripción del efecto Zenón inverso (IZE). Además en el desarrollo de este trabajo se
tomarán unidades naturales o de Planck (~ = 1).
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Caṕıtulo 1

La formulación geométrica de la
Mecánica Cuántica

Para poder reformular la teoŕıa cuántica desde un punto de vista geométrico es imprescindible iden-
tificar los ingredientes principales que engloba el marco cuántico, de forma que podamos reformular la
estructura matemática que lo sostiene. Entre estos ingredientes encontramos: un espacio de estados al
cual denotaremos S, que corresponde al conjunto de rayos de un espacio de Hilbert complejo separable
en la formulación usual de la Mecánica Cuántica, y que representan los estados puros del sistema, y un
espacio de observables O, que corresponde al conjunto de las magnitudes f́ısicas del sistema, y que en
la formulación habitual es el conjunto de operadores autoadjuntos en el espacio de Hilbert considerado.
Debemos considerar además el proceso de medida y la evolución de los estados del sistema f́ısico. El
proceso de medida viene representado por una asignación numérica al par definido por el estado f́ısico y
el observable O × S → R, mientrás que para describir la evolución del sistema debemos introducir una
ecuación diferencial, correspondiente a la ecuación de Schrödinger en la formulación tradicional, cuyas
soluciones definen la evolución temporal de los estados del sistema f́ısico. Toda la teoŕıa desarrollada a
continuación, será para el caso particular de un espacio de Hilbert de dimensión finita N , es decir un
sistema de N niveles, con el objetivo de poder prescindir de dificultades topológicas que hacen referencia a
propiedades de continuidad de los operadores que aparecen, aśı como a sus posibles dominios de definición.

1.1. Base matemática

En primer lugar, para poder aplicar el formalismo geométrico, debemos introducir una variedad dife-
renciable 1 donde trabajar. Para ello observemos que la realificación del espacio de Hilbert H de dimensión
compleja N puede dotarse de una estructura de variedad real diferenciable HR := MQ de dimensión real
2N , que admite una carta global, por ejemplo la obtenida al elegir una base del mencionado espacio de
Hilbert. Al elegir una tal base cada elemento de H posee unas coordenadas {|zk〉} y podemos separar cada
una de sus coordenadas en su parte real y parte imaginaria de la forma:

|ψ〉 =
∑
k

ψk |ek〉 de forma que ψk → ψRk + i ψIk (1.1)

Entonces,

({ψ1, ψ2, ..., ψN}) ∈ H 7→
({
ψR1 , ψ

R
2 , ..., ψ

R
N , ψ

I
1 , ψ

I
2 , ..., ψ

I
N

})
≡ (ΨR,ΨI) ∈MQ (1.2)

En consecuencia esta variedad real diferenciable MQ es equivalente a R2N

1Ver en apéndice A DFN A.1 y siguientes.
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4 1.1. BASE MATEMÁTICA

Además, el hecho de que el espacio de Hilbert sea complejo se traduce en la existencia de un tensor
J de tipo (1,1) en la variedad MQ tal que J2 = −I, que recibe el nombre de estructura compleja2 . La
variedad que hemos obtenido aśı es del tipo particular que se conoce como variedad Kähler [10].

Por ahora hemos traducido el espacio de estados dados en unas ciertas coordenadas que por analoǵıa
con el caso de mecánica clásica, denotaremos

ψRi ≡ qi y ψIi ≡ pi (1.3)

En efecto, veamos que MQ está dotada de una estructura simpléctica y que las mencionadas coordenadas
son efectivamente coordenadas de Darboux3 para tal forma simpléctica. La propiedad de que el producto
interno sea tal que 〈ψ| φ〉 sea conjugado de 〈φ| ψ〉 se traduce en que el espacio lineal de Hilbert HR
está dotado de una forma bilineal antisimétrica no degenerada mediante ω(|φ〉 , |ψ〉) = Im 〈φ| ψ〉 y por
tanto MQ está dotado de una estructura simpléctica. Recordando que

〈φ| ψ〉 =
n∑
k=1

(φRk − i φIk)(ψRk + i ψIk),

vemos que

ω(|φ〉 , |ψ〉) = Im 〈φ| ψ〉 =
n∑
k=1

(φRk ψ
I
k − ψRk φIk),

lo que nos muestra que qk = Reφk, pk = Imφk son coordenadas de Darboux.

Podemos traducir las estructuras algebráicas disponibles en H en objetos tensoriales sobre la variedad
MQ. Por otro lado, al igual que en el caso clásico, las trayectorias del sistema f́ısico vendrán determinadas
por las curvas integrales de un campo vectorial4 responsable de la dinámica. Es por ello que para esta
‘traducción’ debemos considerar los fibrado tangente y cotangente, teniendo en cuenta que puesto que H
es un espacio vectorial podemos identificar para cada |φ〉 ∈ H el espacio tangente T|φ〉H con el propio H,
de forma que a cada |ψ〉 ∈ H le corresponde la aplicación que asocia a cada función f diferenciable en un
entorno del punto |φ〉, el valor real (

d

dt
f(|φ〉+ t |ψ〉)

)
t=0

.

Además, con esta identificación los campos vectoriales en H vendrán dados por aplicaciones X : H → H.
Mencionamos a continuación algunos ejemplos interesantes, como son los campos vectoriales constantes y
los campos vectoriales lineales:

· Con cada elemento |ψ〉 ∈ H le podemos asociar un campo vectorial constante

X|ψ〉 : MQ → TMQ |φ〉 7→ (|φ〉 , |ψ〉) (1.4)

Observemos que lo que hemos hecho, es trasladar |ψ〉 ∈ H al espacio tangente en cada punto, es
decir, en este lenguaje los estados |ψ〉 ∈ H son los vectores pertenecientes al espacio tangente en el
punto |φ〉. Además, elegida una base de H las componentes de |ψ〉 ∈ H tienen una parte real y una
imaginaria pura de forma que el campo queda descrito por:

X|ψ〉(|φ〉) = (|φ〉 ,ΨR,ΨI) (1.5)

2Aunque inicialmente este cambio de notación i→ J parezca trivial, este pequeño cambio en el punto de vista permitirá in-
troducir la formulación simpléctica de la mecánica cuántica.

3Ver en apéndice A el teorema A.0.1.
4Ver en apéndice A DFN A.3.
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· Recordemos que si V es un espacio lineal real, con la identificación del espacio tangente a V en
cada punto con el propio V , cada aplicación lineal A : V → V define un campo vectorial XA

mediante XA(v) = (v,Av). En la carta definida por la elección de una base de V , cuyas coordenadas
denotaremos

{
xi
}

, dichos campos vectoriales XA vendrán dados en tales coordenadas por XA =

ai jx
j ∂
∂xi

, de forma que las ecuaciones que determinan sus curvas integrales son ecuaciones diferenciaes
lineales.

En el caso particular de un espacio de Hilbert H el campo vectorial XA definido por la aplicación
lineal A : H → H, con la identificación TH ≈ H×H, está dado por XA : |ψ〉 7→ (|ψ〉 , A |ψ〉) ∈ H×H.
Las curvas integrales de estos campos vectoriales son soluciones de ecuaciones diferenciales lineales
˙|ψ〉 = A |ψ〉 . Veremos que el caso de interés en Mecánica Cuántica es cuando A es un operador

(anti-)autoadjunto.

· El caso particular en que A = I es especialmente importante ya que el campo vectorial lineal co-
rrespondiente, ∆ = XI , codifica la estructura lineal disponible en MQ. Juega un papel bastante
similar al conocido como campo de Liouville [11], o campo de dilataciones, ya que en este caso no
sólo se dilata a lo largo de la fibra si no también del espacio base. Más en concreto,

∆ : MQ → TMQ |ψ〉 7→ (|ψ〉 , |ψ〉) (1.6)

se escribe en coordenadas {qk, pk} asociadas a la elección de una base mediante:

∆ = qk
∂

∂qk
+ pk

∂

∂pk
(1.7)

Ya indicamos que la subvariedad MQ también está dotada de otra estructura relevante, que es con-
secuencia de la estructura Hermı́tica en H. Para el desarrollo matemático completo de este apar-
tado se recomienda leer el Caṕıtulo 3 de [11]. La estructura Hermı́tica queda codificada por el tensor
Hermı́tico h. Para obtenerlo usamos que si |ψ1〉 , |ψ2〉 ∈ H entonces

〈ψ1| ψ2〉 = h(X|ψ1〉, X|ψ2〉)(|φ〉) ∀ |φ〉 (1.8)

Llegados a este punto se puede ver siguiendo el desarrollo matemático encontrado en [10], que en
coordenadas zk = qk + ipk, el tensor Hermı́tico queda definido por

h =
∑
k

dz̄k ⊗ dzk =
∑
k

(dqk − i dpk)⊗ (dqk + i dpk) (1.9)

y que sobre la variedad real MQ, que está dotada de una estructura compleja, se puede expresar como

h(X|ψ1〉, X|ψ2〉) = Re 〈ψ1| ψ2〉+ i Im 〈ψ1| ψ2〉 = g(X|ψ1〉, X|ψ2〉) + i ω(X|ψ1〉, X|ψ2〉) (1.10)

donde g es un tensor simétrico y ω un tensor antisimétrico que define la mencionada estructura
simpléctica, y además puesto que el producto interno es sesquilineal,

〈ψ1| i ψ2〉 = i 〈ψ1| ψ2〉 〈i ψ1| ψ2〉 = −i 〈ψ1| ψ2〉 (1.11)

implica que,

ω(X,Y ) = g(JX, Y ) g(JX, JY ) = g(X,Y ) ω(JX, JY ) = ω(X,Y ) (1.12)

· Por último, la estructura compleja de H es traducida mediante el tensor de tipo (1, 1)

J : TMQ → TMQ tal que J

(
∂

∂qk

)
=

∂

∂pk
J

(
∂

∂pk

)
= − ∂

∂qk
(1.13)

cumpliendo que
J2 = −I (1.14)
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Cabe destacar que por tanto que en la descomposición (1.9) el tensor simétrico g es definido positivo y
no degenerado y por tanto define una estructura Riemanniana en la variedad real, (MQ, g), mientrás que
el tensor antisimétrico ω es también no degenerado y es cerrado (dω = 0), por lo que dicho tensor es una
forma simpléctica. Esto implica que (MQ, ω) es una variedad simpléctica. Más aún, (MQ, (g, ω, J)) es una
variedad Kähler y la forma covariante de estos tensores viene dada por:

J = ∂pk ⊗ dqk − ∂qk ⊗ dpk g = dqk ⊗ dqk + dpk ⊗ dpk ω = dqk ∧ dpk (1.15)

como se puede ver sin más que hacer uso de la relación (1.9).

Como ω es no degenerada define un tensor de Poisson (su forma contragradiente)

Ω =

N∑
k=1

∂

∂qk
∧ ∂

∂pk
(1.16)

como también es posible considerar un tensor dos veces contravariante simétrico que corresponde a g,

G =

N∑
k=1

∂

∂qk
⊗ ∂

∂qk
+

∂

∂pk
⊗ ∂

∂pk
(1.17)

Ambos tensores están relacionados por G = J · Ω. Como veremos estos tensores permiten definir un
corchete de Poisson y un corchete Riemann-Jordan sobre funciones suaves.

En resumen, la traducción obtenida ha sido:

H −→ HR := MQ

〈·, ·〉 h = g + i ω

i J

(CN , 〈·, ·〉) (MQ, (g, ω, J))

Es interesante destacar, que han aparecido dos estructuras adicionales al caso de la mecánica clásica:
la estructura compleja y la estructura Riemanniana compatible con la estructura simpléctica dada por la
igualdad (1.12). Será esta segunda la que nos permitirá traducir las incertidumbres en la medida.

1.2. Los observables

Una vez introducida la base matemática sobre la que se trabaja y el espacio de estados considerado,
se ha de dar significado a los operadores en el formalismo geométrico. En la imagen de Schrödinger,
los operadores que representan las magnitudes f́ısicas son los operadores lineales autoadjuntos, los cuales
actúan sobre los estados. La forma más sencilla de traducir esto es asociar a cada observable una función
real dada por

O → F(MQ) H → fH(ψ) =
1

2
〈ψ| Hψ〉 con ψ ∈ H (1.18)

donde F(MQ) es el conjunto de todas las funciones cuadráticas sobre MQ y FR(MQ) el subconjunto de
funciones reales. Además se deben codificar las diferentes estructuras algebráicas existentes en O. Consi-
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derando el desarrollo de [3] se concluye que:

O(H) F(MQ)

Estructura de álgebra de Lie: [A,B] = −i (AB −BA) {fA, fB} = f[A,B] = Ω(dfA, dfB)

Estructura de álgebra de Jordan: [A,B]+ = AB +BA {fA, fB}+ = f[A,B]+
= G(dfA, dfB)

Producto asociativo: AB = 1
2 [A,B]+ + i

2 [A,B] fA ? fB := fAB = 1
2 {fA, fB}+ + i

2 {fA, fB}
(1.19)

Nos damos cuenta que si A y B son Hermı́ticos, con funciones cuadráticas reales asociadas fA y fB,
el producto fA ? fB no es necesariamente una función real (puesto que el producto de dos operadores
Hermı́ticos no es Hermı́tico, en general). Pese a ello podemos trabajar en la complexificación de nuestra
variedad para poder tener definidas dichas funciones. Las estructuras de Lie y de Jordan pueden ser
combinadas de forma que definan una estructura de Lie-Jordan, en este caso sobre el conjunto de funciones
definidas sobre la variedad real MQ. De esta forma, dadas tres funciones cualesquiera f , g y h definidas
sobre la variedad real MQ, dicha álgebra satisface que:

i)
{f, {g, h}+} = {{f, g}, h}+ + {g, {f, h}}+ (1.20)

ii)
{{f, g}+, h}+ − {f, {g, h}+}+ = {g, {h, f}} (1.21)

Resaltar que mediante el uso de los tensores de Poisson Ω y de Riemann G, se ha podido recuperar el
producto de Lie y el producto de Jordan respectivamente, para las funciones cuadráticas.

1.3. El espacio complejo proyectivo

Cuando un sistema cuántico es descrito mediante un espacio de Hilbert H, debemos tener en cuenta
que el conjunto de estados que difieren en un factor λ ∈ C∗ = C − {0} son f́ısicamente equivalentes y
por tanto debemos trabajar con el correspondiente espacio proyectivo. En la formulación geométrica de la
mecánica cuántica, podemos introducir la acción de multiplicar por un número complejo de módulo uno
sobre MQ como una transformación cuyo generador infinitesimal se escribe,

Γ =
∑
k

(
pk

∂

∂qk
− qk

∂

∂pk

)
(1.22)

Ver que el tensor dado en esas coordenadas lo que hace es cambiar la fase global, si pensamos en el
plano, dado un par {qk, pk},

qk = rk cos θk pk = rk sin θk

entonces,

Γ =
∑
k

∂

∂θk

Es decir, las curvas integrales del campo Γ están dadas por el conjunto de estados que se obtienen
partiendo de un estado inicial |ψ〉 y multiplicarlo por una fase global eiθ |ψ〉.

Por otro lado el campo de dilataciones ∆, al expresarlo en coordenadas polares toma la forma

∆ =
∑
k

rk
∂

∂rk
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Ello implica, que las curvas integrales de este campo están dadas por el conjunto de vectores obtenidos
multiplicando uno dado por un número real diferente de cero.

Por tanto, la acción de estos campos sobre la variedad real MQ, corresponden a la acción del grupo
C∗ = R+ ⊗ U(1) sobre MQ. Como dicho grupo es Abeliano, se verifica que

[∆,Γ] = 0 (1.23)

Lema 1.3.1. ∆ y Γ definen una foliación 1.1 (de dimensión 2) sobre la variedad MQ (ver teorema de
Frobenius [12])

Figura 1.1: Foliación de MQ dada por ∆ y Γ

Por tanto, se tiene una distribución integrable5 generada por Γ y ∆ los cuales forman una subálgebra
de Lie Abeliana. Cada una de las hojas de la foliación es una clase de equivalencia formada por el conjunto
de estados que pertenecen a la misma órbita6 bajo la acción de C∗. Obsérvese que Γ = J(∆).

Por otro lado en el espacio de Hilbert, se suele trabajar con estados normalizados, o en caso de que no se
haga, uno debe tener presente la norma del estado a la hora de dar probabilidades y valores medios. Es por
ello que nos interesa ver el conjunto de estados incluidos en una de las hojas dadas por la foliación definida
por ∆ y de Γ, ya que estos estados son equivalentes en cuanto a los resultados f́ısicos que se obtienen.

De un modo más gráfico esto implica que dado un |ψ〉 ∈ H − {0} y sea λ ∈ C∗, entonces |ψ〉 y λ |ψ〉
pertenecen a la misma clase de equivalencia y es este conjunto de clases de equivalncias al que denominamos
espacio complejo proyectivo.

DFN 1.1. La variedad cociente resultante, denotada como P y dada por

π : MQ → P = MQ/C∗ (1.24)

se llama espacio complejo proyectivo y sus puntos representan los estados f́ısicos puros de un sistema
cuántico:

P 3 [|ψ〉] := π(|ψ〉) |ψ〉 ∈MQ , (1.25)

Conviene recordar que un espacio proyectivo no es lineal y por tanto la suma de dos estados f́ısicos no
determina un nuevo estado f́ısico, es decir no existe la suma de clases de equivalencia. Es por ello que es
más cómodo trabajar en la variedad real MQ, al igual que también lo es en la formulación original de la
mecánica cuántica, en la cual trabajamos en el espacio de Hilbert H.

Una vez hemos definido el espacio complejo proyectivo P se deben traducir las herramientas y estruc-
turas con las que ha sido dotada MQ al espacio proyectivo subyacente, ya que para representar magnitudes
f́ısicas reales, estas se deben corresponder con funciones que sean constantes a lo largo de las fibras7 de la

5Ver en apéndice A DFN A.9.
6Ver en apéndice A DFN A.16.
7Ver en apéndice A la sección dedicada a campos vectoriales.
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fibración π : MQ −→ P, es decir funciones que para estados pertenecientes a la misma clase de equivalencia
tomen los mismos valores. Entre otras muchas funciones de este tipo podemos considerar las funciones:

eA =
〈ψ| Aψ〉
〈ψ| ψ〉

(1.26)

para las cuales se cumple que Γ(deA) = ∆(deA) = 0, ya que dichas funciones son su propia imagen bajo el
pullback8 π∗ : T ∗P −→ T ∗MQ, es decir representan tanto a funciones sobre MQ como a funciones definidas
sobre el espacio complejo proyectivo P.

Es interesante ver la imposibilidad de traducir al espacio complejo proyectivo las formas g y ω. Esto
es debido a que dichos tensores están definidos sobre MQ y por tanto no podemos proyectarlas mediante
la aplicación codiferencial asociada a π : MQ → P. Es por ello que necesitamos la forma contravariante
de dichos tensores, G y Ω ya que bajo la aplicación diferencial proyectan adecuadamente. Sin embargo,
mientras que las funciones eA definidas anteriormente, son proyectables a través de π : MQ → P, G y
Ω no lo son. Es decir, sus derivadas de Lie9 L∆G = −2G y L∆Ω = −2Ω no se anulan sobre la fibra de
la aplicación. Podemos sustituirlos por otros nuevos tensores GP y ΩP definidos sobre MQ que śı lo sean
dados por

GP := 〈ψ| ψ〉G− Γ⊗ Γ−∆⊗∆

ΩP := 〈ψ| ψ〉Ω− Γ⊗∆−∆⊗ Γ
(1.27)

Notar que en general cualquier GP y ΩP dados por

GP := 〈ψ| ψ〉G− aΓ⊗ Γ− b∆⊗∆− cΓ⊗∆− d∆⊗ Γ

ΩP := 〈ψ| ψ〉Ω− a′Γ⊗ Γ− b′∆⊗∆− c′Γ⊗∆− d′∆⊗ Γ
(1.28)

con a, b, c, d, a′, b′, c′, d′ ∈ R, son proyectables. Se han eligido los coeficientes de forma que encontramos la
métrica de Fubini-Study (ver [10]) sobre el espacio complejo proyectivo P.

Un resultado importante obtenido en [3] es el siguiente:

Lema 1.3.2. La acción de GP en el conjunto de funciones proyectables corresponde a

GP(deA, deB) = e[A,B]+
− eA · eB

lo cual implica que si A = B se obtiene

GP(deA, deA) = eA2 − e2
A

de esta forma GP está directamente relacionada con las relaciones de indeterminación.

1.4. La dinámica

En la formulación geométrica de la mecánica Hamiltoiana, se considera una variedad simpléctica (M,ω)
y una funcion H ∈ C∞(M), lo que nos permite definir un campo Hamltoniano XH por la relación

iXH
ω = dH ⇐⇒ XH = ω̂−1(dH). (1.29)

8Sea M y N dos variedades diferenciables. Cada aplicación diferenciable F : M −→ N tiene asociadas dos aplicaciones
entre campos vectoriales y formas dadas por la aplicación diferencial F∗ : TM −→ TN y la codiferencial F ∗ : T ∗N −→ T ∗M
respectivamente. De nuevo consultar apéndice A.

9En el apéndice A DFN A.11 se encuentra la definición de dicha derivada aśı como algún ejemplo.
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La expresión en coordenadas de Darboux de XH es

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
, (1.30)

por lo que las ecuaciones que determinan las curvas integrales del campo Hamiltoniano XH , son las bien
conocidas ecuaciones de Hamilton:

q̇k =
∂H

∂pk
ṗk = −∂H

∂qk
. (1.31)

Para proceder de modo análogo en mecánica cuántica, se considera que el sistema dinámico se encuentra
sobre la variedad MQ en vez de sobre P, ya que resultará más cómodo. Estamos en una variedad Kähler
donde hemos construido una forma simpléctica de forma que tenemos el ingrediente básico para aplicar
una formulación Hamiltoniana. En este caso la función Hamiltoniana viene dada por

fH =
1

2
〈ψ| Hψ〉 (1.32)

siendo H el operador Hamiltoniano definido sobre H. El campo Hamiltoniano será

XH = Ω(·, dfH) (1.33)

cuyas curvas integrales son las soluciones de la ecuación de Schrödinger.

i~ ˙|ψ〉 = H |ψ〉 (1.34)

Veamos que efectivamente, las curvas integrales del campo Hamiltoniano se corresponden con las so-
luciones de la ecuación de Schrödinger. Sea A un operador autoadjunto en H. Entonces la función real
fA : H −→ R definida por fA(|ψ〉) = 1

2 〈ψ |Aψ 〉 tiene asociada un campo XfA tal que:

iXfA
ω = ω(XfA , ·) = dfA. (1.35)

Si se toma un |ψ〉 ∈ T|φ〉H entonces,
(dfA)|φ〉(|ψ〉) (1.36)

es la derivada direccional de fA en el punto |φ〉 en la dirección |ψ〉, de esta forma

(dfA)|φ〉(|ψ〉) =
1

2

d

dt
〈φ+ tψ| A(φ+ tψ)〉

∣∣∣∣
t=0

=
1

2

d

dt

(
〈φ| Aφ〉+ [〈ψ| Aφ〉+ 〈φ| Aψ〉] t+ 〈ψ| Aψ〉 t2

)∣∣∣∣
t=0

=
1

2
(〈ψ| Aφ〉+ 〈φ| Aψ〉) =

1

2

(
〈ψ| Aφ〉+

〈
φ
∣∣∣ A†ψ〉∗) = Re {〈ψ| Aφ〉} = Im {〈−J A |φ〉 | |ψ〉 〉}

= ω(−J A |φ〉 , |ψ〉)
(1.37)

aśı comparando con (1.35) se obtiene que,

XfA(|φ〉) = −JA |φ〉 (1.38)

Por tanto XH es un campo globalmente Hamiltoniano y además es también un campo de Killing10,
LXH

g = 0, lo cual significa que la forma Hermı́tica es “invariante” bajo la acción del grupo de isometŕıas
asociado al campo XH . Debido a estas dos propiedades tenemos que es un campo que conserva la estructura
Riemanniana y la estructura simpléctica y por tanto también conserva la estructura Hermı́tica. Es por ello
que la evolución temporal de cualquier sistema mecano cuántico se puede escribir en términos de las
ecuaciones de Hamilton clásicas. Como se enuncia en [2] ”Schrödinger’s equation is Hamilton’s equation in
disguise!”.

10Ver en apéndice A DFN A.13
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1.5. La información espectral

Finalmente se considera el problema de cómo recuperar la noción de autovalor y autovector de los
operadores definidos sobre H a nivel de las funciones definidas sobre MQ o sobre el proyectivo. Sea A un
operador autoadjunto,

A 7→ eA(|ψ〉) =
〈ψ| Aψ〉
〈ψ| ψ〉

(1.39)

entonces,

· Los autovectores corresponden a los puntos cŕıticos de las funciones eA, es decir,

deA(|ψ〉a) = 0 si y sólo si |ψ〉a es un autovector de A

donde cabe destacar que si |ψ〉 es autovector de eA entonces eiα |ψ〉 también lo será.

· Los autovalores correspondientes están dados por eA(|ψ〉a).
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Caṕıtulo 2

Efecto Zenón Cuántico. QZE

En el siglo 5 a.C, en Elea, nació Zenón, una figura importante de la escuela Eleática de filosof́ıa fundada
por Parménides. Ellos créıan que los sentidos eran engañosos y que tanto el movimiento como el cambio
eran meras ilusiones. Zenón introdujo estas enseñanzas mediante un conjunto de argumentos que resultaban
en aspectos paradójicos de la noción de una realidad en continuo cambio y más concretamente chocaban
con la posibilidad de movimiento representado en la paradoja de la flecha. De dicha paradoja se concluye,
que la flecha nunca llegará a su destino. Para una introducción más completa ver [8].

En mecánica cuántica este efecto de la no posibilidad de movimiento fue planteado por primera vez por
Alan Turing en 1954 [13] y acuñado por Misra y Sudarshan como Quantum Zeno Effect (QZE) en [5]. Es
de esta publicación de donde partiremos para desarrollar la teoŕıa del efecto Zenón cuántico.

El primer ejemplo de sistema cuántico considerado es el de un sistema cuántico inestable. El espacio
de estados de este sistema cuántico se divide en los estados en los cuales la part́ıcula no ha decáıdo y en
aquellos estados en los que śı. Mediante una observación del estado sin decaer lo que hacemos es colapsar la
función de ondas al estado sin decaer (visión a la von Neumann). La probabilidad de que el estado decaiga,
después de este colapso crece cuadráticamente con el tiempo para tiempos suficientemente cortos. Si lo
que se hace es realizar infinitas observaciones en intervalos muy cortos de tiempo de forma que no dejemos
evolucionar al sistema, estaremos confinando el estado de la part́ıcula al estado sin decaer, de manera que
podremos evitar su decaimiento. De forma que un estado que sea continuamente observado nunca decaerá.

La dificultad de observar este efecto en decaimientos de part́ıculas reside en que el intervalo temporal
en el cual la probabilidad crece cuadráticamente, y por tanto el tope de nuestro intervalo de medida,
es muy pequeño comparado con el tiempo requerido para hacer la medida, debido a que usamos una
instrumentación con limitaciones f́ısicas.

No obstante también se puede aplicar el QZE a la inhibición de transiciones inducidas mediante medidas
frecuentes, efecto que es observado, por ejemplo, en el montaje experimental propuesto por Itano et. al
[6], donde existe una transición Rabi y un tercer nivel que permite conocer el estado del sistema. En
dicho experimento se observa cómo disminuye la probabilidad de transición entre los dos niveles conforme
aumenta el número de medidas sobre el sistema.

Se entiende también el uso del QZE en el control de la decoherencia en sistemas cuánticos, la cual es
una consecuencia del acoplo inevitable de cualquier sistema cuántico con su entorno que da lugar a pérdida
de información del sistema y por tanto a una dinámica del sistema no unitaria.

Nota: para el desarrollo dado a continuación se usará el acrónimo QZE para referirse al efecto Zenón
cuántico aśı como los nombres ingleses de algunos fenómenos.

13
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2.1. Caso unidimensional

Comenzaremos desarrollando la teoŕıa en un caso sencillo unidimensional y más adelante se desarro-
llarán otras formulaciones más generales. Consideremos un sistema cuántico cuya evolución viene determi-
nada por el Hamiltoniano H independiente del tiempo. Si el estado puro del sistema en t = 0 es |ψ0〉 ∈ H
con 〈ψ0| ψ0〉 = 1, la amplitud de probabilidad de que este estado sobreviva es:

p(t) = |〈ψ0| ψt〉|2 =
∣∣〈ψ0

∣∣ e−iHtψ0

〉∣∣2 ≈ ∣∣∣∣〈ψ0| ψ0〉 − i t 〈ψ0| Hψ0〉 −
1

2
t2
〈
ψ0

∣∣ H2ψ0

〉∣∣∣∣2 = 1−t2/τ2
Z+... (2.1)

donde 1/τ2
Z ≡ (∆Hψ0)2, siendo ∆Hψ0 la incertidumbre en la medida de la enerǵıa.

Para obtener este resultado en el lenguaje geométrico se hace uso de la traducción de operadores a
funciones proyectables definidias sobre MQ. Haciendo uso de la linealidad de O → F(MQ) y desarrollando
hasta segundo orden en función del tiempo se obtiene,

p(t) =
∣∣eU(t)

∣∣2 =
∣∣∣eid−iHt− 1

2
H2t2+O(t3)

∣∣∣2 =

∣∣∣∣eid − i eHt−
1

2
eH2t2

∣∣∣∣2
= (eid)2 −

[
(eH)2 − e2

H

]
t2 = 1−GP(deH , deH)t2 = 1− (∆Hψ0)2t2

(2.2)

Hasta este momento no ha aparecido una evolución del sistema distinta a la libre, sino que sólo se ha
obtenido la probabilidad de permanencia cuando ha pasado un peŕıodo breve de tiempo. Hagamos ahora
N medidas a intervalos de tiempo τ = t/N , de forma que se compruebe si el sistema está todav́ıa en el
estado inicial |ψ0〉. Si cada vez que se realiza una medida se obtiene que el sistema se encuentra en su
estado inicial |ψ0〉, entonces la función de ondas colapsará a dicho estado y la evolución volverá a partir
otra vez desde |ψ0〉 hasta realizar la siguiente medida como se muestra en la figura 2.1.

Figura 2.1: Evolución lineal de la fase y cuadrática de la pérdida de probabilidad [8]

La probabilidad de supervivencia tras las N medidas será1

p(N)(t) = p(τ)N = p(t/N)N
N grande→

[
1− (t/(NτZ))2

]N
(2.3)

ahora tomando ĺımite,

ĺım
N→∞

[
1− (t/(NτZ))2

]N
= ĺım

N→∞

[
1 +

1

−((NτZ)/t)2

]N
= ĺım

N→∞
exp(−t2/(Nτ2

Z)) = 1 (2.4)

1Recordar que las indeterminaciones del tipo 1∞ son potencias del número e : ĺım
n→∞

(1 + 1/n)n = e.
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Por tanto se deduce que si un sistema es continuamente observado (N →∞ manteniendo τ constante
o de forma equivalente ⇒ τ → 0 mantiendo N constante), la evolución libre del sistema es “interrumpida”
y el sistema se congela en su estado inicial.

2.2. Los subespacios de Zenón cuánticos

En la sección anterior se ha supuesto que mediante una medida era determinada de forma uńıvoca si el
sistema se encontraba en un estado concreto. Sin embargo, cuando se mide existe una cierta incertidumbre
en la medida, dada por ejemplo por la resolución del aparato, de forma que no es posible determinar si
el sistema se encuentra en un estado concreto, si no más bien si se encuentra en un cierto subespacio
m-dimensional dado por un proyector P m-dimensional. Se dice entonces que se trata de una medida
incompleta.

Sea la evolución del sistema cuántico en el espacio de Hilbert H gobernada por un operador unitario
U(t). La medida determinará si el sistema está en un cierto subespacio s-dimensional HP , determinado
por el operador de proyección P que describe la medida sobre el sistema de forma que PH = HP . Cada
uno de estos subespacios s-dimensionales, los cuales probaremos que son invariantes en la evolución, son
los que se conocen como subespacios de Zenón.

En este caso como consecuencia directa del teorema de Misra y Sudarshan (ver [5] y [8]), se deduce que
si un sistema, vease una part́ıcula, es continuamente observada para saber si ha sobrevivido en un cierto
estado HP , jamás hará una transición a (HP )⊥. Es aqúı donde reside la formulación original de la paradoja
de Zenón.

2.3. Formas alternativas para la evolución de Zenón

Generalmente se soĺıa vincular el QZE a la repetición de medidas “proyectivas”, a la von Neumann [4],
sobre el sistema cuántico. Sin embargo, se ha observado que esta forma de entender el QZE es demasiado
limitada, ya que dichas medidas proyectivas pueden ser reemplazadas por otros sistemas cuánticos que
interaccionen fuertemente con el sistema cuántico de interés, ya que después de todo uno esquematiza la
medición como una proyección sobre el sistema, resumiendo de esta forma el hecho f́ısico que ocurre en el
proceso de la medida: un aparato externo o un campo cuántico que interacciona con el mismo.

En definitiva se deduce que las caracteŕısticas f́ısicas que dan lugar al QZE no quedan determinadas
por el “colapso” de la función de ondas sino más bien como consecuencia de la dinámica dada por una
perturbación suficientemente intensa.

A continuación se expondrán tres formulaciones distintas del QZE mediante el formalismo geométrico,
trabajando en la variedad real diferenciable MQ en vez de en el espacio proyectivo P directamente. Se
hará uso de la propiedad multiplicativa ? descrita en (1.19), del conjunto de las funciones F(MQ), aśı como
de sus propiedades. Además para las distintas formulaciones se deducirá la función Hamiltoniana que
determina la dinámica del sistema, la cual será denotada función Hamiltoniana de Zenón fHZ

.

2.3.1. Medidas que proyectan

Esta es la realización a priori más intuitiva que se aproxima a la dinámica tipo Zenón. Se considera
que las medidas además de incompletas serán no selectivas, es decir el aparato de medida no selecciona
la medida que va a salir, sino que destruye las correlaciones entre distintos estados proyectando sobre los
subespacios de Zenón correspondientes.
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Sea un sistema cuántico cuya evolución venga descrita por la función evolución fU(t) con U(t) =
exp(−iHt) de forma que2

fρ(t) = AdU(t)(fρ0) := fU(t) ? fρ0 ? fU†(t) (2.5)

donde fρ(t) es la función que describe el estado del sistema en el tiempo t siendo ρ(t) el operador densidad.
Sean un conjunto de proyectores ortogonales de forma que PnH = Hn son los subespacios de Zenón
correspondientes de forma que,

H =
⊕
n

Hn (2.6)

Entonces, existen un conjunto de funciones fPn asociadas a dichos proyectores tales que,

{fPn |n ∈ N} , fPn ? fPm = δmnfPn ,
∑
n

fPn = 1 (2.7)

Una medida no selectiva puede ser descrita por

AdP (fρ) :=
∑
n

fPn ? fρ ? fPn (2.8)

Además daremos la evolución del sistema tras N medidas en un cierto tiempo t en función del super-
operador

V̂
(N)
t = PU(t/N)PU(t/N) . . . PU(t/N) = [PU(t/N)]N (2.9)

de forma que su traducción al formalismo geométrico es

Ad
V̂

(N)
t

= (AdP ?AdU(t/N))(AdP ?AdU(t/N)) · · · (AdP ?AdU(t/N)) = (AdP ?AdU(t/N))
?N (2.10)

Si por último preparamos el sistema en el estado inicial ρ0 dado por

fρ0 = AdP (fρ0) (2.11)

la evolución será de la forma

fρ(t) = Ad
V̂

(N)
t

(fρ0) =
∑

n1,··· ,nN

f
V

(N)
n1···nN

(t)
? fρ0 ? fV (N)†

n1···nN
(t)

(2.12)

donde

f
V

(N)
n1···nN

(t)
= fPnN

? fU(t/N) ? fPnN−1
· · · fPn2

? fU(t/N) ? fPn1
(2.13)

Si ahora se toma el ĺımite cuando N tiende a infinito, es decir cuando se realizan mediciones de forma
muy frecuente, se obtiene que la evolución en el subespacio n-ésimo de Zenón viene gobernada por

f
U

(n)
Z (t)

= ĺım
N→∞

f
V

(N)
n···n(t)

= ĺım
N→∞

[
fPn ? fU(t/N) ? fPn

]?N
, (2.14)

con la condición adicional de que

ĺım
t→0+

f
U

(n)
Z (t)

= fPn, ∀n ∈ N . (2.15)

2Se hará uso de esta notación de aqúı en adelante, de forma que si A es un operador y g una función sobre la variedad
diferenciable, entonces AdA(g) := fA ? g ? fA−1 . En el caso de U(t) recordar que se trata de un operador unitario.
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Para deducir (2.14) se ha hecho uso de que en el ĺımite de medidas muy frecuentes, el intervalo temporal
en el cual evoluciona el sistema entre medida y medida es prácticamente nulo. Ello implica que

ĺım
N→∞

fU(t/N) = fU(0) = 1 .

De esta manera, y teniendo en cuenta (2.7) obtenemos

ĺım
N→∞

f
V

(N)

n···n′···(t)
= 0 para n 6= n′ (2.16)

Es decir la dinámica queda restringida dentro de cada uno de los subespacios de Zenón, siendo la
dinámica para cada subespacio independiente de los demás. Esto es debido a que el responsable de las
transiciones entre los diferentes subespacios invariantes Hn es fU(t/N).

Por tanto, el estado final después de haber dejado evolucionar al sistema durante un tiempo t es

fρ(t) =
∑
n

Ad
U

(n)
Z (t)

(fρ0) (2.17)

Además se demuestra que la probabilidad de permanencia del sistema en un cierto subespacio Hn se
conserva y que es imposible una “fuga” de probabilidad entre dos subespacios de Zenón distintos. Es por
esto que se comentaba anteriormente el posible uso de este efecto para el control de la decoherencia en
sistemas cuánticos . Para demostrar la conservación de la probabilidad (es decir, la unitariedad en cada
subespacio Hn) se hace uso de la invariancia, demostrada anteriormente, de los diferentes subespacios de
Zenón bajo la acción del operador de evolución de Zenón:

UZ(t)Pn = PnUZ(t) =⇒ {fUZ
, fPn} = 0 ∀t . (2.18)

Para demostrar que dicha probabilidad se conserva conviene usar el formalismo en la imagen de Heisen-
berg, de forma que dejemos que los proyectores sobre los diferentes subespacios de Zenón evolucionen de
acuerdo con la ley de evolución dada en dicha imagen. Por otro lado pn(t) es la probabilidad de encontrar
el estado del sistema en en subespacio de Zenón n-ésimo a un tiempo t:3.

pn(t) = fPn(t) = f
U†Z(t)

? fPn(0) ? fUZ(t) =
1

2

{
f
U†Z(t)

, fPn(0) ? fUZ(t)

}
+

+
i

2

{
fUZ(t), fPn(0) ? fU†Z(t)

}
=

1

2

{
f
U†Z(t)

,
1

2

{
fPn(0), fUZ(t)

}
+

+
i

2

{
fPn(0), fUZ(t)

}}
+

+
i

2

{
f
U†Z(t)

,
1

2

{
fPn(0), fUZ(t)

}
+

+
i

2

{
fPn(0), fUZ(t)

}}
=

1

4

{
f
U†Z(t)

,
{
fPn(0), fUZ(t)

}
+

}
+

+
i

4

{
f
U†Z(t)

,
{
fPn(0), fUZ(t)

}
+

}
.

(2.19)

Para este último punto se hace uso de las igualdades (1.20) y (1.21) de forma que:{
f
U†Z(t)

,
{
fPn(0), fUZ(t)

}
+

}
=
{{

f
U†Z(t)

, fPn(0)

}
, fUZ(t)

}
+

+
{
fPn(0),

{
f
U†Z(t)

, fUZ(t)

}}
+

= 0{
f
U†Z(t)

,
{
fPn(0), fUZ(t)

}
+

}
+

=
{
f
U†Z(t)

,
{
fUZ(t), fPn(0)

}
+

}
+

=

=

{{
f
U†Z(t)

, fUZ(t)

}
+
, fPn(0)

}
+

− ~2
{
fUZ(t),

{
fPn(0), fU†Z(t)

}}
=

=
{

2, fPn(0)

}
+

= 4fPn(0)

(2.20)

y se obtiene de esta forma que,

pn(t) =
1

4
4fPn(0) = pn(0) (2.21)

3Se aplicarán las relaciones dadas en (1.19)
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En el art́ıculo de P. Facchi y S. Pascazio (ver [8]) explican el fenómeno usando el ejemplo del caparazón
de una tortuga como se muestra en la figura 2.2: el espacio de Hilbert total H se divide en subespacios
invariantes Hn en los cuales fρ(t) evoluciona de forma independiente en cada sector. Cada uno de estos
subespacios invariantes seŕıan las escamas, de forma que no existe movimiento posible entre las diferentes
escamas y sin embargo todos se mueven con la tortuga al mismo tiempo.

Figura 2.2: Subespacios de Zenón. El espacio de Hilbert del sistema se divide en sectores, de forma que
conforme el número de medidas o el acoplamiento aumentan la dinámica queda tanto más restringida en
dichos subespacios. Imagen sacada de [8]

Por último, como estamos trabajando con sistemas de dimensión finita y por tanto con Hamiltonianos
acotados (ver sección 5 de [8]), se obtiene que la evolución dentro de cada subespacio invariante Hn viene
dada de forma expĺıcita usando (2.14) por

f
U

(n)
Z (t)

= fPn ? fexp(−i PnHPnt) (2.22)

de forma que la evolución del sistema completo vendrá gobernada por mirar si posible deducción

AdUZ(t)(fρ) =
∑
n

fPn ? exp?(−i fHZ
t) ? fρ0 ? exp?(i fHZ

t) ? fPn (2.23)

donde
fHZ

=
∑
n

fPn ? fH ? fPn (2.24)

es el Hamiltoniano global de Zenón.

2.3.2. Unitary kicks

En este caso es útil recordar el hecho de que para obtener QZE no es necesario realizar medidas
proyectivas sino, más bien, partir de una evolución unitaria como se explica en [14] gobernada por algún
aparato de medida con el cual el sistema de interés tiene un fuerte acoplo. Primero se hará uso de este
tipo de evolución mediante un conjunto de transformaciones instantáneas unitarias y frecuentes para más
adelante pasar al ĺımite de acoplo continuo.

La idea subyacente de esta alternativa es la siguiente: supongamos que un sistema cuántico evoluciona
libremente durante un cierto intervalo de tiempo τ ; en ese momento el sistema recibe una “patada” (kick)
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instantánea tal que se conserva la unitariedad, y además dicho proceso se repite N veces. A partir de este
punto se puede demostrar que la evolución será de tipo Zenón, de forma que divide el espacio total en
subespacios de Zenón determinados por los proyectores de la transformación unitaria Ukick.

En el lenguaje geométrico, la función evolución vendrá dada pasado un tiempo t y tras la realización
de N medidas equiespaciadas por

fUN (t) =
[
fUkick

? fU(t/N)

]
?
[
fUkick

? fU(t/N)

]
· · ·
[
fUkick

? fU(t/N)

]
=
[
fUkick

? fU(t/N)

]?N
, (2.25)

donde dicha función no es real ya que los operadores no son Hermı́ticos. Es por ello que nuestro conjunto
de funciones FR(MQ) se ve extendido a F(MQ).

El desarrollo presentado a continuación será una traducción al formalismo geométrico del art́ıculo [15].
En el ĺımite de N grande, la contribución dominante de fUN (t) es fUN

kick(t) , por lo cual se considera la
secuencia de operadores unitarios

fVN (t) = f
(U†kick(t))N

? fUN (t) =
[
f∗Ukick(t)

]?N
? fUN (t) , (2.26)

de forma que el ĺımite converja y donde fVN (0) = 1 para todo N . A continuación se calcula la ecuación
diferencial que cumple la función fVN (t) sin más que derivar respecto al tiempo la ecuación anterior, donde
se ha tenido en cuenta que las funciones fUkick

y fU(t/N) no tienen por qué conmutar4

i
d

dt
fVN (t) = i f

(U†kick(t))N
?
d

dt
fUN (t)

= f
(U†kick(t))N

?
N−1∑
k=0

(fUkick
? fU(t/N))

?k ?

(
fUkick

? i
d

dt
fU(t/N)

)
?
(
fUkick

? fU(t/N)

)?N−k−1
(2.27)

Como se ha tomado un Hamiltoniano independiente del tiempo, el operador evolución será de la for-
ma U(t/N) = exp(−iHt/N). Puesto que nos interesa el ĺımite para N grandes se puede desarrollar la
exponencial en serie de Taylor y quedarnos a primer orden (U(t/N) ≈ id− iHt/N) de forma que

d

dt
fU(t/N) ≈

−i
N
fH (2.28)

aśı,

i
d

dt
fVN (t) =

1

N
f

(U†kick(t))N
?

N−1∑
k=0

(
fUkick

? fU(t/N)

)?k
? fUkick

? fH ? f
U†kick

?
(
fU(t/N)† ? fU†kick

)?k
? (fUkick

? fU(t/N))
?N

= fHN (t) ? fVN (t)

(2.29)

i
d

dt
fVN (t) = fHN (t) ? fVN (t)

de manera que en el ĺımite N →∞, la evolución viene dada por la función,

fU(t) = ĺım
N→∞

fVN (t) (2.30)

que satisface,

i
d

dt
fU(t) = fHZ

? fU(t)

[
fU(0) = 1

]
(2.31)

con la función de Zenón,
fHZ

= ĺım
N→∞

fHN (t) . (2.32)

4Notar que si A es un operador, no necesariamente hermı́tico, entonces fA† = f∗A y por otro lado que debido a (1.19),
fAN = [fA]?N .
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Por tanto fU(t) = fexp(−iHZt) = exp?(−i fHZ
t). A partir de aqúı uno puede mostrar que despreciando

la contribución dada por fU(t/N) en fHN (t) cuando N →∞ se obtiene que,

fHZ
=
∑
n

fPn ? fH ? fPn (2.33)

donde Pn son los proyectores sobre el espacio de Hilbert H del operador unitario Ukick. Destacar por tanto
que fHZ

, se obtiene como la proyección de fH en el centralizador de fUkick
, es decir que:

{fHZ
, fUkick

} = 0 (2.34)

Un ejemplo

A continuación se ejemplifica la evolución dada por la alternativa bang-bang o de transformaciones
unitarias. En este ejemplo se tiene un sistema de tres niveles acoplados dos a dos mostrado en la figura
2.3, donde entre los dos primeros estados se da una oscilación de Rabi5 de frecuencia Ω1, mientras que un
tercer estado los observa, pudiéndose interpretar esta última interacción como la pérdida de coherencia del
subsistema formado por los dos primeros estados.

Figura 2.3: Sistema de tres niveles bajo la aplicación de unitary kicks que acopla uno de sus niveles a un
sistema externo M . Se representa de forma expĺıcita el subespacio de Zenón H1. [8]

Al proteger el subespacio H1 determinado por los estados |a〉 y |b〉 de la decoherencia, mediante el
acoplo con un instrumento externo |M〉 que aplica pulsos (de luz por ejemplo) al sistema, se observa como
dicho subespacio es liberado de la decoherencia. El sistema en cuestión viene determinado por:

〈a| = (1, 0, 0, 0) 〈b| = (0, 1, 0, 0)

〈c| = (0, 0, 1, 0) 〈M | = (0, 0, 0, 1)

Hsist = Ω1(|a〉 〈b|+ |b〉 〈a|) + Ω2(|b〉 〈c|+ |c〉 〈b|) con Ω1 y Ω2 ∈ R

y en el formalismo geométrico en coordenadas {qk, pk} toma la forma,

fHsist = Ω1(q1q2 + p1p2) + Ω2(q2q3 + p2p3)

Por otro lado la transformación unitaria,

Ukick = id4 + id2 ⊗ e−i θσ1

5El modelo Rabi aparece en la modelización de transiciones entre dos niveles cuánticos |g〉 y |e〉 con una diferencia de
enerǵıa ~ω0.
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o

fUkick
=

1

2

[
q2

1 + q2
2 + p2

1 + p2
2 + cos(θ)(q2

3 + q2
4 + p2

3 + p2
4)− 2i sin(θ)(q3q4 + p3p4)

]
En la gráfica 2.4(b) se observa tanto la evolución libre, en la cual no aplicamos pulsos, como la evolución

de tipo bang-bang. En la gráfica 2.4(a) se observa que a menores intervalos temporales entre la aplicación
de dos transformaciones unitarias consecutivas, la probabilidad de encontrar el estado en el subespacio H1

aumenta. Además la dependencia con el parámetro λ no es relevante y sólo vaŕıa la frecuencia de oscilación
de la onda observada.

(a) (b)

Figura 2.4: Evolución bang-bang para un sistema de tres niveles en función de: (a) el intervalo temporal entre
kicks. Se observa como a menores intervalos temporales la probabilidad de permanencia en el subespacio H1

aumenta. En la imagen (b) se compara la evolución libre del sistema (ĺınea continua) con la evolución bang-
bang para dos intervalos temporales distintos: τ = 0,01 y 0,003. Población hace referencia a la probabilidad
de permanencia en un cierto subespacio. Se ha usado como parámetro θ = π/3.

2.3.3. Acoplo continuo fuerte

Hasta ahora las dos alternativas planteadas para conseguir una evolución de tipo Zenón han sido
proyecciones tipo von Neumann y Unitary kicks, es decir procesos en los que se supone que la transformación
(bien sea la proyección o la transformación unitaria tipo kick) toma lugar de forma instantánea, es decir
en una escala de tiempos mucho menores que las otras escalas de tiempo que caracterizan la evolución del
sistema. Por otro lado, las escalas cortas de tiempo pueden ser asociadas con acoplos fuertes. Es por ello
que en definitiva, se puede pensar que las propiedades básicas del QZE se pueden obtener mediante un
acoplo continuo y fuerte con un sistema externo, el cual realiza una especie de medidas de forma uniforme
en el tiempo.

Supongamos una función Hamiltoniana genérica de la forma:

fHK
= fH +KfHmed(t) , (2.35)

donde fH representa la función Hamiltoniana del sistema cuántico y fHmed(t) es un término de interacción
que representa al sistema de medida con una constante de acoplo K. A continuación, de modo análogo al
desarrollo presentado en [16], se demostrará que en el ĺımite K →∞, la función evolución6

fU(t) = ĺım
K→∞

fUK(t) (2.36)

6Recordar que para introducir la función sobre la variedad real diferenciable MQ de un operador no unitario es necesario
hacer una complexificación del espacio donde se trabaja ya que dicha función no pertenece al conjunto de funciones FR(M)
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donde por UK(t) se hace referencia al operador evolución del sistema completo, será diagonal con respecto
a fHmed

, lo cual en términos de operadores significa,

U(t)Pn = U(t)Pn con Hmed(t)Pn = ηnPn (2.37)

donde Pn son los proyectores asociados a Hmed(t) y ηn es el autovalor correspondiente al subespacio HPn ,
el cual permanece invariante.7

En el lenguaje geométrico ello implica que obtendremos un sistema de ecuaciones diferenciales desaco-
pladas entre las coordenadas que representan los distintos subespacios, por tanto[

fU(t), fPn

]
= 0 . (2.38)

Para demostrarlo se hace uso de la imagen de interacción en el formalismo geométrico y del teorema
adiabático en mecánica cuántica (consultar página 740 de [17]). Supóngase el caso de un sistema cuántico
determinado por

HK(t) = H(t) +KHmed(t) (2.39)

de forma que aplicando la transformación unitaria U †0 , se describe el sistema en la imagen de interacción.
De este modo, la evolución viene dada por U IK(t), que cumple la ecuación diferencial,

i~∂tU IK(t) = HI
int(t)U

I
K(t) . (2.40)

Sea fUI
K(t) la función asociada al operador evolución en la imagen de interacción de forma que

fUI
K(t) =

〈
ψI(0)

∣∣ U IK(t)ψI(0)
〉
. (2.41)

Derivando,
i~∂tfUI

K(t) = i~
〈
ψI(0)

∣∣ ∂tU IK(t)ψI(0)
〉

=
〈
ψI(0)

∣∣ KHmed(t)U IK(t)ψI(0)
〉

(2.42)

es decir,
i~∂tfUI

K(t) = KfHmed(t) ? fUI
K(t) . (2.43)

Esta ecuación tiene la misma forma que la evolución adiabática con la condición equivalente K →∞.
Suponiendo que fHmed(t) vaŕıe lentamente en el tiempo de forma que se cumpla el teorema adiabático se
obtiene que,

ĺım
K→∞

fUI
K(t) ? fP I

n(0) = fP I
n(t) ? ĺım

K→∞
fUI

K(t) (2.44)

es decir, la evolución lleva estados de HP I
n(0) a HP I

n(t):∣∣ψI0〉 ∈ HP I
n(0) −→

∣∣ψI(t)〉 ∈ HP I
n(t) . (2.45)

Falta ver que dicha propiedad se mantiene en la imagen de Schrödinger, para lo cual se aplica la
transformación inversa y de nuevo se hace uso de (1.19),

fU(t) ? fPn(0) = f
U0UI(t)U†0

? f
U0P I

n(0)U†0
= fU0 ? fUI(t) ? fP I

n(0) ? fU†0
= fU0 ? fP I

n(t) ? fUI
K(t) ? fU†0

= fPn(t) ? fU(t)

(2.46)
y por tanto,

|ψ0〉 ∈ HPn(0) −→ |ψ(t)〉 ∈ HPn(t) . (2.47)

De nuevo, de modo análogo al caso de Unitary kicks se encuentra que,

pn(t) = pn(0) . (2.48)

7ver en apéndice A DFN A.15.
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Un ejemplo

A continuación se presenta el mismo sistema que en el caso de evolución bang-bang, pero en este caso
presenta un acoplo continuo con el sistema de medida (ver figura 2.5) cuya intensidad viene dada por la
constante K.

Figura 2.5: Sistema de tres niveles con uno de sus niveles acoplado de forma fuerte a un sistema externo
M . Se representa de forma expĺıcita el subespacio de Zenón H1. [8]

El Hamiltoniano del sistema de medida y su interacción viene dado por,

KHmed = K(|c〉 〈M |+ |M〉 〈c|) con K ∈ R

Previo a analizar los resultados finales, es útil comparar los campos Hamiltonianos determinados por
la evolución libre y la evolución de Zenón en función de las coordenadas {qk, pk}.

XZ = Kp4
∂

∂q3
+Kp3

∂

∂q4
−Kq4

∂

∂p3
−Kq3

∂

∂p4

XH = Ω1p2
∂

∂q1
+ (Ω1p1 + Ω2p3)

∂

∂q2
+ (Ω2p2 +Kp4)

∂

∂q3
+Kp3

∂

∂q4
− Ω1q2

∂

∂p1

−(Ω1q1 + Ω2q3)
∂

∂p2
− (Ω2q2 −Kq4)

∂

∂p3
−Kq3

∂

∂p4

Ver que el campo de Zenón no engloba las coordenadas referentes al subespacio invariante que se quiere
proteger de la evolución, es decir aquellas que representan al sistema. La figura 2.6 muestra la población
existente en el subespacio H1 en función del tiempo y de la constante de acoplo K. Se observa que cuando
K es suficientemente grande, la evolución del sistema es tipo Zenón y se conserva la unitariedad. Se ha
partido de un estado inicial en coordenadas

{
qi, pi

}
dado por

|ψ0〉 =
1

2
√

2
(1, 1, 1, 1, 1, 1, 1, 1)⇒ pH1(0) =

1

2

y se ha tomado Ω1 = 1 y Ω2 = 2, es decir el acoplo entre |a〉 y |b〉 es menor que el que refleja la decoherencia.
En este caso se observa que cuanto mayor es la intensidad de acoplo del sistema de medida, más restringida
está la evolución dentro del subespacio H1. Por tanto se aprecia como el acoplo con el aparato de medida
inhibe la decoherencia creada por el estado |c〉. No obstante si Ω2 >> K y que Ω1, entonces los subespacios
invariantes son distintos y no se protege H1. Para ejemplicarlo se parte de unas condiciones iniciales:

|ψ0〉 =
1

2
(1, 1, 1, 1, 0, 0, 0, 0)⇒ pH1(0) = 1

de forma que la evolución en función del parámetro Ω2 viene dada por la figura 2.7.
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Figura 2.6: Población del subespacio H1 en función del tiempo. De nuevo se observa que cuanto mayor
es el acoplo, más se localiza el sistema en el subespacio H1. Aśı se puede entender la analógia dada en la
figura 2.2

Es interesante resaltar que mientras que en la primera formulación cualquier término de coherencia
entre subespacios distintos se desvanece tras la primera proyección, tales términos son preservados en
las evoluciones dadas por las otras dos formulaciones. Sin embargo parece ser que dichos términos son
inobservables en el ĺımite N -grande y K-grande.

2.4. Conclusión

En esta formulación aparece de forma natural desde una perspectiva geométrica y resalta la diferencia
esencial entre las mecánicas clásica y cuántica. También sirve para unificar de forma coherente una serie
de generalizaciones propuestas de la mecánica cuántica, como su unificación con la relatividad general.

Cuando uno compara los marcos formales que subyacen en ambas mecánicas uno encuentra que la
descripción clásica es geométrica y en general no lineal mientras que la descripción cuántica es algebráica
y totalmente lineal formulado sobre un espacio de Hilbert H, lo cual desde una perspectiva general es
bastante sorprendente, puesto que en f́ısica las estructuras lineales generalmente proceden de aproximacio-
nes de estructuras no lineales más exactas. Sin embargo en este contexto, es la teoŕıa más profunda y más
correcta la que es lineal y la no lineal, geométrica y clásica es alcanzada en un cierto ĺımite. No obstante
la mecánica cuántica no es tan lineal como parece, ya que el espacio de estados f́ısicos no es el espacio de
Hilbert H sino el espacio complejo proyectivo P, el cual es una variedad no lineal y más aún, una variedad
Kähler, lo cual implica que el espacio de estados cuánticos correcto es una variedad simpléctica como en
el caso clásico. Es por ello que introducir un lenguaje tensorial nos permite abordar directamente los pro-
blemas en el espacio complejo proyectivo. Por tanto, la dinámica en la formulación tensorial no tiene por
qué ser lineal, incluso no es necesario que la evolución venga dada por operadores unitarios (que conserven
la norma y por tanto la probabilidad) ya que trabajamos directamente sobre el proyectivo. Por todo ello
esta formulación generaliza la mecánica cuántica y permite introducir dinámicas como la del efecto Zenón,
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Figura 2.7: Población en subespacio H1 en función del tiempo. Se ve como en este caso la población no
está restringida al subespacio, y se da una evolución ”libre”respecto del subespacio H1

determinadas por campos Hamiltonianos directamente sobre el espacio proyectivo, XH = ΩP(·, deH).

Además, mediante esta formulación, uno puede distinguir las estructuras que subyacen en la mecánica
cuántica, algunas con análogos directos en la mecánica clásica, las cuales son referidas sólo a la parte
simpléctica, y por otro lado, aquellas caracteŕısticas tales como las incertidumbres y la reducción del
estado en los procesos de medida, referidas a la métrica Riemanniana.

Por otro lado, esta formulación nos aporta una nueva perspectiva de las interacciones entre la mecánica
clásica y la cuántica. Pensemos por ejemplo en un sistema de dos part́ıculas clásicas, pongamos un péndulo
doble plano cuyo espacio de fases viene dado por T ∗S1 × T ∗S1. En este caso hemos compuesto dos sis-
temas, cada uno de los cuales es Hamiltoniano respecto de su estructura simpléctica que en coordenadas
(θ1, θ2, p1, p2) vienen dadas por (T ∗S1, ω1 = dθ1 ∧ dp1) y (T ∗S1, ω2 = dθ2 ∧ dp2). El sistema compuesto
es Hamiltoniano respecto a la estructura simpléctica (T ∗S1 × T ∗S2, ω1 + ω2) y en dicho espacio podemos
obtener las ecuaciones de Hamilton. De modo análogo se puede dar el caso de un sistema cuántico puro,
como es el caso de la dinámica molecular, en el cual mediante una serie de aproximaciones describimos la
dinámica nuclear mediante un sistema clásico y la dinámica de los electrones mediante un sistema cuántico.
Esta aproximación, conocida como dinámica de Ehrenfest, viene descrita por un sistema compuesto por el
sistema clásico nuclear (MC , ωC) y el cuántico (MQ, ωQ), de modo que la variedad del sistema compuesto
sea MC ×MQ. En este caso si cada uno de los sistemas es Hamiltoniano, el sistema compuesto también lo
será y vendrá descrito por las ecuaciones de Hamilton, de forma que se tiene un sistema en el cual aparecen
efectos cuánticos y clásicos y cuya dinámica viene gobernada por el campo Hamiltoniano determinado por
la forma simpléctica ω = ωC + ωQ.

2.5. Validación experimental

El efecto Zenón cuántico es dif́ıcil de observar en decaimientos espontáneos debido a que el intervalo en
el cual la probabilidad crece cuadráticamente es muy corto comparado a el tiempo requerido para hacer la
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medida. Sin embargo, se puede observar dicho fenómeno en transiciones inducidas debido a la inhibición de
estas cuando se realizan medidas frecuentes. En este caso se comentará el experimento realizado por Itano
et al. en [6] con un conjunto de iones 9Be+, modelo experimental el cual fue planteado anteriormente por
Cook en [7].

Figura 2.8: Comparativa de diagrama de niveles de enerǵıa propuesto por Cook [7] y diagrama para el
9Be+ usado en el experimento por Itano et al. [6]

Sea un sistema formado por dos estados: el estado 1 dado por el nivel fundamental y el estado 2 dado
por un estado excitado metaestable de forma que la transición espontánea del 1 al 2 sea despreciable. La
forma de forzar las transicienes 1 ←→ 2 es mediante pulsos cuadrados de duración T = π/Ω, siendo Ω la
frecuencia de Rabi entre dichos subniveles.Tener en cuenta que como la transición es forzada, en caso de
no realizar ninguna medida la probabilidad de transición será uno. Asumamos que un tercer nivel puede
realizar transiciones al estado fundamental de forma que la medida se realizará obligando a que se produzca
la transición 1 −→ 3 mediante un pulso óptico corto. De esta forma si al medir el ión está en el nivel 1 al
principio del pulso, oscilará entre los niveles 1 y 3 emitiendo una serie de fotones hasta que el pulso sea
apagado. En caso de que esté en el nivel 2 no se emitirán fotones. Si esta medida es continuada por otra
inmediatamente después el resultado será prácticamente el mismo.

Los niveles 1 y 2 son en este caso los subniveles hiperfinos (mI ,mJ) = (3
2 ,

1
2)8 y (1

2 ,
1
2) del nivel

fundamental 2S1/2 del 9Be+. El nivel 3 es el subnivel (3
2 ,

3
2) del estado 2p2

3/2 el cual decae al nivel 1.
Para un número n de medidas los resultados obtenidos y la comparación con los resultados predichos se
muestran en el histograma 2.9. Por tanto el decrecimiento de la probabilidad de transición conforme n

Figura 2.9: Histograma con las probabilidades de transición, tanto experimental como predichas, para
1→ 2 en función del número de pulsos de medida n. [6]

aumenta, demuestra la existencia del efecto Zenón cuántico. Existen además muchos otros experimentos
que han corroborado su existencia aśı como la existencia del efecto Zenón inverso como por ejemplo: [18],
[19] y [20] entre otros.

8El sub́ındice I hace referencia al spin del núcleo del ión. La estructura hiperfina es debida a la interacción entre el momento
magnético del núcleo y el de los electrones.



Apéndice A

Algunos conceptos de geometŕıa
diferencial

DFN A.1. Una variedad topológica M de dimensión n es un espacio localmente Eucĺıdeo, lo que significa
que para todo punto x ∈ M existe un entorno abierto U de x y un homeomorfismo ϕ : U → ϕ(U) ⊆ Rn
con ϕ(U) abierto en Rn.

Al par (U , ϕ) se le donomina carta local de M en x. Un ejemplo, de variedad topológica es la circun-
ferencia, S1 donde como carta puede ser usada entre otras la proyección estereográfica desde el polo norte
N = (0, 1) o la parametrización de la circunferencia con un ángulo α.

Una vez se ha introducido el concepto de variedad topológica, podemos pasar a definir variedad dife-
renciable.

DFN A.2. Una variedad diferenciable M de dimensión n y de clase C∞ es una variedad topológica de
dimensión n tal que existe un sistema de cartas locales {(Uα, ϕα)}α∈A que satisfacen

i)
⋃
α∈A Uα = M

ii) Para todo α, β ∈ A tal que Uα ∩ Uβ 6= ∅ la aplicación

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) ⊆ Rn → ϕβ(Uα ∩ Uβ) ⊆ Rn (A.1)

es diferenciable de clase C∞ (y, por tanto un difeomorfismo).

El significado de esta definición es que podemos encontrar un conjunto de abiertos Uα cuya unión cubra
toda la variedad de forma que aunque dos de ellos solapen, el cambio de coordenadas de uno a otro es un
difeomorfismo, es decir que el cambio de un sistema de coordenadas a otro es suave.

Como ejemplo sencillo de variedad diferenciable podemos pensar en cualquier abierto de Rn, donde
existe una carta global (Rn, idR)

Cabŕıa pensar qué relación tiene esta definición matemática tan abstracta con la f́ısica. Para apreciar
dicho enfoque se recomienda leer el caṕıtulo 2 de [21]. La definición aqúı dada de variedad diferenciable no
es la más general ni la más rigurosa. Para ver desarrollos más rigurosos de este concepto ver [22] y [23].

DFN A.3. sea M una variedad diferenciable y p ∈ M . LLamaremos vector tangente en p a toda aplicación
Xp : C∞(p)→ R que verifique:

i) Xp es lineal, es decir: Xp(λf + µg) = λXp(f) + µXp(g), λ, µ ∈ R.
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Figura A.1: Representación visual. [10]

ii) Xp(f, g) = f(p)Xp(g) + g(p)Xp(f) (Regla de Leibniz).

DFN A.4. LLamaremos espacio vectorial tangente a M en el punto p al espacio vectorial de los vectores
en el punto p. Será denotado por Tp(M).

De forma intuitiva un campo vectorial en un abierto U ⊂ Rn es una aplicación que asigna a cada punto
p ∈ U un vector Xp ∈ TpU . El conjunto

TU =
⋃
p∈U

TpU

es el conjunto de todos los pares (p,Xp) con p ∈ U y Xp ∈ TpU . Si denotamos por τ la proyección
τ : TU → U definida por τ(p,Xp) = p, un campo vectorial en U es una aplicación X : U → TU tal que
τ ◦X = idU .

DFN A.5. El conjunto

TM =
⋃
p∈M

TpM

se denomina fibrado tangente de la variedad M .

Además diremos que un campo vectorial X es diferenciable en la variedad M si y sólo si para cada carta
(U , φ) de M , las componentes del campo respecto de dicha carta son diferenciables. El conjunto de campos
vectoriales diferenciables sobre la variedad M al cual denotamos X (M), es un espacio vectorial real respecto
a la operación suma y producto por escalar y puede ser dotado de una estructura de C∞(M)-módulo.

Ejemplo:

Si la variedad es M = R3 − {0}. El campo gravitatorio viene definido por algo proporcional al campo,

Xp =
3∑
i=1

xi

r3

∂

∂xi

∣∣∣∣
p

Por otro lado el dual de TpM recibe el nombre de espacio vectorial cotangente en p ∈ M y se denota
T ∗pM . Sus elementos se llaman covectores en p o vectores covariantes. Por ejemplo, para cada función
f ∈ C∞(p), podemos definir un covector en p que denotamos (df)p por (df)p(Xp) = Xpf .

Una 1-forma diferencial en una variedad diferenciable M es una aplicación

ω : M → T ∗M

tal que ωp ∈ T ∗pM .
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DFN A.6. El conjunto

T ∗M =
⋃
p∈M

T ∗pM

se denomina fibrado cotangente de la variedad M .

Asociado a este espacio podemos definir la proyección (natural)

πM : T ∗M →M

definida como sigue

πM (p, ωp) = p, ωp ∈ T ∗pM

Por ejemplo cuando un sistema mecánica admite una variedad diferenciable Q como espacio de con-
figuración, la descripción del sistema en el espacio de fases hace uso del fibrado cotangente, en donde el
campo vectorial Hamiltoniano XH en T ∗Q admite una expresión coordenada,

XH |(q,p) = ai(q, p)
∂

∂qi
|(q,p) + bi(q, p)

∂

∂pi
|(q,p)

Describamos a continuación lo que denominamos diferencial y codiferencial de una aplicación F : M →
N , siendo M y N variedad diferenciales.

Sea F : M → N una aplicación diferenciable de M a N . Para cada punto p ∈ M , la diferencial de F
en p ∈ M , denotada como F∗p, definida mediante F∗p(Xp)f = Xp(f ◦ F ), ∀f ∈ C∞(F (p)) es un morfismo
de espacios vectoriales, F∗p : TpM → TF (p)N . Por tanto F induce una apliación F∗ que transporta vectores
tangentes Xp del conjunto de curvas que pasan por p, a vectores tangentes XF (p) de curvas que pasan por
F (p) ∀p ∈ M .

Figura A.2: La aplicación F : M → N induce la aplicación diferencial F∗ : TpM → TF (p)N . c(t) representa
una curva sobra M y g una función definida sobre N . Imagen sacada de [10]

Del mismo modo una aplicación F : M → N induce una aplicación F ∗ : T ∗F (p)N → T ∗pM , de modo que
para cada 1-forma diferencial ω definida sobre N podemos definir una 1-forma diferencial en M , que se
denotará F ∗(ω) y se dice imagen rećıproca (pullback) de ω, mediante

[(F ∗(ω)X] (p) = [(F ∗(ω)]pXp = ωF (p) [F∗p(Xp)] , ∀X ∈ X (M)

Una vez definido el espacio tangente TpM y su dual T ∗pM podemos construir el álgebra tensorial TpM
correspondiente a TpM , siendo los elementos de un subespacio de TpM de la forma v1 ⊗ . . . vr ⊗ . . . vr+s
donde vi ∈ TpM con i = 1, . . . , r y vi ∈ T ∗pM para los s ı́ndices restantes. Dicho elementos reciben el
nombre de tensores en p de tipo (r, s).

Por último definamos las formas diferenciales. Una 1-forma diferencial es una variedad diferenciable M
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DFN A.7. Si X es un campo vectorial sobre una variedad M , se dice que una curva diferenciable γ : I →
M , es una curva integral del campo X si

dγ

dt
|t=t0 = Xγ(t0) (A.2)

Si tomamos una carta (U,ϕ) de M en p ∈ γ(I) podemos expresar la curva en coordenadas de forma
que c : I → Rm con c = ϕ · γ. La curva c aśı definida es una curva integral del campo ϕ∗(X) de forma que

dci

dt
= F i(c1(t), ,̇cm(t)) (A.3)

donde F i son las componentes del campo ϕ∗(X) en Rm respecto de la base canónica en Rm.

DFN A.8. Sea M una variedad diferenciable. Se llama forma simpléctica en M a una 2-forma cerrada
(dω = 0) no degenerada (rango máximo) ω. El par (M,ω) recibe el nombre de variedad simpléctica. En
particular, cuando ω es exacta ( ω = dΘ) se dice que (M,ω) es una variedad simpléctica exacta.

Un ejemplo sencillo de variedad simpléctica es la esfera S2 con la 2-forma diferencial dada por

ω = sinθdφ ∧ dθ (A.4)

donde ω viene a representar el elemento de área inducido sobre la esfera unidad.

El estudio de las variedades simplécticas está basado en el teorema siguiente, el cual caracteriza local-
mente dichas variedades.

Teorema A.0.1. (Teorema de Darboux) Si ω es una forma simpléctica en una variedad diferenciable M ,
para cada punto x ∈ M hay una carta local coordenada en torno a x en la cual las coordenadas de ω son
constantes.

Corolario. Si (M,ω) es una variedad simpléctica de dimensión finita 2n, entonces, alrededor de cada
punto x ∈ M , hay una carta coordenada (U , ϕ), en donde la aplicación ϕ está dada por ϕ(x) =
(q1, . . . , qn, p1, . . . , pn), tal que ω se escribe como:

ωU =

n∑
i=1

dqi ∧ dpi

A tales coordenadas (qi, pi) se les denomina coordenadas canónicas o de Darboux.

DFN A.9. Sea M una variedad m-dimensional y TpM el espacio tangente en p ∈ M . Una distribución
k-dimensional sobre M es una elección de un subespacio lineal k-dimensional Dp ⊂ TpM para cada punto
p ∈ M . Dicha distribución denotada como D , viene dada por

D =
∐
p∈M

Dp ⊂ TM

Diremos que dicha distribución es integrable si Dp = TpM para todo p ∈M .

DFN A.10. Si X ∈ X (M), se denota por iX o i(X) a la aplicación iX :
∧

(M) →
∧

(M) (conjunto de
formas antisimétricas sobre M) tal que

i) iX
∧r(M) ⊂

∧r−1(M) si r ≥ 1 mientras que iX
∧0(M) = 0.

ii) Si ω ∈
∧r(M), entonces iXω(X1, . . . , Xr−1) = ω(X,X1, . . . , Xr−1).
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DFN A.11. Sea M una variedad diferenciable, X un campo vectorial y Φt el flujo de dicho campo. Si
p ∈ M , entonces recordar que Xp es el vector tangente al flujo en el punto p, es decir Xp = d

dtΦt(p)|t=0.
De esta forma como (Xf) (p) = Xpf se puede ver que

(Xf)(p) =
d

dt
[f(Φt(p))] |t=0 (A.5)

La generalización para campos vectoriales covariantes es:

Para cada campo vectorial X ∈ X (M) y cada campo r-covariante ω se define la derivada de Lie de ω
según el campo vectorial X como el campo r-covariante,

(LXω) (p) = ĺım
t→0

1

t
[(Φ∗t f)(p)− f(p)] (A.6)

Además a continuación se presentan algunas propiedades útiles de la derivada de Lie.

i) Si f ∈ C∞(M) y ω es un campo r veces covariante, para cada campo vectorial X ∈ X (M),

LX(fω) = (Xf)ω + fLXω

ii) Si T y S son dos tensores sobre la variedad M , entonces

LX(T ⊗ S) = (LXT )⊗ S + T ⊗ (LXS)

iii) Para cada f ∈ C∞(M) y cada X ∈ X (M),

LXdf = d(Xf) = d(LXf)

iv) Se puede demostrar que si X e Y son dos campos vectoriales diferenciables definidos sobre M , entonces

LXY = [X,Y ]

Como ejemplo vamos a calcular LXG siendo G = gij(q)dqi ⊗ dqj

LXG = (Xgij(q))dqi ⊗ dqj + gij(q)d(Xqi)⊗ dqj + gij(q)dqi ⊗ d(Xqj)

DFN A.12. Se llama sistema dinámico Hamiltoniano a una terna (M,ω,H) donde (M,ω) es una variedad
simpléctica y H una función C∞(M). El campo vectorial del sistema dinámico viene dado por XH =
ω̂−1(dH), o de forma equivalente por la solución de iXH

ω = dH.

De hecho el campo vectorial XH correspondiente a H se escribe en coordenadas canónicas como

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
(A.7)

dado que

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi (A.8)

De aqúı se deduce que efectivamente las curvas integrales del campo vectorial XH son determinadas en
coordenadas canónicas por ecuaciones como las de Hamilton.

DFN A.13. Sea (M, g) una variedad Riemanniana y X ∈ (M) un campo vectorial sobre dicha variedad.
Si al practicar un desplazamiento εX infinitesimal, se genera una isometŕıa (se preserva la métrica), el
campo X se dice campo de Killing. Se puede ver que entonces LXg = 0.
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DFN A.14. Se dice que un campo vectorial X ∈ X (M) es localmente Hamiltoniano respecto de la
estructura simpléctica ω si iXω es una 1-forma cerrada. En caso de que iXω sea exacta se dice que es
Hamiltoniano. El conjunto de los campos localmente Hamiltonianos, aśı como el subconjunto Hamiltoniano,
son espacios vectoriales reales.

Además existe un teorema que demuestra, haciendo uso de la identidad de homotoṕıa y de que ω es
una forma simpléctica (por tanto cerrada) que un campo es localmente Hamiltoniano si y sólo si LXω = 0,
lo cual implica que bajo la acción del flujo de dicho campo ω no vaŕıa.

DFN A.15. Sea V un subespacio vectorial tal que Pn es el proyector que proyecta sobre V. Si V es
invariante bajo A entonces

PAP = AP

Además si no sólo V es invariante bajo A sino que también V ⊥ lo es, entonces

(1− P )A(1− P ) = A(1− P )

lo cual implica que,
AP = PA

DFN A.16. Si Φ : G×M →M es una acción del grupo de Lie G en la variedad diferenciable M , se llama
órbita del punto m ∈M al subconjunto Φm(G).

DFN A.17. Sea M una variedad compleja con estructura compleja J y una métrica Riemanniana g. La
2-forma alterna, y por tanto antisimétrica

ω(X,Y ) := g(JX, Y )

es la llamada forma de Kähler asociada.

Además remarcar que visto TM junto con J como un espacio complejo tangente sobre M , y h una
métrica Hermı́tica en TM . Entonces g = Re h es una métrica Riemaniana compatible en M , es decir,
g(JX, JY ) = g(X,Y ) ∀X Y ∈ M e ω = Im h es la forma Kähler asociada:

g(JX, Y ) = Re h(JX, Y ) = Re h(iX, Y ) = Re(−i h(X,Y )) = Im h(X,Y ) = ω(X,Y )

Vice versa, si g es una métrica Riemaniana compatible en M y ω es la forma Kähler, entonces h = g+i ω
es una forma Hermı́tica en TM . Además las propiedades del producto Hermı́tico dado por h, implican que
g es un producto interno definido positivo y que ω es una forma simpléctica, ambos no degenerados.

En resumen, el triplete (J, g, ω) equipa a MQ con la estructura de un espacio de Kähler.



Apéndice B

Conceptos f́ısicos

B.1. El efecto Zenón inverso

De la misma forma que se puede impedir el decaimiento de una part́ıcula de un estado excitado a otro
de menor enerǵıa mediante la aplicación de medidas sucesivas, también es posible acelerar el decaimiento
aplicando este mismo efecto.

En el caso de sistemas inestables se hace uso de la tasa de decaimiento γ, la cual se calcula mediante la
regla de Fermi usando para ello, el Hamiltoniano del sistema. En el caso de que un sistema externo, como
puede ser un sistema de medida, interaccione con el sistema inestable, la tasa de decaimiento será distinta
a la anterior, γeff(K) donde K representa la intensidad del acoplo. Mediante el uso de ambas tasas se puede
ver que se dará QZE si γeff(K) < γ, es decir decae más lento que el sistema por si mismo. Por el otro lado,
el sistema exhibirá IZE si γeff(K) > γ.

A continuación se describen los aspectos que controlarán la dinámica en una transición de este tipo.
Partiendo de la expresión deducida para el caso unidimensional (2.4) esta puede ser descrita de la siguiente
manera:

p(N)(t) = p(τ)N = exp(N log p(τ)) = exp(−γeff(τ)t) (B.1)

donde se ha usado que t = Nτ y se ha introducido una tasa de decaimiento efectiva,

γeff(τ) ≡ −1

τ
logp(τ) (B.2)

Observar que para tiempos suficientemente cortos la tasa de decaimiento efectiva es una función de τ ,

γeff ≡ −
1

τ
logp(τ) ≈ −1

τ
(− τ

2

τ2
Z

) =
τ

τ2
Z

(B.3)

Además para el caso en que el lapso temporal τ sea grande se dará que

γeff(τ)→ γ (B.4)

donde γ es la tasa de decaimiento caracteŕıstica del sistema estudiado.

Considerar ahora un sistema inestable cuya tasa de decaimiento sea γ. Si existe un tiempo τ∗ tal que
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γeff(τ∗) = γ (B.5)

entonces mediante la realización de medidas en intervalos de tiempo τ∗ el sistema decaerá de acuerdo
con su escala de tiempos caracteŕıstica, su vida media, como si no se estuviesen realizando medidas. Sin
embargo, en caso de que dicho intervalo sea menor que τ∗, lo que se obtiene es un QZE. Lo que en este
caso destaca es que si existe tal τ∗, intersección de p(τ) y e−γt al realizar medidas con un τ2 > τ∗, uno
obtiene un efecto Zenón inverso (IZE). En la figura B.1 se presenta una comparativa de ambos fenómenos
donde se representa la amplitud de probabilidad cuando se realizan medidas en intervalos de tiempo τ1 y
τ2 (ĺıneas discontinuas) y una interpolación mediante la función exponencial asociada (ĺıneas continuas).
Se observa que en el primer caso aparece QZE y en el segundo IZE.

Figura B.1: IZE frente a QZE [8]
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