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Resumen

Las aproximaciones usuales a la mecdnica cudntica y clasica son bastante diferentes. Por un lado
tenemos una estructura lineal que se nos presenta en un espacio de Hilbert 7, estructura que es considerada
realmente importante para la formulacién posterior; y por otro lado nos encontramos con las ecuaciones de
Hamilton, que nos definen trayectorias en un espacio de fases. Sin embargo desde los anos 70, ha surgido
una formulacion alternativa de la mecdnica cudntica andloga a la perspectiva geométrica de la mecédnica
clasica no relativista. Para un estudio de esta rama completo e introductorio se recomienda la lectura de
los articulos [1],[2] y [3].

Una vez se haya introducido esta formulacién, se pasard al estudio del efecto Zenon cuédntico (QZE),
primeramente abordado por Von Neumann [4] y unos veinte anos mas tarde, desarrollado teéricamente por
B. Misra y G. Sudarshan [5], los cuales acuniaron el nombre con el que hoy se le conoce, QZE. Destacar
que pese a que académicamente se habia hecho uso de los sistemas inestables para probar dicho efecto,
la primera validacién experimental fue hecha por Itano et al. [6], baséndose en el experimento propuesto
por Cook[7]. Para este apartado nos centraremos en el articulo de P. Facchi y S. Pascazio [8]. Ademas
se aplicard la formulacion geométrica aprendida al estudio del efecto Zendén cudntico, de forma ansloga a
como se desarrolla en [9]. Cabe resaltar que entre las aplicaciones précticas existentes hasta la fecha de
este efecto estan la preservacién de la polarizacién de spin en gases y el control de la decoherencia en
computacion cuantica.

Para el lector que no esté familiarizado con los términos geométricos que aqui se utilizan, se puede
encontrar en el apéndice A, una descripcién resumida de dichos conceptos. En el siguiente apéndice se
anexa una breve descripcién del efecto Zendn inverso (IZE). Ademads en el desarrollo de este trabajo se
tomaran unidades naturales o de Planck (h = 1).
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Capitulo 1

La formulacion geométrica de la
Mecanica Cuantica

Para poder reformular la teoria cuantica desde un punto de vista geométrico es imprescindible iden-
tificar los ingredientes principales que engloba el marco cuantico, de forma que podamos reformular la
estructura matematica que lo sostiene. Entre estos ingredientes encontramos: un espacio de estados al
cual denotaremos S, que corresponde al conjunto de rayos de un espacio de Hilbert complejo separable
en la formulacién usual de la Mecdnica Cuéntica, y que representan los estados puros del sistema, y un
espacio de observables O, que corresponde al conjunto de las magnitudes fisicas del sistema, y que en
la formulacién habitual es el conjunto de operadores autoadjuntos en el espacio de Hilbert considerado.
Debemos considerar ademas el proceso de medida y la evolucién de los estados del sistema fisico. El
proceso de medida viene representado por una asignacion numeérica al par definido por el estado fisico y
el observable O x § — R, mientras que para describir la evolucién del sistema debemos introducir una
ecuacion diferencial, correspondiente a la ecuacién de Schrédinger en la formulacién tradicional, cuyas
soluciones definen la evolucién temporal de los estados del sistema fisico. Toda la teoria desarrollada a
continuacién, serd para el caso particular de un espacio de Hilbert de dimensién finita N, es decir un
sistema de N niveles, con el objetivo de poder prescindir de dificultades topoldgicas que hacen referencia a
propiedades de continuidad de los operadores que aparecen, asi como a sus posibles dominios de definicién.

1.1. Base matematica

En primer lugar, para poder aplicar el formalismo geométrico, debemos introducir una variedad dife-
renciable ! donde trabajar. Para ello observemos que la realificacién del espacio de Hilbert H de dimensién
compleja N puede dotarse de una estructura de variedad real diferenciable Hgr := Mg de dimensién real
2N, que admite una carta global, por ejemplo la obtenida al elegir una base del mencionado espacio de
Hilbert. Al elegir una tal base cada elemento de H posee unas coordenadas {|zx)} y podemos separar cada
una de sus coordenadas en su parte real y parte imaginaria de la forma:

|y = ZW‘? lex) de forma que iy — Y + it (1.1)
k

Entonces,

({wlﬂ/}z, 777DN}) €EHm— ({10571/15» "‘7¢J}\27>1/){71/}§7 7¢]IV}) = (\I]R,\I/]) € MQ (12)

En consecuencia esta variedad real diferenciable Mg es equivalente a R2N

Ver en apéndice A DFN A.1 y siguientes.



4 1.1. BASE MATEMATICA

Ademds, el hecho de que el espacio de Hilbert sea complejo se traduce en la existencia de un tensor
J de tipo (1,1) en la variedad Mg tal que J? = —1I, que recibe el nombre de estructura compleja® . La
variedad que hemos obtenido asi es del tipo particular que se conoce como variedad Kéhler [10].

Por ahora hemos traducido el espacio de estados dados en unas ciertas coordenadas que por analogia
con el caso de mecanica clédsica, denotaremos

f=dyuo =p (1.3)

En efecto, veamos que Mg estd dotada de una estructura simpléctica y que las mencionadas coordenadas
son efectivamente coordenadas de Darboux?® para tal forma simpléctica. La propiedad de que el producto
interno sea tal que (¢| ¢) sea conjugado de (¢| 1)) se traduce en que el espacio lineal de Hilbert Hp
estd dotado de una forma bilineal antisimétrica no degenerada mediante w(|¢),[y)) = Im (¢| ¢)) y por
tanto Mg estd dotado de una estructura simpléctica. Recordando que

n

(0l ¥) = (oF — i dp) (Wi + i),
k=1

vemos que
n

w(lo),[¥) =Tm (g ) =D (6f0f — vitep),

k=1
lo que nos muestra que qx = Re ¢, pr = Im ¢, son coordenadas de Darboux.

Podemos traducir las estructuras algebrdicas disponibles en H en objetos tensoriales sobre la variedad
Mg. Por otro lado, al igual que en el caso clésico, las trayectorias del sistema fisico vendran determinadas
por las curvas integrales de un campo vectorial* responsable de la dindmica. Es por ello que para esta
‘traduccién’ debemos considerar los fibrado tangente y cotangente, teniendo en cuenta que puesto que H
es un espacio vectorial podemos identificar para cada [¢) € H el espacio tangente 7|4 H con el propio H,
de forma que a cada |¢) € H le corresponde la aplicacién que asocia a cada funcién f diferenciable en un
entorno del punto |¢), el valor real

(700 +¢10n)

t=0

Ademsds, con esta identificacion los campos vectoriales en H vendran dados por aplicaciones X : H — H.
Mencionamos a continuacién algunos ejemplos interesantes, como son los campos vectoriales constantes y
los campos vectoriales lineales:

- Con cada elemento [1)) € H le podemos asociar un campo vectorial constante
KXy : Mg = TMq  |¢) = (|6),[4)) (1.4)

Observemos que lo que hemos hecho, es trasladar |1)) € H al espacio tangente en cada punto, es
decir, en este lenguaje los estados |¢)) € H son los vectores pertenecientes al espacio tangente en el
punto |¢). Ademas, elegida una base de H las componentes de [¢)) € H tienen una parte real y una
imaginaria pura de forma que el campo queda descrito por:

Xy (1)) = (1), VR, ¥7) (1.5)

2 Aunque inicialmente este cambio de notacién i — J parezca trivial, este pequefio cambio en el punto de vista permitird in-
troducir la formulacién simpléctica de la mecénica cudntica.

3Ver en apéndice A el teorema A.0.1.

4Ver en apéndice A DFN A.3.



CAPITULO 1. LA FORMULACION GEOMETRICA DE LA MECANICA CUANTICA 5

- Recordemos que si V' es un espacio lineal real, con la identificacién del espacio tangente a V en
cada punto con el propio V, cada aplicacién lineal A : V — V define un campo vectorial X4
mediante X 4(v) = (v, Av). En la carta definida por la eleccién de una base de V, cuyas coordenadas
denotaremos {xz}, dichos campos vectoriales X 4 vendran dados en tales coordenadas por X4 =
a’ jiL‘j % de forma que las ecuaciones que determinan sus curvas integrales son ecuaciones diferenciaes

It b
lineales.

En el caso particular de un espacio de Hilbert H el campo vectorial X4 definido por la aplicacion
lineal A : H — H, con la identificacién TH ~ H x H, estd dado por X4 : |¢) — (|¢), A |¢)) € H xH.
Las curvas integrales de estos campos vectoriales son soluciones de ecuaciones diferenciales lineales
|) = Aly). Veremos que el caso de interés en Mecdnica Cudntica es cuando A es un operador
(anti-)autoadjunto.

- El caso particular en que A = I es especialmente importante ya que el campo vectorial lineal co-
rrespondiente, A = X, codifica la estructura lineal disponible en M. Juega un papel bastante
similar al conocido como campo de Liouville [11], o campo de dilataciones, ya que en este caso no
solo se dilata a lo largo de la fibra si no también del espacio base. Més en concreto,

A:Mgo—TMg [¢) = (), [¥)) (1.6)
se escribe en coordenadas {q, px} asociadas a la eleccién de una base mediante:
0 0
A= q— — 1.7
" da P Opy, .7

Ya indicamos que la subvariedad Mg también estd dotada de otra estructura relevante, que es con-
secuencia de la estructura Hermitica en H. Para el desarrollo matemaético completo de este apar-
tado se recomienda leer el Capitulo 3 de [11]. La estructura Hermitica queda codificada por el tensor
Hermitico h. Para obtenerlo usamos que si [¢1) , [t)2) € H entonces

(1] P2) = B(Xjyyy, X)) ([9) Vo) (1.8)

Llegados a este punto se puede ver siguiendo el desarrollo matemético encontrado en [10], que en
coordenadas 3 = qi + ipg, el tensor Hermitico queda definido por

b= dix®dsr =Y (dgx — idpr) ® (dgi + i dps) (1.9)
k k

y que sobre la variedad real Mg, que estd dotada de una estructura compleja, se puede expresar como
O(Xjpyys X)) = Re (1] ¥2) +iTm (91| ) = 9(Xjpy ) Xjpy) + 1 0(X )5 X)) (1.10)

donde g es un tensor simétrico y w un tensor antisimétrico que define la mencionada estructura
simpléctica, y ademas puesto que el producto interno es sesquilineal,

(Yl ipe) =i (o) (ivha] tha) = —i (¢ha] ¢2) (1.11)

implica que,

w(X,)Y)=g(JX,Y) g(JX,JY)=g(X,Y) w(JX,JY) =w(X,Y) (1.12)
- Por 1ltimo, la estructura compleja de H es traducida mediante el tensor de tipo (1,1)

0 0 0 0
J:TMp — TMpy tal J|— ) = — J|— | = —— 1.13
@ Q tas que <3Qk) Opy; <3pk) Oqr, (1.13)

cumpliendo que
J? =1 (1.14)
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Cabe destacar que por tanto que en la descomposicién (1.9) el tensor simétrico g es definido positivo y
no degenerado y por tanto define una estructura Riemanniana en la variedad real, (Mg, g), mientras que
el tensor antisimétrico w es también no degenerado y es cerrado (dw = 0), por lo que dicho tensor es una
forma simpléctica. Esto implica que (Mg, w) es una variedad simpléctica. Més ain, (Mg, (g,w,J)) es una
variedad Kéhler y la forma covariante de estos tensores viene dada por:

J = 0p, ®dgy — 0g, @dp, g = dq @ dqy, + dpy, @ dpr,  w = dgi A dpy; (1.15)

como se puede ver sin més que hacer uso de la relacién (1.9).

Como w es no degenerada define un tensor de Poisson (su forma contragradiente)
N
0
_ YA Y 1.16
> o A (116)
k=1
como también es posible considerar un tensor dos veces contravariante simétrico que corresponde a g,
N
0 0 0
Z —® ® o — (1.17)
gy 3% apk; Opy,

Ambos tensores estan relacionados por G = J - ). Como veremos estos tensores permiten definir un
corchete de Poisson y un corchete Riemann-Jordan sobre funciones suaves.

En resumen, la traduccion obtenida ha sido:

H — Mg = Mg
() h=g+iw
i J

(CY, () (Mg, (9,w, J))

Es interesante destacar, que han aparecido dos estructuras adicionales al caso de la mecédnica clasica:
la estructura compleja y la estructura Riemanniana compatible con la estructura simpléctica dada por la
igualdad (1.12). Serd esta segunda la que nos permitiré traducir las incertidumbres en la medida.

1.2. Los observables

Una vez introducida la base matematica sobre la que se trabaja y el espacio de estados considerado,
se ha de dar significado a los operadores en el formalismo geométrico. En la imagen de Schrddinger,
los operadores que representan las magnitudes fisicas son los operadores lineales autoadjuntos, los cuales
actian sobre los estados. La forma mas sencilla de traducir esto es asociar a cada observable una funcién
real dada por

0= F(Mg) H— fult) = % (| H) con o € H (1.18)

donde F(Mgq) es el conjunto de todas las funciones cuadréticas sobre Mg y Fr(Mg) el subconjunto de
funciones reales. Ademds se deben codificar las diferentes estructuras algebraicas existentes en . Consi-
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derando el desarrollo de [3] se concluye que:

O(H) F(Mq)
Estructura de dlgebra de Lie: [A, B] = —i (AB — BA) {fa, fB} = fla,p = QUdfa, dfB)

Estructura de dlgebra de Jordan: [A,B], = AB + BA {fa, [}, = f[A,B]+ = G(dfa,dfp)

Producto asociativo: AB = % [A, Bl + % [A, B] faxfp:= fap= %{fA,fB}+ + % {an{B} )
1.19

Nos damos cuenta que si A y B son Hermiticos, con funciones cuadraticas reales asociadas fa y fg,
el producto f4 *x fp no es necesariamente una funcién real (puesto que el producto de dos operadores
Hermiticos no es Hermitico, en general). Pese a ello podemos trabajar en la complexificacién de nuestra
variedad para poder tener definidas dichas funciones. Las estructuras de Lie y de Jordan pueden ser
combinadas de forma que definan una estructura de Lie-Jordan, en este caso sobre el conjunto de funciones
definidas sobre la variedad real Mg. De esta forma, dadas tres funciones cualesquiera f, g y h definidas
sobre la variedad real Mg, dicha élgebra satisface que:

1)
{f7 {g7h}+}:{{f7g}7h}++{gv {f7h}}+ (120)

1)
{{fag}+7h}+ _{fa {g’ h}+}+ = {ga {haf}} (121)

Resaltar que mediante el uso de los tensores de Poisson 2 y de Riemann G, se ha podido recuperar el
producto de Lie y el producto de Jordan respectivamente, para las funciones cuadraticas.

1.3. El espacio complejo proyectivo

Cuando un sistema cuantico es descrito mediante un espacio de Hilbert H, debemos tener en cuenta
que el conjunto de estados que difieren en un factor A € C* = C — {0} son fisicamente equivalentes y
por tanto debemos trabajar con el correspondiente espacio proyectivo. En la formulacién geométrica de la
mecdanica cudntica, podemos introducir la accién de multiplicar por un nimero complejo de médulo uno
sobre Mg como una transformaciéon cuyo generador infinitesimal se escribe,

0 0
T = E : _ 1.22
k <pk P gk 3pk> ( )

Ver que el tensor dado en esas coordenadas lo que hace es cambiar la fase global, si pensamos en el
plano, dado un par {qx, pr},
qr = rrcosfy  pr = rpsinfy

B
Fzzk:%k

Es decir, las curvas integrales del campo I' estan dadas por el conjunto de estados que se obtienen
partiendo de un estado inicial |¢) y multiplicarlo por una fase global e |4)).

entonces,

Por otro lado el campo de dilataciones A, al expresarlo en coordenadas polares toma la forma

0
A—zk:rkark



8 1.3. EL ESPACIO COMPLEJO PROYECTIVO

Ello implica, que las curvas integrales de este campo estan dadas por el conjunto de vectores obtenidos
multiplicando uno dado por un nimero real diferente de cero.

Por tanto, la accién de estos campos sobre la variedad real Mg, corresponden a la accién del grupo
C* =R; ® U(1) sobre Mg. Como dicho grupo es Abeliano, se verifica que

[A,T] =0 (1.23)

Lema 1.3.1. A y I' definen una foliacion 1.1 (de dimension 2) sobre la variedad Mg (ver teorema de
Frobenius [12])

Figura 1.1: Foliacién de Mg dada por A y I

Por tanto, se tiene una distribucién integrable® generada por I' y A los cuales forman una subdlgebra
de Lie Abeliana. Cada una de las hojas de la foliacién es una clase de equivalencia formada por el conjunto
de estados que pertenecen a la misma érbita® bajo la accién de C*. Obsérvese que I' = J(A).

Por otro lado en el espacio de Hilbert, se suele trabajar con estados normalizados, o en caso de que no se
haga, uno debe tener presente la norma del estado a la hora de dar probabilidades y valores medios. Es por
ello que nos interesa ver el conjunto de estados incluidos en una de las hojas dadas por la foliacién definida
por A y de I', ya que estos estados son equivalentes en cuanto a los resultados fisicos que se obtienen.

De un modo més gréfico esto implica que dado un [¢p) € H — {0} y sea A € C*, entonces |[¢)) y A[¢)
pertenecen a la misma clase de equivalencia y es este conjunto de clases de equivalncias al que denominamos
espacio complejo proyectivo.

DFN 1.1. La variedad cociente resultante, denotada como P y dada por
m:Mg—P = Mgy/C* (1.24)

se llama espacio complejo proyectivo y sus puntos representan los estados fisicos puros de un sistema
cuantico:

Pa(lo):==(v)) ) e Mg, (1.25)

Conviene recordar que un espacio proyectivo no es lineal y por tanto la suma de dos estados fisicos no
determina un nuevo estado fisico, es decir no existe la suma de clases de equivalencia. Es por ello que es
mds comodo trabajar en la variedad real M, al igual que también lo es en la formulacién original de la
mecdanica cuantica, en la cual trabajamos en el espacio de Hilbert H.

Una vez hemos definido el espacio complejo proyectivo P se deben traducir las herramientas y estruc-
turas con las que ha sido dotada Mg al espacio proyectivo subyacente, ya que para representar magnitudes
fisicas reales, estas se deben corresponder con funciones que sean constantes a lo largo de las fibras” de la

®Ver en apéndice A DFN A.9.
5Ver en apéndice A DFN A.16.
"Ver en apéndice A la seccién dedicada a campos vectoriales.
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fibracién 7 : Mg — P, es decir funciones que para estados pertenecientes a la misma clase de equivalencia
tomen los mismos valores. Entre otras muchas funciones de este tipo podemos considerar las funciones:

— <¢}| A¢> (1.26)

(W)

para las cuales se cumple que I'(dey) = A(dey) = 0, ya que dichas funciones son su propia imagen bajo el
pullback® 7* : T*P — T*Mg, es decir representan tanto a funciones sobre Mg como a funciones definidas
sobre el espacio complejo proyectivo P.

Es interesante ver la imposibilidad de traducir al espacio complejo proyectivo las formas g y w. Esto
es debido a que dichos tensores estan definidos sobre Mg y por tanto no podemos proyectarlas mediante
la aplicacién codiferencial asociada a 7w : Mg — P. Es por ello que necesitamos la forma contravariante
de dichos tensores, G y ) ya que bajo la aplicacién diferencial proyectan adecuadamente. Sin embargo,
mientras que las funciones e4 definidas anteriormente, son proyectables a través de 7 : Mg — P, G y
Q no lo son. Es decir, sus derivadas de Lie? LAG = —2G y LA = —2Q no se anulan sobre la fibra de
la aplicaciéon. Podemos sustituirlos por otros nuevos tensores Gp y 2p definidos sobre Mg que si lo sean
dados por

Gpi= (| P)G-T@T—A®A

(1.27)
Qp =W PY)QA-TRA-ART
Notar que en general cualquier Gp y 2p dados por
Gp=W|V)G—al' QT —bARA - I’ A—-dART (1.28)

=W Y)Q—dTRT-VARA-TRA-dART

con a,b,c,d,a’,t/,c,d € R, son proyectables. Se han eligido los coeficientes de forma que encontramos la
métrica de Fubini-Study (ver [10]) sobre el espacio complejo proyectivo P.

Un resultado importante obtenido en [3] es el siguiente:
Lema 1.3.2. La accion de Gp en el conjunto de funciones proyectables corresponde a
Gp(dea,dep) = €[4,B], — €A €B
lo cual implica que si A = B se obtiene
Gp(dey,dey) = eq2 — €

de esta forma Gp estd directamente relacionada con las relaciones de indeterminacion.

1.4. La dinamica

En la formulacién geométrica de la mecénica Hamiltoiana, se considera una variedad simpléctica (M, w)
y una funcion H € C°°(M), lo que nos permite definir un campo Hamltoniano Xy por la relacién

ixyw =dH <= Xy =& '(dH). (1.29)

8Sea M y N dos variedades diferenciables. Cada aplicacién diferenciable F' : M — N tiene asociadas dos aplicaciones
entre campos vectoriales y formas dadas por la aplicacién diferencial Fy : TM — TN y la codiferencial F* : T*N — T*M
respectivamente. De nuevo consultar apéndice A.

9En el apéndice A DFN A.11 se encuentra la definicién de dicha derivada asi como algiin ejemplo.
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La expresion en coordenadas de Darboux de X g es

COH O OH 0
T Opi 0g;  0q; Opi

(1.30)

por lo que las ecuaciones que determinan las curvas integrales del campo Hamiltoniano Xy, son las bien

conocidas ecuaciones de Hamilton:
) oH . OH (1.31)
qk = 73— Pr=—5—- )
Opy Oqy,

Para proceder de modo analogo en mecanica cudntica, se considera que el sistema dindmico se encuentra
sobre la variedad Mg en vez de sobre P, ya que resultard mas cémodo. Estamos en una variedad Kahler
donde hemos construido una forma simpléctica de forma que tenemos el ingrediente basico para aplicar
una formulacién Hamiltoniana. En este caso la funcién Hamiltoniana viene dada por

1
fir = 5 Wl HY) (132)
siendo H el operador Hamiltoniano definido sobre H. El campo Hamiltoniano sera
Xu =Q(, dfn) (1.33)

cuyas curvas integrales son las soluciones de la ecuacién de Schrodinger.
Bl = H |) (1.34)

Veamos que efectivamente, las curvas integrales del campo Hamiltoniano se corresponden con las so-
luciones de la ecuacién de Schrodinger. Sea A un operador autoadjunto en H. Entonces la funcién real
fa: M — R definida por fa(|¢))) = 1 ()| A1) tiene asociada un campo Xy, tal que:

inszw(XfA,') =dfga. (1.35)
Si se toma un |¢)) € T4 H entonces,
(dfa)e (1)) (1.36)
es la derivada direccional de f4 en el punto |¢) en la direccién [¢), de esta forma
_1d
() (19)) = 2 GO+t A+ )| =5 (0] Ad)+ (] A0) + (0] AU+ (1] Av) )
=0 t=0
= 5 (] A0) + (9] Au)) = 1 (@] A6+ (] AT)") = Re (6] A)} =T {(~7 Al6)| [4)))
=w(=JAlp), )
(1.37)
asi comparando con (1.35) se obtiene que,
Xpa(l9) = —JAl9) (1.38)

Por tanto Xz es un campo globalmente Hamiltoniano y ademds es también un campo de Killing'®
Lx, g =0, lo cual significa que la forma Hermitica es “invariante” bajo la accién del grupo de isometrias
asociado al campo X7. Debido a estas dos propiedades tenemos que es un campo que conserva la estructura
Riemanniana y la estructura simpléctica y por tanto también conserva la estructura Hermitica. Es por ello
que la evolucién temporal de cualquier sistema mecano cuantico se puede escribir en términos de las
ecuaciones de Hamilton clésicas. Como se enuncia en [2] ”Schrodinger’s equation is Hamilton’s equation in
disguise!”.

10Ver en apéndice A DFN A.13
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1.5. La informacién espectral

Finalmente se considera el problema de cémo recuperar la nociéon de autovalor y autovector de los
operadores definidos sobre H a nivel de las funciones definidas sobre Mg o sobre el proyectivo. Sea A un
operador autoadjunto,

Ars ea()) = A0 (1.39)

(Y] ¥)
entonces,
- Los autovectores corresponden a los puntos criticos de las funciones e 4, es decir,
dea(|y),) = 0siy sélo si [¢), es un autovector de A

donde cabe destacar que si |) es autovector de e entonces €' 1)) también lo serd.

- Los autovalores correspondientes estan dados por e4(|1),).
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Capitulo 2

Efecto Zenén Cuantico. QZE

En el siglo 5 a.C, en Elea, nacié Zenén, una figura importante de la escuela Eleatica de filosoffa fundada
por Parménides. Ellos creian que los sentidos eran enganosos y que tanto el movimiento como el cambio
eran meras ilusiones. Zenén introdujo estas ensenanzas mediante un conjunto de argumentos que resultaban
en aspectos paraddjicos de la nocién de una realidad en continuo cambio y més concretamente chocaban
con la posibilidad de movimiento representado en la paradoja de la flecha. De dicha paradoja se concluye,
que la flecha nunca llegara a su destino. Para una introducciéon més completa ver [8].

En mecéanica cuantica este efecto de la no posibilidad de movimiento fue planteado por primera vez por
Alan Turing en 1954 [13] y acunado por Misra y Sudarshan como Quantum Zeno Effect (QZE) en [5]. Es
de esta publicacion de donde partiremos para desarrollar la teoria del efecto Zenén cuantico.

El primer ejemplo de sistema cuantico considerado es el de un sistema cuantico inestable. El espacio
de estados de este sistema cuantico se divide en los estados en los cuales la particula no ha decaido y en
aquellos estados en los que si. Mediante una observacion del estado sin decaer lo que hacemos es colapsar la
funcién de ondas al estado sin decaer (visién a la von Neumann). La probabilidad de que el estado decaiga,
después de este colapso crece cuadraticamente con el tiempo para tiempos suficientemente cortos. Si lo
que se hace es realizar infinitas observaciones en intervalos muy cortos de tiempo de forma que no dejemos
evolucionar al sistema, estaremos confinando el estado de la particula al estado sin decaer, de manera que
podremos evitar su decaimiento. De forma que un estado que sea continuamente observado nunca decaera.

La dificultad de observar este efecto en decaimientos de particulas reside en que el intervalo temporal
en el cual la probabilidad crece cuadraticamente, y por tanto el tope de nuestro intervalo de medida,
es muy pequeno comparado con el tiempo requerido para hacer la medida, debido a que usamos una
instrumentacién con limitaciones fisicas.

No obstante también se puede aplicar el QZE a la inhibicion de transiciones inducidas mediante medidas
frecuentes, efecto que es observado, por ejemplo, en el montaje experimental propuesto por Itano et. al
[6], donde existe una transicién Rabi y un tercer nivel que permite conocer el estado del sistema. En
dicho experimento se observa cémo disminuye la probabilidad de transicién entre los dos niveles conforme
aumenta el nimero de medidas sobre el sistema.

Se entiende también el uso del QZE en el control de la decoherencia en sistemas cuanticos, la cual es
una consecuencia del acoplo inevitable de cualquier sistema cuantico con su entorno que da lugar a pérdida
de informacion del sistema y por tanto a una dinamica del sistema no unitaria.

Nota: para el desarrollo dado a continuacién se usara el acrénimo QZE para referirse al efecto Zenén
cuantico asi como los nombres ingleses de algunos fenémenos.

13



14 2.1. CASO UNIDIMENSIONAL

2.1. Caso unidimensional

Comenzaremos desarrollando la teoria en un caso sencillo unidimensional y més adelante se desarro-
llaran otras formulaciones més generales. Consideremos un sistema cuantico cuya evolucién viene determi-
nada por el Hamiltoniano H independiente del tiempo. Si el estado puro del sistema en t = 0 es [1)g) € H
con (Y| ¥p) = 1, la amplitud de probabilidad de que este estado sobreviva es:

2

p(t) = (o] ¥e)]* = |(¥o] 67th¢0>\2 ~ ‘Wo\ Vo) — it (ol Hipo) — %tz (o| H*wo)| =1—*/15+... (2.1)

donde 1/7% = (AHy,)?, siendo AHy, la incertidumbre en la medida de la energfa.

Para obtener este resultado en el lenguaje geométrico se hace uso de la traduccion de operadores a
funciones proyectables definidias sobre Mg. Haciendo uso de la linealidad de O — F(Mg) y desarrollando
hasta segundo orden en funcién del tiempo se obtiene,

2 2

. 1,
= leig —regt — §eH2t

= (ei)? — [(en)® — €3 | t* =1 — Gp(den,dep)t* = 1 — (AHy,)*t?

—_— 2 p—
p(t) = ‘eU(t)‘ = eid—th—%H2t2+O(t3)

(2.2)

Hasta este momento no ha aparecido una evolucién del sistema distinta a la libre, sino que sélo se ha
obtenido la probabilidad de permanencia cuando ha pasado un periodo breve de tiempo. Hagamos ahora
N medidas a intervalos de tiempo 7 = t/N, de forma que se compruebe si el sistema estd todavia en el
estado inicial [¢)g). Si cada vez que se realiza una medida se obtiene que el sistema se encuentra en su
estado inicial |1g), entonces la funcién de ondas colapsard a dicho estado y la evolucién volverd a partir
otra vez desde [1g) hasta realizar la siguiente medida como se muestra en la figura 2.1.

Figura 2.1: Evolucién lineal de la fase y cuadratica de la pérdida de probabilidad [§]

La probabilidad de supervivencia tras las N medidas sera!

p™M() = p(r) = p(t/N)N I [1 - (1) (N72))]) Y (2.3)
ahora tomando limite,
N
Jim 1 (/(Nr))Y = Jim |1+ _((le)/t)z =l exp(—2/(NR) =1 (24)

'Recordar que las indeterminaciones del tipo 1°° son potencias del nimero e : lim (14 1/n)" =e.
n— oo
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Por tanto se deduce que si un sistema es continuamente observado (N — oo manteniendo 7 constante
o de forma equivalente = 7 — 0 mantiendo N constante), la evolucién libre del sistema es “interrumpida”
y el sistema se congela en su estado inicial.

2.2. Los subespacios de Zenén cuanticos

En la seccién anterior se ha supuesto que mediante una medida era determinada de forma univoca si el
sistema se encontraba en un estado concreto. Sin embargo, cuando se mide existe una cierta incertidumbre
en la medida, dada por ejemplo por la resolucién del aparato, de forma que no es posible determinar si
el sistema se encuentra en un estado concreto, si no mas bien si se encuentra en un cierto subespacio
m-~dimensional dado por un proyector P m-dimensional. Se dice entonces que se trata de una medida
mcompleta.

Sea la evolucién del sistema cuantico en el espacio de Hilbert H gobernada por un operador unitario
U(t). La medida determinara si el sistema estd en un cierto subespacio s-dimensional Hp, determinado
por el operador de proyeccién P que describe la medida sobre el sistema de forma que PH = Hp. Cada
uno de estos subespacios s-dimensionales, los cuales probaremos que son invariantes en la evolucién, son
los que se conocen como subespacios de Zenoén.

En este caso como consecuencia directa del teorema de Misra y Sudarshan (ver [5] y [8]), se deduce que
si un sistema, vease una particula, es continuamente observada para saber si ha sobrevivido en un cierto
estado Hp, jamés hard una transicién a (#p)*. Es aqui donde reside la formulacién original de la paradoja
de Zenén.

2.3. Formas alternativas para la evolucion de Zendén

Generalmente se solia vincular el QZE a la repeticion de medidas “proyectivas”, a la von Neumann [4],
sobre el sistema cudntico. Sin embargo, se ha observado que esta forma de entender el QZE es demasiado
limitada, ya que dichas medidas proyectivas pueden ser reemplazadas por otros sistemas cuanticos que
interaccionen fuertemente con el sistema cudntico de interés, ya que después de todo uno esquematiza la
medicién como una proyeccién sobre el sistema, resumiendo de esta forma el hecho fisico que ocurre en el
proceso de la medida: un aparato externo o un campo cuantico que interacciona con el mismo.

En definitiva se deduce que las caracteristicas fisicas que dan lugar al QZE no quedan determinadas
por el “colapso” de la funciéon de ondas sino mdas bien como consecuencia de la dindmica dada por una
perturbacién suficientemente intensa.

A continuacién se expondran tres formulaciones distintas del QZE mediante el formalismo geométrico,
trabajando en la variedad real diferenciable Mg en vez de en el espacio proyectivo P directamente. Se
hard uso de la propiedad multiplicativa * descrita en (1.19), del conjunto de las funciones F (M), asi como
de sus propiedades. Ademads para las distintas formulaciones se deducird la funcién Hamiltoniana que
determina la dindmica del sistema, la cual serd denotada funcién Hamiltoniana de Zenén fx,,.

2.3.1. Medidas que proyectan

Esta es la realizaciéon a priori més intuitiva que se aproxima a la dindmica tipo Zendn. Se considera
que las medidas ademas de incompletas serdn no selectivas, es decir el aparato de medida no selecciona
la medida que va a salir, sino que destruye las correlaciones entre distintos estados proyectando sobre los
subespacios de Zenén correspondientes.



16 2.3. FORMAS ALTERNATIVAS PARA LA EVOLUCION DE ZENON

Sea un sistema cudntico cuya evolucién venga descrita por la funcién evolucién fy ) con U(t) =
exp(—i Ht) de forma que?
Foy = Ady) (foo) = fu) * foo * futa (2.5)

donde f,q es la funcién que describe el estado del sistema en el tiempo ¢ siendo p(t) el operador densidad.
Sean un conjunto de proyectores ortogonales de forma que P,H = H, son los subespacios de Zendén
correspondientes de forma que,

"=, (2.6)

Entonces, existen un conjunto de funciones fp, asociadas a dichos proyectores tales que,

{fp, In€N}Y,  fp,xfp, =0mnfr,, > fr, =1 (2.7)

Una medida no selectiva puede ser descrita por

Adp(fp) ==Y fo.* fo* Ip, (2.8)

n

Ademsds daremos la evolucion del sistema tras N medidas en un cierto tiempo ¢ en funcién del super-
operador
v\N) = PU(t/N)PU(t/N)... PU(t/N) = [PU(t/N)N (2.9)

de forma que su traduccién al formalismo geométrico es

Ath(N) = (Adp * AdU(t/N))(AdP * AdU(t/N)) cee (Adp * AdU(t/N)) = (Adp * AdU(t/N))*N (2.10)

Si por tdltimo preparamos el sistema en el estado inicial pg dado por

fpo = AdP(fpo) (2-11)
la evolucion serd de la forma
oy = Adgon (fpo) = Z Fug @ * foo = Fyom ) (2.12)
donde
Fo oy = TPan < Jomy % Foay o TPy * Juteny * T, (2.13)

Si ahora se toma el limite cuando N tiende a infinito, es decir cuando se realizan mediciones de forma
muy frecuente, se obtiene que la evolucion en el subespacio n-ésimo de Zendén viene gobernada por

*N

Fuoo = Jdim_ fyon ) = Mo [P, * fony * fe.] (2.14)
con la condicién adicional de que
lim f o = fp,, vn € N. (2.15)

t—0t

2Se har4 uso de esta notacién de aqui en adelante, de forma que si A es un operador y ¢ una funcién sobre la variedad
diferenciable, entonces Ada(g) := fa *g* fa—1. En el caso de U(¢) recordar que se trata de un operador unitario.
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Para deducir (2.14) se ha hecho uso de que en el limite de medidas muy frecuentes, el intervalo temporal
en el cual evoluciona el sistema entre medida y medida es practicamente nulo. Ello implica que

A Tow/ny = fuoy=1.

De esta manera, y teniendo en cuenta (2.7) obtenemos

. . /
Jm f =0 g g 210

Es decir la dindmica queda restringida dentro de cada uno de los subespacios de Zendn, siendo la
dindmica para cada subespacio independiente de los demads. Esto es debido a que el responsable de las
transiciones entre los diferentes subespacios invariantes Hy, es [y /n)-

Por tanto, el estado final después de haber dejado evolucionar al sistema durante un tiempo ¢ es

fp(t) = Z AdU(Zn)(t)(fPO) (217)

Ademsds se demuestra que la probabilidad de permanencia del sistema en un cierto subespacio H,, se
conserva y que es imposible una “fuga” de probabilidad entre dos subespacios de Zenén distintos. Es por
esto que se comentaba anteriormente el posible uso de este efecto para el control de la decoherencia en
sistemas cudnticos . Para demostrar la conservacién de la probabilidad (es decir, la unitariedad en cada
subespacio H,,) se hace uso de la invariancia, demostrada anteriormente, de los diferentes subespacios de
Zendn bajo la accion del operador de evolucién de Zendn:

Uz(t>Pn = PnUz(t) - {fUzv fpn} =0 Vt. (2.18)
Para demostrar que dicha probabilidad se conserva conviene usar el formalismo en la imagen de Heisen-
berg, de forma que dejemos que los proyectores sobre los diferentes subespacios de Zenén evolucionen de
acuerdo con la ley de evolucién dada en dicha imagen. Por otro lado p,(t) es la probabilidad de encontrar
el estado del sistema en en subespacio de Zenén n-ésimo a un tiempo ¢:3.
1 i
pu(t) = fr,) = fU;(t) * [P(0) * JU,0) = 3 {fU;(ty IP.0) * fUZ(t)}+ t3 {fUZ(t), IP.0) * fU;(t)}
1 1 i

=5 {fU;(t)a 3 {py o} + 5 {fpn(o>7fuz<t>}}+

1 7
=1 {fU;(t)v {an(D)anZ(t)}+}+ +7 {fU;(t)v {an(O)anZ(t)}+} :

(2.19)
Para este wltimo punto se hace uso de las igualdades (1.20) y (1.21) de forma que:
{fU;(t), {fP"(O)7fUZ(t)}+} = {{fU;(t), an(o)} 7fUZ(t)}+ + {fpn(O)» {fU;(t)’ fUZ(t)}}+ =0
{fU;(t), {fp.(0); fUZ(t)}+}+ = {fU;(t)v {fUz(t)’flt’n(o)}Jr}Jr - (2.20)
— {{fU;(t)a fUz(t)}+ aJ"]Pn(o)}+ > {fUz(t)v {an(o)va;(t)}} —
={2.fr.0}; = 4/r.0)
v se obtiene de esta forma que,
pn(t) = i4fpn(0) = pn(0) (2.21)

3Se aplicardn las relaciones dadas en (1.19)

7 1 7
+5 {fU;(t)a 3 {py oz} + 5 {fpn(owaZ(t)}}
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En el articulo de P. Facchi y S. Pascazio (ver [8]) explican el fenémeno usando el ejemplo del caparazén
de una tortuga como se muestra en la figura 2.2: el espacio de Hilbert total H se divide en subespacios
invariantes H, en los cuales f,;) evoluciona de forma independiente en cada sector. Cada uno de estos
subespacios invariantes serian las escamas, de forma que no existe movimiento posible entre las diferentes
escamas y sin embargo todos se mueven con la tortuga al mismo tiempo.

N/
o

N Aduenbayy 10 37 urpdnoo
\:
e

Figura 2.2: Subespacios de Zenén. El espacio de Hilbert del sistema se divide en sectores, de forma que
conforme el nimero de medidas o el acoplamiento aumentan la dindmica queda tanto mas restringida en
dichos subespacios. Imagen sacada de [§]

Por tdltimo, como estamos trabajando con sistemas de dimension finita y por tanto con Hamiltonianos
acotados (ver seccién 5 de [8]), se obtiene que la evolucién dentro de cada subespacio invariante #,, viene
dada de forma explicita usando (2.14) por

fUé")(t) - an * fexp(—i P, HPpt) (222)
de forma que la evolucién del sistema completo vendra gobernada por mirar si posible deduccién
Aduy () (fo) = D fra x exp (=i f11,t) % oo * exp, (i fi,t) % [P, (2.23)
donde
fry, =Y Ip.* fu* fp, (2.24)

es el Hamiltoniano global de Zenon.

2.3.2. Unitary kicks

En este caso es 1til recordar el hecho de que para obtener QZE no es necesario realizar medidas
proyectivas sino, mas bien, partir de una evolucién unitaria como se explica en [14] gobernada por algin
aparato de medida con el cual el sistema de interés tiene un fuerte acoplo. Primero se hara uso de este
tipo de evolucién mediante un conjunto de transformaciones instantaneas unitarias y frecuentes para mas
adelante pasar al limite de acoplo continuo.

La idea subyacente de esta alternativa es la siguiente: supongamos que un sistema cudntico evoluciona
libremente durante un cierto intervalo de tiempo 7; en ese momento el sistema recibe una “patada” (kick)
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instantdnea tal que se conserva la unitariedad, y ademas dicho proceso se repite N veces. A partir de este
punto se puede demostrar que la evolucién serda de tipo Zenodn, de forma que divide el espacio total en
subespacios de Zenén determinados por los proyectores de la transformacién unitaria Uy;ey.

En el lenguaje geométrico, la funcién evoluciéon vendra dada pasado un tiempo ¢ y tras la realizacion
de N medidas equiespaciadas por

Jon® = e * Juw/ny] * [ftua * fuem] - [fowa * foen] = [foga * fU(t/N)]*N : (2.25)

donde dicha funcién no es real ya que los operadores no son Hermiticos. Es por ello que nuestro conjunto
de funciones Fr(Mq) se ve extendido a F(Mq).

El desarrollo presentado a continuacion serd una traduccién al formalismo geométrico del articulo [15].
En el limite de N grande, la contribucién dominante de fy, () es fUﬁ\i’ck(t) , por lo cual se considera la
secuencia de operadores unitarios

*N
fVN(t) = f(Uliick(t))N * fUN(t) = [fékick(t):| * fUN(t) > (2'26)

de forma que el limite converja y donde fy, (o) = 1 para todo N. A continuacién se calcula la ecuacién
diferencial que cumple la funcién fy, ;) sin mas que derivar respecto al tiempo la ecuacién anterior, donde
se ha tenido en cuenta que las funciones fu,., ¥ fu(/n) no tienen por qué conmutar?

. d
ZafVN(t) = Zf(UT LN * 7fUN(t)
)*N—k—l (2.27)

N-
* . d
fi v Z (fthaae * fuem) ™ <kaick * dth(t/N)) * (ftrge * fue/mv
k=0

Como se ha tomado un Hamiltoniano independiente del tiempo, el operador evolucién serd de la for-
ma U(t/N) = exp(—iHt/N). Puesto que nos interesa el limite para N grandes se puede desarrollar la
exponencial en serie de Taylor y quedarnos a primer orden (U(t/N) =~ id — i Ht/N) de forma que

d —1q
@fU(t/N) ~ NfH (2.28)
asi,
d 1 Nl k *k
. *
&fVN(t) = Ul )N * D (e * fowmn) ™ * foga * fr * Fui > (fU(t/N)T * fULck) (e * fuiem)™Y
k=0
= Fanw * foye
(2.29)
d
i fvw) = Franw * fon
de manera que en el limite N — oo, la evolucion viene dada por la funcién,
Juwy = M fuya (2.30)
que satisface,
. d
i Juy = iz % fuq) [fu) = 1] (2.31)
con la funcién de Zenén,
fity = Jm fry- (2:32)

4Notar que si A es un operador, no necesariamente hermitico, entonces f,+ = fi y por otro lado que debido a (1.19),

fan = [fA]*N~
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Por tanto fi) = fexp(—i Hyt) = €XPy(—i fu,t). A partir de aqui uno puede mostrar que despreciando
la contribucién dada por fy /Ny en fry ) cuando N — oo se obtiene que,

fry, =Y Ip.* fu* fp, (2.33)

donde P, son los proyectores sobre el espacio de Hilbert H del operador unitario Uyek. Destacar por tanto
que fg,, se obtiene como la proyeccién de fg en el centralizador de fr, ., , es decir que:

{fHZ7kaick} =0 (2‘34)

Un ejemplo

A continuacién se ejemplifica la evolucién dada por la alternativa bang-bang o de transformaciones
unitarias. En este ejemplo se tiene un sistema de tres niveles acoplados dos a dos mostrado en la figura
2.3, donde entre los dos primeros estados se da una oscilacién de Rabi® de frecuencia 21, mientras que un
tercer estado los observa, pudiéndose interpretar esta tltima interaccién como la pérdida de coherencia del
subsistema formado por los dos primeros estados.

Zeno subspace
A

b - t/IN

. 2\ } JL'L' ..... |_ M

Figura 2.3: Sistema de tres niveles bajo la aplicacién de unitary kicks que acopla uno de sus niveles a un
sistema externo M. Se representa de forma explicita el subespacio de Zenén H;. [§]

Al proteger el subespacio H; determinado por los estados |a) y |b) de la decoherencia, mediante el
acoplo con un instrumento externo | M) que aplica pulsos (de luz por ejemplo) al sistema, se observa como
dicho subespacio es liberado de la decoherencia. El sistema en cuestién viene determinado por:

(a] = (1,0,0,0) (b| = (0,1,0,0)
(c| =(0,0,1,0) (M| = (0,0,0,1)

Hasr = Q1(Ja) (0] + [b) (a]) + Q2(|b) (| + |¢) (b]) con Q1 y Qs € R

y en el formalismo geométrico en coordenadas {qx, px} toma la forma,

fHgw = Q(q1q2 + p1p2) + Q2(q2q3 + p2ps)
Por otro lado la transformacién unitaria,

Ukick = tdy +ida ® g0

El modelo Rabi aparece en la modelizacién de transiciones entre dos niveles cudnticos |g) v |e) con una diferencia de
energia hwo.
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1 o
Tt =5 [af + a5 + pT + p3 + cos(0) (g3 + 45 + p3 + p3) — 2i sin(0)(q3qs + p3ps)]

En la gréfica 2.4(b) se observa tanto la evolucién libre, en la cual no aplicamos pulsos, como la evolucién
de tipo bang-bang. En la gréfica 2.4(a) se observa que a menores intervalos temporales entre la aplicacién
de dos transformaciones unitarias consecutivas, la probabilidad de encontrar el estado en el subespacio H1
aumenta. Ademds la dependencia con el pardametro A no es relevante y sélo varia la frecuencia de oscilacién
de la onda observada.

Poblacion

P N . .
P

",
! ,_r/..”.,. N ALLAALLLAALGALLAL
A & &haA A .
"*‘\*‘\*"}va?ffr‘r‘rvfr-r-rrtﬂevf:

(X : . ’ - -
: \
5. :

\ =/

os| \ /
. . / L Tiempo

0.5 1.0 \ _i/ 20

(b)

Figura 2.4: Evolucién bang-bang para un sistema de tres niveles en funcién de: (a) el intervalo temporal entre
kicks. Se observa como a menores intervalos temporales la probabilidad de permanencia en el subespacio H;
aumenta. En la imagen (b) se compara la evolucién libre del sistema (linea continua) con la evolucién bang-
bang para dos intervalos temporales distintos: 7 = 0,01 y 0,003. Poblacion hace referencia a la probabilidad
de permanencia en un cierto subespacio. Se ha usado como pardmetro § = /3.

2.3.3. Acoplo continuo fuerte

Hasta ahora las dos alternativas planteadas para conseguir una evolucién de tipo Zenén han sido
proyecciones tipo von Neumann y Unitary kicks, es decir procesos en los que se supone que la transformacién
(bien sea la proyeccién o la transformacién unitaria tipo kick) toma lugar de forma instantdnea, es decir
en una escala de tiempos mucho menores que las otras escalas de tiempo que caracterizan la evolucién del
sistema. Por otro lado, las escalas cortas de tiempo pueden ser asociadas con acoplos fuertes. Es por ello
que en definitiva, se puede pensar que las propiedades basicas del QZE se pueden obtener mediante un
acoplo continuo y fuerte con un sistema externo, el cual realiza una especie de medidas de forma uniforme
en el tiempo.

Supongamos una funcién Hamiltoniana genérica de la forma:

Jue = fu+ Kfm, .0 (2.35)

donde fp representa la funcién Hamiltoniana del sistema cudntico y fy, () €s un término de interaccion
que representa al sistema de medida con una constante de acoplo K. A continuacién, de modo anélogo al

desarrollo presentado en [16], se demostrard que en el limite K — oo, la funcién evolucién®
fuw = M fu (2.36)

5Recordar que para introducir la funcién sobre la variedad real diferenciable Mg de un operador no unitario es necesario
hacer una complexificacién del espacio donde se trabaja ya que dicha funcién no pertenece al conjunto de funciones Fr (M)
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donde por Uk (t) se hace referencia al operador evolucién del sistema completo, serd diagonal con respecto
a fH, .4, 1o cual en términos de operadores significa,

Ut)P, = U(t) Py, con Hpeq(t) Py, = 0Py, (2.37)

donde P, son los proyectores asociados a Hyeq(t) y 1y, es el autovalor correspondiente al subespacio Hp,,
el cual permanece invariante.”

En el lenguaje geométrico ello implica que obtendremos un sistema de ecuaciones diferenciales desaco-
pladas entre las coordenadas que representan los distintos subespacios, por tanto

[fuqy fr,] =0. (2.38)

Para demostrarlo se hace uso de la imagen de interaccién en el formalismo geométrico y del teorema
adiabatico en mecdnica cuantica (consultar pagina 740 de [17]). Supdéngase el caso de un sistema cudntico
determinado por

Hig(t) = H(t) + K Hyeat) (2.39)

de forma que aplicando la transformacién unitaria UOT, se describe el sistema en la imagen de interaccion.
De este modo, la evolucién viene dada por U{{ (t), que cumple la ecuacién diferencial,

ihdUf(t) = Hiy Uk (8) (2.40)

Sea fi1 ) la funcién asociada al operador evolucion en la imagen de interaccién de forma que
K

forw = (10| Uk 0)9'(0)) . (2.41)
Derivando,
ihoy fur @y = i (W1(0)] BUK ()9 (0)) = (¥ (0)| K Hinea(t) U ()4 (0)) (2.42)
es decir,
ihath{{(t) = Kmeed(t) * fU{{(t) . (2.43)

Esta ecuacién tiene la misma forma que la evolucién adiabética con la condicién equivalente K — oc.
Suponiendo que fy (4 varie lentamente en el tiempo de forma que se cumpla el teorema adiabatico se
med( )
obtiene que,

A fur o * feio) = frie * M fur e (2.44)

es decir, la evolucidn lleva estados de Hpr (o) & Hpr(y):
I I
[Wo) € Hproy — |0 (1)) € Hprp - (2.45)

Falta ver que dicha propiedad se mantiene en la imagen de Schrodinger, para lo cual se aplica la
transformacién inversa y de nuevo se hace uso de (1.19),

Juey * TPa0) = Tuguryui * Fugproyut = foo * Jur @y * Teyoy * fyg = Juo* Ferwy * Tup. oy * Fut = feaw * Juw

(2.46)
y por tanto,
o) € Hp,0) — [¥() € Hp,q) - (2.47)
De nuevo, de modo andlogo al caso de Unitary kicks se encuentra que,
pn(t) = pn(o) . (2'48)

"ver en apéndice A DFN A.15.
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Un ejemplo

A continuacién se presenta el mismo sistema que en el caso de evolucién bang-bang, pero en este caso
presenta un acoplo continuo con el sistema de medida (ver figura 2.5) cuya intensidad viene dada por la
constante K.

Zeno subspace
a

i
Ql l:. \\f'-
hN

b

A
jE_LL_sz:D

Figura 2.5: Sistema de tres niveles con uno de sus niveles acoplado de forma fuerte a un sistema externo
M. Se representa de forma explicita el subespacio de Zenén H;. [8]

El Hamiltoniano del sistema de medida y su interaccién viene dado por,

KHyea = K(|c) (M| +|M) (c|) con K € R

Previo a analizar los resultados finales, es 1til comparar los campos Hamiltonianos determinados por
la evolucién libre y la evolucién de Zenén en funcién de las coordenadas {qx, px }-

0 0 0 0
Xy, =Kpi— + K — K — K
A P4 3q3 P37— 8q qa—=— ap Q35— 8]04
0 0 0 0 0
Xy = Qipr— Q Q — Q Kpy)— + Kpg3— — Q19—
H P2 o0 + (up1 + 2p3)8q2 + (Qap2 + p4)8q3 + Kp3 o 142 o
0 0 0
(a1 + Dogs) = — (ags — Kqu) = — Kgs——
(¢ 2Q3)ap2 (Q2¢2 q4) s a3 o

Ver que el campo de Zenén no engloba las coordenadas referentes al subespacio invariante que se quiere
proteger de la evolucién, es decir aquellas que representan al sistema. La figura 2.6 muestra la poblacién
existente en el subespacio H; en funcién del tiempo y de la constante de acoplo K. Se observa que cuando
K es suficientemente grande, la evolucion del sistema es tipo Zenén y se conserva la unitariedad. Se ha
partido de un estado inicial en coordenadas {qi, pi} dado por

1
(1,1,1,1,1,1,1,1) = pyp, (0) = =

|[0) = 5

1
2V2
y se ha tomado Q1 = 1y Qs = 2, es decir el acoplo entre |a) y |b) es menor que el que refleja la decoherencia.
En este caso se observa que cuanto mayor es la intensidad de acoplo del sistema de medida, més restringida
esta la evolucion dentro del subespacio Hi. Por tanto se aprecia como el acoplo con el aparato de medida
inhibe la decoherencia creada por el estado |¢). No obstante si 3 >> K y que {2, entonces los subespacios
invariantes son distintos y no se protege H;. Para ejemplicarlo se parte de unas condiciones iniciales:

1
|'¢0> (17 1,1,1,0,0,0 0) = DH, (0) =1

de forma que la evolucion en funcién del parametro 29 viene dada por la figura 2.7.
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Figura 2.6: Poblacién del subespacio H; en funcién del tiempo. De nuevo se observa que cuanto mayor
es el acoplo, més se localiza el sistema en el subespacio H;. Asi se puede entender la analégia dada en la
figura 2.2

Es interesante resaltar que mientras que en la primera formulacién cualquier término de coherencia
entre subespacios distintos se desvanece tras la primera proyeccion, tales términos son preservados en
las evoluciones dadas por las otras dos formulaciones. Sin embargo parece ser que dichos términos son
inobservables en el limite N-grande y K-grande.

2.4. Conclusion

En esta formulacién aparece de forma natural desde una perspectiva geométrica y resalta la diferencia
esencial entre las mecédnicas clasica y cudntica. También sirve para unificar de forma coherente una serie
de generalizaciones propuestas de la mecdnica cuantica, como su unificaciéon con la relatividad general.

Cuando uno compara los marcos formales que subyacen en ambas mecanicas uno encuentra que la
descripcién clasica es geométrica y en general no lineal mientras que la descripcién cudntica es algebraica
y totalmente lineal formulado sobre un espacio de Hilbert H, lo cual desde una perspectiva general es
bastante sorprendente, puesto que en fisica las estructuras lineales generalmente proceden de aproximacio-
nes de estructuras no lineales mas exactas. Sin embargo en este contexto, es la teoria mas profunda y mas
correcta la que es lineal y la no lineal, geométrica y clasica es alcanzada en un cierto limite. No obstante
la mecanica cuantica no es tan lineal como parece, ya que el espacio de estados fisicos no es el espacio de
Hilbert H sino el espacio complejo proyectivo P, el cual es una variedad no lineal y més ain, una variedad
Kaéhler, lo cual implica que el espacio de estados cudnticos correcto es una variedad simpléctica como en
el caso clésico. Es por ello que introducir un lenguaje tensorial nos permite abordar directamente los pro-
blemas en el espacio complejo proyectivo. Por tanto, la dindmica en la formulacién tensorial no tiene por
qué ser lineal, incluso no es necesario que la evolucién venga dada por operadores unitarios (que conserven
la norma y por tanto la probabilidad) ya que trabajamos directamente sobre el proyectivo. Por todo ello
esta formulacién generaliza la mecanica cuantica y permite introducir dindmicas como la del efecto Zenédn,
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Figura 2.7: Poblacion en subespacio H; en funcién del tiempo. Se ve como en este caso la poblacién no
esta restringida al subespacio, y se da una evolucién ”libre” respecto del subespacio H;

determinadas por campos Hamiltonianos directamente sobre el espacio proyectivo, Xg = Qp(-,dep).

Ademsds, mediante esta formulacién, uno puede distinguir las estructuras que subyacen en la mecédnica
cuantica, algunas con andlogos directos en la mecanica clasica, las cuales son referidas sélo a la parte
simpléctica, y por otro lado, aquellas caracteristicas tales como las incertidumbres y la reducciéon del
estado en los procesos de medida, referidas a la métrica Riemanniana.

Por otro lado, esta formulacién nos aporta una nueva perspectiva de las interacciones entre la mecanica
clasica y la cudntica. Pensemos por ejemplo en un sistema de dos particulas clasicas, pongamos un péndulo
doble plano cuyo espacio de fases viene dado por T*S' x T*S!. En este caso hemos compuesto dos sis-
temas, cada uno de los cuales es Hamiltoniano respecto de su estructura simpléctica que en coordenadas
(61,02, p1,p2) vienen dadas por (T*S',wy = df; Adpy) y (T*S*,wy = dfy A dps). El sistema compuesto
es Hamiltoniano respecto a la estructura simpléctica (T*S' x T*S?, w; + ws) y en dicho espacio podemos
obtener las ecuaciones de Hamilton. De modo andlogo se puede dar el caso de un sistema cudntico puro,
como es el caso de la dindmica molecular, en el cual mediante una serie de aproximaciones describimos la
dindmica nuclear mediante un sistema clasico y la dindmica de los electrones mediante un sistema cuéntico.
Esta aproximacién, conocida como dindmica de Ehrenfest, viene descrita por un sistema compuesto por el
sistema clasico nuclear (Mc,wc) y el cudntico (Mg, wq), de modo que la variedad del sistema compuesto
sea Mc x Mg. En este caso si cada uno de los sistemas es Hamiltoniano, el sistema compuesto también lo
serd y vendra descrito por las ecuaciones de Hamilton, de forma que se tiene un sistema en el cual aparecen
efectos cudnticos y clasicos y cuya dindmica viene gobernada por el campo Hamiltoniano determinado por
la forma simpléctica w = we + wq.

2.5. Validacién experimental

El efecto Zenén cuantico es dificil de observar en decaimientos espontaneos debido a que el intervalo en
el cual la probabilidad crece cuadraticamente es muy corto comparado a el tiempo requerido para hacer la
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medida. Sin embargo, se puede observar dicho fenémeno en transiciones inducidas debido a la inhibicién de
estas cuando se realizan medidas frecuentes. En este caso se comentara el experimento realizado por Itano
et al. en [6] con un conjunto de iones ? Bet, modelo experimental el cual fue planteado anteriormente por

Cook en [7].

Figura 2.8: Comparativa de diagrama de niveles de energia propuesto por Cook [7] y diagrama para el
9Bet usado en el experimento por Itano et al. [6]

Sea un sistema formado por dos estados: el estado 1 dado por el nivel fundamental y el estado 2 dado
por un estado excitado metaestable de forma que la transicion espontanea del 1 al 2 sea despreciable. La
forma de forzar las transicienes 1 <— 2 es mediante pulsos cuadrados de duraciéon T = 7/, siendo 2 la
frecuencia de Rabi entre dichos subniveles.Tener en cuenta que como la transicién es forzada, en caso de
no realizar ninguna medida la probabilidad de transicién serd uno. Asumamos que un tercer nivel puede
realizar transiciones al estado fundamental de forma que la medida se realizard obligando a que se produzca
la transicién 1 — 3 mediante un pulso éptico corto. De esta forma si al medir el i6n esta en el nivel 1 al
principio del pulso, oscilara entre los niveles 1 y 3 emitiendo una serie de fotones hasta que el pulso sea
apagado. En caso de que esté en el nivel 2 no se emitiran fotones. Si esta medida es continuada por otra
inmediatamente después el resultado serd practicamente el mismo.

Los niveles 1 y 2 son en este caso los subniveles hiperfinos (my,m;) = (3,1)8 y (3,3) del nivel
fundamental 25, /2 del 9Bet. El nivel 3 es el subnivel (%, %) del estado 2p§ /2 el cual decae al nivel 1.

Para un numero n de medidas los resultados obtenidos y la comparacién con los resultados predichos se
muestran en el histograma 2.9. Por tanto el decrecimiento de la probabilidad de transiciéon conforme n

1.0

g8 B Data

0.6 - Calculation |

0.4

02t

Transition probability

0.0

Figura 2.9: Histograma con las probabilidades de transicién, tanto experimental como predichas, para
1 — 2 en funcién del nimero de pulsos de medida n. [6]

aumenta, demuestra la existencia del efecto Zendén cudntico. Existen adem&s muchos otros experimentos
que han corroborado su existencia asi como la existencia del efecto Zenén inverso como por ejemplo: [18],
[19] y [20] entre otros.

8El subindice I hace referencia al spin del niicleo del i6n. La estructura hiperfina es debida a la interaccién entre el momento
magnético del nicleo y el de los electrones.



Apéndice A

Algunos conceptos de geometria
diferencial

DFN A.1. Una variedad topoldgica M de dimension n es un espacio localmente Euclideo, lo que significa
que para todo punto x € M existe un entorno abierto U de x y un homeomorfismo ¢ : U — o(U) C R"™
con ¢(U) abierto en R™.

Al par (U, ) se le donomina carta local de M en x. Un ejemplo, de variedad topoldgica es la circun-
ferencia, S' donde como carta puede ser usada entre otras la proyeccién estereografica desde el polo norte
N = (0,1) o la parametrizacién de la circunferencia con un éngulo .

Una vez se ha introducido el concepto de variedad topoldgica, podemos pasar a definir variedad dife-
renciable.

DFN A.2. Una variedad diferenciable M de dimension n y de clase C'° es una variedad topoldgica de
dimensién n tal que existe un sistema de cartas locales {(Ua, Pa)}qea que satisfacen

11) Para todo a, 8 € A tal que U, NUz # () la aplicacién
050 Pat i pala NUs) CR™ = (U, NUs) CR™ (A1)

es diferenciable de clase C'* (y, por tanto un difeomorfismo).

El significado de esta definicion es que podemos encontrar un conjunto de abiertos U, cuya unién cubra
toda la variedad de forma que aunque dos de ellos solapen, el cambio de coordenadas de uno a otro es un
difeomorfismo, es decir que el cambio de un sistema de coordenadas a otro es suave.

Como ejemplo sencillo de variedad diferenciable podemos pensar en cualquier abierto de R"™, donde
existe una carta global (R",idr)

Cabria pensar qué relacién tiene esta definicién matematica tan abstracta con la fisica. Para apreciar
dicho enfoque se recomienda leer el capitulo 2 de [21]. La definicién aqui dada de variedad diferenciable no
es la més general ni la més rigurosa. Para ver desarrollos més rigurosos de este concepto ver [22] y [23].

DFN A.3. sea M una variedad diferenciable y p € M. LLamaremos vector tangente en p a toda aplicacién
X, : C®(p) = R que verifique:

1) X, es lineal, es decir: X,(Af + png) = AXp(f) + 1#Xp(9), A, € R,

27
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Figura A.1: Representacién visual. [10]

1) Xp(f,9) = f(p)Xp(g) + 9(p)X,(f) (Regla de Leibniz).

DFN A.4. LLamaremos espacio vectorial tangente a M en el punto p al espacio vectorial de los vectores
en el punto p. Serd denotado por T),(M).

De forma intuitiva un campo vectorial en un abierto i/ C R"™ es una aplicacién que asigna a cada punto
p € U un vector X, € T,U. El conjunto
TU = | T,u
peU

es el conjunto de todos los pares (p,Xp) con p € U y X, € T,U. Si denotamos por 7 la proyecciéon
7 : TU — U definida por 7(p, X;,) = p, un campo vectorial en U es una aplicacién X : U — TU tal que
ToX = idu.

DFN A.5. El conjunto

T™™ = | J T,M
peEM

se denomina fibrado tangente de la variedad M.

Ademsds diremos que un campo vectorial X es diferenciable en la variedad M siy sélo si para cada carta
(U, ) de M, las componentes del campo respecto de dicha carta son diferenciables. El conjunto de campos
vectoriales diferenciables sobre la variedad M al cual denotamos X (M), es un espacio vectorial real respecto
a la operacién suma y producto por escalar y puede ser dotado de una estructura de C°° (M )-médulo.

Ejemplo:

Si la variedad es M = R? — {0}. El campo gravitatorio viene definido por algo proporcional al campo,

Xp=>_

i=1

.

0
ozt

3|8

p

Por otro lado el dual de T),M recibe el nombre de espacio vectorial cotangente en p € M y se denota
TyM. Sus elementos se llaman covectores en p o vectores covariantes. Por ejemplo, para cada funcién
f € C*=(p), podemos definir un covector en p que denotamos (df), por (df),(X,) = X, f.

Una 1-forma diferencial en una variedad diferenciable M es una aplicacién
w:M—T"M

tal que w, € TyM.
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DFN A.6. El conjunto
"M = | ] T;M
peEM

se denomina fibrado cotangente de la variedad M.

Asociado a este espacio podemos definir la proyeccién (natural)
my T M — M

definida como sigue
mm(p,wp) =p, wp € T, M

Por ejemplo cuando un sistema mecanica admite una variedad diferenciable ) como espacio de con-
figuracion, la descripcion del sistema en el espacio de fases hace uso del fibrado cotangente, en donde el
campo vectorial Hamiltoniano Xy en T*(@Q admite una expresién coordenada,

i 9 i 9
Xalgp =0 (Qap)aiqi l(gp) T0 (%p)aT?i l(ap)

Describamos a continuacion lo que denominamos diferencial y codiferencial de una aplicacién F': M —
N, siendo M y N variedad diferenciales.

Sea F': M — N una aplicacién diferenciable de M a N. Para cada punto p € M, la diferencial de F
en p € M, denotada como Fy), definida mediante F,(X,)f = X,(f o F), Vf € C®°(F(p)) es un morfismo
de espacios vectoriales, Fy, : T, M — T'p(,)N. Por tanto F' induce una apliaciéon F que transporta vectores
tangentes X, del conjunto de curvas que pasan por p, a vectores tangentes Xp(,) de curvas que pasan por
F(p)Vp € M.

b N R
()

i O g
w

M Trip N

‘. FX

Figura A.2: La aplicaciéon F': M — N induce la aplicacién diferencial Fl : T,M — Trq)N. c(t) representa
una curva sobra M y g una funcién definida sobre N. Imagen sacada de [10]

Del mismo modo una aplicaciéon F': M — N induce una aplicacion F™ : T}, )N — T, M, de modo que
para cada 1-forma diferencial w definida sobre N podemos definir una 1-forma diferencial en M, que se
denotard F*(w) y se dice imagen reciproca (pullback) de w, mediante

[(F" (@) X] (p) = [(F* ()], Xp = wr@) [Faop(Xp)], VX € X (M)

Una vez definido el espacio tangente T, M y su dual T M podemos construir el algebra tensorial 7,M
correspondiente a 7T),M, siendo los elementos de un subespacio de 7,M de la forma v ® ... v, ® ... Vpps
donde v; € T,M con i =1,...,r y v; € T;M para los s indices restantes. Dicho elementos reciben el
nombre de tensores en p de tipo (7, s).

Por dltimo definamos las formas diferenciales. Una 1-forma diferencial es una variedad diferenciable M
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DFN A.7. Si X es un campo vectorial sobre una variedad M, se dice que una curva diferenciable v : [ —
M, es una curva integral del campo X si

dy
a|t=to = X\(to) (A.2)

Si tomamos una carta (U, ¢) de M en p € y(I) podemos expresar la curva en coordenadas de forma
que ¢: I — R™ con ¢ = ¢ -~. La curva c asi definida es una curva integral del campo ¢.(X) de forma que

dc i Cm
= P (1), " (1) (A.3)

donde F" son las componentes del campo ¢,(X) en R™ respecto de la base canénica en R™.

DFN A.8. Sea M una variedad diferenciable. Se llama forma simpléctica en M a una 2-forma cerrada
(dw = 0) no degenerada (rango maximo) w. El par (M, w) recibe el nombre de variedad simpléctica. En
particular, cuando w es exacta (w = dO) se dice que (M,w) es una variedad simpléctica exacta.

Un ejemplo sencillo de variedad simpléctica es la esfera S? con la 2-forma diferencial dada por
w = sinfdp A df (A.4)

donde w viene a representar el elemento de drea inducido sobre la esfera unidad.

El estudio de las variedades simplécticas estd basado en el teorema siguiente, el cual caracteriza local-
mente dichas variedades.

Teorema A.0.1. (Teorema de Darbouz) Si w es una forma simpléctica en una variedad diferenciable M,
para cada punto x € M hay una carta local coordenada en torno a x en la cual las coordenadas de w son
constantes.

Corolario. Si (M,w) es una variedad simpléctica de dimensién finita 2n, entonces, alrededor de cada
punto x € M, hay una carta coordenada (U,¢p), en donde la aplicacién ¢ estd dada por ¢(z) =
(¢',...,q¢",p1,...,pn), tal que w se escribe como:

n
wy = Z dq" A dp;
i=1

A tales coordenadas (¢*, p;) se les denomina coordenadas canénicas o de Darboux.

DFN A.9. Sea M una variedad m-dimensional y T),M el espacio tangente en p € M. Una distribucién
k-dimensional sobre M es una eleccién de un subespacio lineal k-dimensional D, C T),M para cada punto
p € M. Dicha distribucién denotada como D , viene dada por

D= ][ D,cTM
peM

Diremos que dicha distribucion es integrable si D), = T),M para todo p € M.

DFN A.10. Si X € X(M), se denota por ix o i(X) a la aplicacién ix : A(M) — A(M) (conjunto de
formas antisimétricas sobre M) tal que

1) ix N(M) c A" (M) sir > 1 mientras que ix A°(M) = 0.

1) Siwe A\"(M), entonces ixw(Xi,...,X,—1) =w(X, X1,..., X;—1).
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DFN A.11. Sea M una variedad diferenciable, X un campo vectorial y ®; el flujo de dicho campo. Si
p € M, entonces recordar que X, es el vector tangente al flujo en el punto p, es decir X, = %(I)t(p)\tzo.
De esta forma como (X f) (p) = X, f se puede ver que

(XP)) = 5 [F @) o (A5)

La generalizacién para campos vectoriales covariantes es:

Para cada campo vectorial X € X (M) y cada campo r-covariante w se define la derivada de Lie de w
seguin el campo vectorial X como el campo r-covariante,

(Lxw) (p) = lim = (87 £)(p) — £(p)] (A.6)

t—0 ¢t

Ademsds a continuacion se presentan algunas propiedades ttiles de la derivada de Lie.

1) Si f € C®°(M) y w es un campo r veces covariante, para cada campo vectorial X € X (M),
,Cx(fw) = (Xf)w + fLxw
11) Si T y S son dos tensores sobre la variedad M, entonces

Lx(T®S)=(LxT)@S+T® (LxS)
111) Para cada f € C°(M) y cada X € X (M),
Lxdf =d(Xf)=d(Lxf)
1v) Se puede demostrar que si X e Y son dos campos vectoriales diferenciables definidos sobre M, entonces

LxY =[X,Y]

Como ejemplo vamos a calcular LxG siendo G = g;;(q)dg; ® dg;

LxG = (Xgij(q))dg; @ dg; + 9i5(q)d(X ¢;) ® dgj + gij(¢)dg; @ d(Xq;)

DFN A.12. Se llama sistema dindmico Hamiltoniano a una terna (M,w, H) donde (M, w) es una variedad
simpléctica y H una funcién C*°(M). El campo vectorial del sistema dindmico viene dado por Xy =
&~ 1(dH), o de forma equivalente por la solucién de ix,w = dH.

De hecho el campo vectorial X correspondiente a H se escribe en coordenadas candnicas como

OH 9 9H D

Xy = - — A.
"= 0p; 0qi ~ dq’ Op; (A7)
dado que
0H . OH
dH = =—dg’ dp; A.
ag 5, (A.8)

De aqui se deduce que efectivamente las curvas integrales del campo vectorial X son determinadas en
coordenadas canodnicas por ecuaciones como las de Hamilton.

DFN A.13. Sea (M, g) una variedad Riemanniana y X € (M) un campo vectorial sobre dicha variedad.
Si al practicar un desplazamiento €X infinitesimal, se genera una isometria (se preserva la métrica), el
campo X se dice campo de Killing. Se puede ver que entonces Lxg = 0.



32

DFN A.14. Se dice que un campo vectorial X € X (M) es localmente Hamiltoniano respecto de la
estructura simpléctica w si ixw es una l-forma cerrada. En caso de que ixw sea exacta se dice que es
Hamiltoniano. El conjunto de los campos localmente Hamiltonianos, asi como el subconjunto Hamiltoniano,
son espacios vectoriales reales.

Ademsds existe un teorema que demuestra, haciendo uso de la identidad de homotopia y de que w es
una forma simpléctica (por tanto cerrada) que un campo es localmente Hamiltoniano si y sélo si Lxw = 0,
lo cual implica que bajo la accién del flujo de dicho campo w no varia.

DFN A.15. Sea V un subespacio vectorial tal que P, es el proyector que proyecta sobre V. Si V es
invariante bajo A entonces

PAP = AP

Ademss si no sélo V es invariante bajo A sino que también V' lo es, entonces
(1-P)AQ1—-P)=A(1-P)

lo cual implica que,
AP = PA

DFN A.16. Si ® : G x M — M es una accién del grupo de Lie GG en la variedad diferenciable M, se llama
érbita del punto m € M al subconjunto @,,(G).

DFN A.17. Sea M una variedad compleja con estructura compleja J y una métrica Riemanniana g. La
2-forma alterna, y por tanto antisimétrica

w(X,Y):=g(JX,Y)

es la llamada forma de Kéahler asociada.

Ademads remarcar que visto TM junto con J como un espacio complejo tangente sobre M, y h una
métrica Hermitica en T'M. Entonces g = Reb es una métrica Riemaniana compatible en M, es decir,
g(JX,JY)=g9(X,Y) VXY € M ew=Imb es la forma Kahler asociada:

g(JX,Y) = Reh(JX,Y) = Reh(i X,Y) = Re(—i h(X,Y)) = Imh(X,Y) = w(X,Y)

Vice versa, si g es una métrica Riemaniana compatible en M y w es la forma Kéahler, entonces h = g+iw
es una forma Hermitica en T'M. Ademaés las propiedades del producto Hermitico dado por b, implican que
g es un producto interno definido positivo y que w es una forma simpléctica, ambos no degenerados.

En resumen, el triplete (J, g,w) equipa a Mg con la estructura de un espacio de Kahler.



Apéndice B

Conceptos fisicos

B.1. El efecto Zenodn inverso

De la misma forma que se puede impedir el decaimiento de una particula de un estado excitado a otro
de menor energia mediante la aplicacién de medidas sucesivas, también es posible acelerar el decaimiento
aplicando este mismo efecto.

En el caso de sistemas inestables se hace uso de la tasa de decaimiento -, la cual se calcula mediante la
regla de Fermi usando para ello, el Hamiltoniano del sistema. En el caso de que un sistema externo, como
puede ser un sistema de medida, interaccione con el sistema inestable, la tasa de decaimiento serd distinta
a la anterior, v.g(K) donde K representa la intensidad del acoplo. Mediante el uso de ambas tasas se puede
ver que se dard QZE si veg(K) < 7, es decir decae més lento que el sistema por si mismo. Por el otro lado,
el sistema exhibird IZE si veg(K) > 7.

A continuacién se describen los aspectos que controlardn la dindmica en una transiciéon de este tipo.
Partiendo de la expresién deducida para el caso unidimensional (2.4) esta puede ser descrita de la siguiente
manera:

pM(t) = p(r)N = exp(N log p(7)) = exp(—7esr(T)t) (B.1)

donde se ha usado que t = N7 y se ha introducido una tasa de decaimiento efectiva,

Vet (T) = —%logp(T) (B.2)

Observar que para tiempos suficientemente cortos la tasa de decaimiento efectiva es una funcién de T,

1 1, 7 T
Yoit = ——logp(r) ~ ——(—5) = = (B.3)
T T T TS
Ademsds para el caso en que el lapso temporal 7 sea grande se dard que
Vet (T) = ¥ (B.4)

donde v es la tasa de decaimiento caracteristica del sistema estudiado.

Considerar ahora un sistema inestable cuya tasa de decaimiento sea . Si existe un tiempo 7" tal que
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Yerr(T7) =y (B.5)

entonces mediante la realizacién de medidas en intervalos de tiempo 7* el sistema decaera de acuerdo
con su escala de tiempos caracteristica, su vida media, como si no se estuviesen realizando medidas. Sin
embargo, en caso de que dicho intervalo sea menor que 7%, lo que se obtiene es un QZE. Lo que en este
caso destaca es que si existe tal 7%, interseccién de p(7) y e~ al realizar medidas con un 7 > 7%, uno
obtiene un efecto Zenén inverso (IZE). En la figura B.1 se presenta una comparativa de ambos fendmenos
donde se representa la amplitud de probabilidad cuando se realizan medidas en intervalos de tiempo 7 y
79 (lineas discontinuas) y una interpolaciéon mediante la funcién exponencial asociada (lineas continuas).
Se observa que en el primer caso aparece QZE y en el segundo IZE.

TN

0.6

0.2 —
0T 4 8

Figura B.1: IZE frente a QZE [§]
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