000150562 001__ 150562
000150562 005__ 20250210102457.0
000150562 0247_ $$2doi$$a10.1103/PhysRevB.110.134117
000150562 0248_ $$2sideral$$a142608
000150562 037__ $$aART-2024-142608
000150562 041__ $$aeng
000150562 100__ $$0(orcid)0000-0002-3448-9831$$aCalvo-Almazán, I.$$uUniversidad de Zaragoza
000150562 245__ $$aInhomogeneous probes for Bragg coherent diffraction imaging: Toward the imaging of dynamic and distorted crystals
000150562 260__ $$c2024
000150562 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150562 5203_ $$aThis paper proposes an innovative approach to improve Bragg coherent diffraction imaging (BCDI) microscopy applied to time evolving crystals and/or nonhomogeneous crystalline strain fields, identified as two major limitations of BCDI microscopy. Speckle BCDI (spBCDI), introduced here, rests on the ability of a strongly nonuniform illumination to induce a convolution of the three-dimensional (3D) frequency content associated with the finite-size crystal and a kernel acting perpendicularly to the illumination beam. In the framework of Bragg diffraction geometry, this convolution is beneficial as it encodes some 3D information about the sample in a single two-dimensional (2D) measurement, i.e., in the detector plane. With this approach, we demonstrate that we can drastically reduce the sampling frequency along the rocking curve direction and still obtain datasets with enough information to be inverted by a traditional phase retrieval algorithm. Numerical simulations, performed for a highly distorted crystal, show that spBCDI allows a gain in the sampling ratio ranging between 4 and 20 along the rocking curve scan, for a speckle illumination with individual speckle size of 50 nm at the sample position. Furthermore, spBCDI allows working at low intensity levels, leading to an additional gain for the total scanning time. Reductions of a factor of about 40 were numerically observed. Thus, full 3D datasets measured in the 0.2 s time scale at fourth-generation synchrotrons become feasible, with a remarkable potential for the imaging of strongly distorted crystals. Practical details on the implementation of the method are also discussed.
000150562 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E12-23R-RASMIA$$9info:eu-repo/grantAgreement/ES/AEI/PID2020-115159GB-I00/AEI/10.13039/501100011033
000150562 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000150562 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000150562 700__ $$aChamard, V.
000150562 700__ $$aGrünewald, T. A.
000150562 700__ $$aAllain, M.
000150562 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000150562 773__ $$g110, 13 (2024), 134117 [18 pp.]$$pPhys. Rev. B$$tPhysical Review B$$x2469-9950
000150562 8564_ $$s5757794$$uhttps://zaguan.unizar.es/record/150562/files/texto_completo.pdf$$yVersión publicada
000150562 8564_ $$s2916531$$uhttps://zaguan.unizar.es/record/150562/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000150562 909CO $$ooai:zaguan.unizar.es:150562$$particulos$$pdriver
000150562 951__ $$a2025-02-10-08:28:19
000150562 980__ $$aARTICLE