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Featured Application: The nUBEM model offers a powerful AI-driven framework for
evaluating the energy performance and greenhouse gas emissions of residential build-
ings on a national scale. By enabling urban and nationwide insights, it supports compre-
hensive analysis of building characteristics and energy performance across residential
building stock. This model is useful for the design of targeted energy efficiency policies
and assessing their effectiveness in reducing greenhouse gas emissions.

Abstract: To effectively decarbonize Europe’s building stock, it is crucial to monitor the
progress of energy consumption and the associated emissions. This study addresses the
challenge by developing a national-scale urban building energy model (nUBEM) using
artificial intelligence to predict non-renewable primary energy consumption and associated
GHG emissions for residential buildings. Applied to the case study of Spain, the nUBEM
leverages open data from energy performance certificates (EPCs), cadastral records, IN-
SPIRE cadastre data, digital terrain models (DTM), and national statistics, all aligned with
European directives, ensuring adaptability across EU member states with similar open data
frameworks. Using the XGBoost machine learning algorithm, the model analyzes the phys-
ical and geometrical characteristics of residential buildings in Spain. Our findings indicate
that the XGBoost algorithm outperforms other techniques estimating building-level energy
consumption and emissions. The nUBEM offers granular information on energy perfor-
mance building-by-building related to their physical and geometrical characteristics. The
results achieved surpass those of previous studies, demonstrating the model’s accuracy and
potential impact. The nUBEM is a powerful tool for analyzing residential building stock
and supporting data-driven decarbonization strategies. By providing reliable progress in-
dicators for renovation policies, the methodology enhances compliance with EU directives
and offers a scalable framework for monitoring decarbonization progress across Europe.

Keywords: urban building energy model (UBEM); energy performance certificates (EPCs);
machine learning; national building stock; data driven approaches; progress indicators;
building energy efficiency; building carbon footprint; energy renovation policies

1. Introduction
In the European Union (EU), member states (MSs) have committed to achieving

climate neutrality by 2050 [1]. Achieving this ambitious target requires addressing the
energy and emissions impact of the building sector, which accounts for 40% of energy
consumption and 36% of GHG emissions [2]. To this end, the EU has launched initiatives
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such as the Renovation Wave [3] and the 2024 Energy Performance of Buildings Directive
(EPBD) recast [2], aiming to accelerate the renovation of existing buildings across Europe.

However, achieving these goals is not without challenges. Monitoring the progress of
national strategies and ensuring their effectiveness requires robust, reliable, and comparable
data across MSs. To address this need, the 2018 EPBD recast Directive [4] introduced a set
of progress indicators to measure decarbonization advancements of the national building
stocks. The list of indicators is extensive, covering a wide range of aspects. These include
the general characteristics and energy performance of the national building stock, deep
renovation status, the worst-performing segments, rented properties, energy poverty, the
capacities in the building industry, actual energy savings, the broader benefits of building
renovations, estimated energy savings, and reduced healthcare costs due to renovations, as
well as policies and measures for mobilizing investments in building renovations, among
other things [5]. Measuring these indicators is crucial for optimizing national renovation
strategies based on data and demonstrating to the EU the effective use of European funds
for decarbonizing the built environment.

Despite the importance of these indicators, many remain difficult to measure [6]. This
challenge stems from the following:

1. Data fragmentation and lack of interoperability: Data are often collected at regional
or municipal levels without a common format, hindering their combination to create
larger-scale information [7].

2. Disparate data structures: Data collected from various sources are in incompatible
formats, lacking application programming interfaces (APIs) for direct access, compli-
cating large-scale analysis. Some data are provided in non-machine-readable formats,
impeding automation [8].

3. Difficulty accessing data: Much of the information is not open and requires a request,
blocking constant automation and updating [9].

4. Labeling errors and missing data: Information is sometimes incomplete or contains
errors that need filtering or correction [10].

As a result, these barriers significantly limit the ability of MSs to collect and utilize
essential data for effective decision-making [11]. Emerging technologies such as georefer-
encing, big data analysis, and machine learning (ML) present an excellent opportunity to
overcome these barriers and improve data collection [7].

For these technologies to deliver maximum utility, the data they rely on must:

• Be standardized across all MSs to facilitate cooperation and comparability between
European countries.

• Be open to enable automation for constant updates.

To address these needs, the EU has launched several directives and proposals such as
the Infrastructure for Spatial Information in Europe (INSPIRE) Directive [12], Directive (EU)
2019/1024 [13] and the Data Act [14]. These directives aim to enhance access to and use of
data within the EU, creating a common and secure interoperable space in the European
Union. As discussed in [15], the use of open big data from public information sources within
interoperable frameworks established by these directives allows for large-scale analysis
and benefits from georeferencing and data cross-referencing to monitor decarbonization
progress and building conditions, among other advantages.

One promising approach to leverage these technologies is the use of urban building
energy models (UBEMs). Historically, building energy models (BEMs) have been key
tools for understanding a building’s energy performance and proposing improvements for
energy efficiency. These models use detailed information about building materials, their
thermal properties, occupancy patterns, and systems. However, when generating these
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models at the neighborhood scale and beyond, developing highly detailed models may not
be cost-effective in terms of time and expense [16]. Thus, the urban building energy models
(UBEMs) were developed. These models use simplified building physics to simulate large
groups of buildings and are generated to cover large building sets within reasonable time
and cost constraints [17].

Typically, an UBEM covers a spatial scale ranging from a group of buildings to a
district, neighborhood, or city [18]. However, this scale can be expanded as data availability
allows. In this paper, we propose a national-scale model to analyze the entire residential
building stock of a country. We call this model a national-scale urban building energy
model enhanced with AI (nUBEM). It is a country-scale model which allows us to obtain
certain progress indicators required by the 2024 EPBD recast and is helpful in generating
valuable information for developing large-scale decarbonization strategies, enabling data-
driven policy decisions. This model is a substantial improvement over a previous one [9],
which generated a powerful country-scale model mapping and characterizing the energy
performance of buildings that have energy performance certificates (EPCs), which is based
on open data and automatically updates. However, it could only provide data for buildings
with EPCs, which, in Spain, represent 10% of existing buildings. In this paper, we propose
an enhanced model that provides the energy performance of all buildings in a country
and evaluate it in comparison with other existing models in the scientific literature. The
improved model achieves greater precision with shorter computation times by employing
a hybrid approach that combines data from heterogeneous sources and AI to predict the
energy performance of buildings. It incorporates geospatial techniques to enrich existing
data and artificial intelligence algorithms to predict the energy performance of all residential
buildings across a country. In this paper, Spain is taken as a case study. As this model is
created using open data from public information sources established through European
directives, it can be applied to all EU MSs that have incorporated the data frameworks set
by these directives.

Literature Review

In large-scale analysis, UBEMs are useful tools to evaluate the energy performance
of the buildings and potential improvements. UBEMs are classified depending on their
purpose and objectives into four categories [19]:

• UBEMs for urban planning and new neighbourhood design
• UBEMs for stock-level carbon reduction strategies
• UBEMs for building-level recommendations
• UBEMs for building-to-grid (B2G) integration

Since the objective of our nUBEM is obtaining progress indicators for the evaluation of
the evolution of building decarbonization and of the impact of energy renovation policies
at a national scale, our model falls into the category of UBEM for stock-level carbon
reduction strategies.

Regarding the methodology employed in the creation of UBEMs, these can be classi-
fied into two main types [20]: top-down models and bottom-up models. Top-down models
are primarily based on the interrelations between the energy sector and the broader econ-
omy, and they do not require detailed building information, whereas bottom-up models
represent energy consumption, leveraging detailed information about energy end uses
through aggregation.

Specifically, bottom-up models can be developed using either statistical data about the
energy use of individual buildings (statistical approach) or physical models that estimate
energy consumption by modeling buildings’ energy characteristics [21]. To determine
a building’s energy performance, the model can use either simplified methods, such as



Appl. Sci. 2025, 15, 514 4 of 27

engineering approximations, or detailed approaches that characterize the building’s energy
behavior with greater precision [21].

Simplified engineering models offer lower accuracy compared to detailed models.
Detailed models began utilizing individual buildings for smaller-scale analyses (individ-
ual approach) and archetypes for larger-scale studies (representative building approach).
However, despite the use of archetypes, a significant challenge for detailed physics-based
bottom-up UBEMs lied in optimizing their development process to reduce computational
demands and time requirements [22]. In a previous study [9], we addressed the issue
of the high computational demands of physics-based UBEMs by leveraging the energy
performance certificates (EPCs) of buildings, proposing a new way of building detailed
physics-based UBEMs. However, this UBEM was limited to energy data from the relatively
small proportion of buildings that possessed EPCs. In this paper, we significantly en-
hance our previous model by integrating machine learning techniques into its framework.
Figure 1 summarizes the possible methodological strategies for generating an UBEM as
suggested in our previous study [9], with the addition of a hybrid approach.
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A hybrid model, according to Bass [10], Oraiopoulos [23], and Li [24], combines en-
ergy models with machine learning techniques to generate models that not only include
information about buildings with existing data but also predict the behavior of build-
ings without data. This hybrid methodology offers significant potential for developing
UBEMs for stock-level carbon reduction strategies, as it allows us to expand the knowledge
from the existing data collected to the rest of the buildings for which we have no energy
performance information.

As can be seen in Figure 1, there are three main ways to generate detailed physical
bottom-up UBEMs: individual buildings, archetypes, and EPCs. For large scales, only the
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archetype and EPC approaches are suitable, as it is not feasible to model each building
individually. Building archetypes are representations of a group of individual buildings
through the use of a typical building, which are used to simplify the modeling of large
areas [9]. Archetype-based UBEMs are widely used for stock-level carbon reduction
strategies at different scales. For example, García-López et al. [25] generate a residential
model of a district in Jaén (Spain), creating archetypes based on the Spanish typologies.
Groppi et al. [26] generate a neighborhood-scale UBEM based on archetypes combined
with rooftop photovoltaic potential. Heindertaler et al. [27] create a bottom-up UBEM with
archetypes based on TABULA to determine hourly heat load profiles in residential buildings
at the neighborhood scale and compare simulation results with real measurements from
two district heating systems. Blázquez et al. [28] establish a protocol to study the energy
performance of specific building typologies in Mediterranean countries, using Córdoba
(Spain) as a case study. García-Perez et al. [29] combine geographic information system
(GIS) and life cycle assessment (LCA) analysis to calculate different renovation strategies
in Barcelona using cadastral and statistical data. Januário et al. [30] developed a UBEM at
regional level in Portugal. Sokol et al. [31] generate UBEMs based on Bayesian statistics in
the Sicily region.

Archetype-based UBEMs face challenges in generating accurate and representative
archetypes, mainly due to the lack of data needed to generate accurate and representative
models for all buildings. This limitation affects the precision and reliability of the resulting
models. As highlighted by Eggimann et al. [32], there are different spatiotemporal upscal-
ing errors that occur when clustering buildings. De Jaeger et al. [33] study the effectiveness
of building clustering and its importance for generating reliable models at district scale, as
well as the main variables used in the literature, highlighting that analyzing building char-
acteristics, such as building geometry, construction year, or number of floors, to generate
archetypes is a viable alternative for urban energy simulations.

Currently, many archetypes are experience-based archetypes [33,34], archetypes devel-
oped based on researchers’ experience or prior results, rather than on detailed, territory-
specific information, as generally there are not enough detailed data at the district, city
or bigger scales to generate buildings. These models allow for modeling with less infor-
mation and computational requirements but risk containing errors or making incorrect
generalizations that do not represent the buildings in the case study. As Alguacil et al. [35]
point out, the use of archetypes based on statistics is complex in Spain, as projects like
the Typology Approach for Building Stock Energy Assessment (TABULA) Project do not
provide sufficient information to generate an adequate energy panorama for Spain. A
significant point, as emphasized by Fabbri et al. [36], is that energy performance depends
not only on the construction period but also on the architectural, morphological, and tech-
nological solutions that characterize each building. This is a critical point of archetypes,
and creating them poses challenges that require a detailed understanding of each building,
which archetype grouping often cannot achieve.

The other approach for large scale simulations is generating a detailed physical bottom-
up UBEM based on EPCs. The EPC is a rating system created in Europe to summarize the
energy efficiency of buildings, aiming to provide consumers with insights into properties
they plan to buy or rent in European countries. This scheme is governed by Directive
2010/31/EU, and it implies the generation of an energy model for every building, office,
or housing unit that is sold or rented in Europe [37]. EPCs have been utilized as a data
source in various scientific studies at different scales [38–40]. EPC-based UBEMs offer a
viable alternative to the problem of the precision of archetype-based UBEMs, as the use
of EPCs created specifically for each building allows us to obtain more precise data on
a building-by-building basis. However, the problem of the use of EPCs for large-scale
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simulations is that only a reduced percentage of buildings have such certificates. For
example, as previously mentioned, in Spain, only 10% of existing buildings have EPCs.

With the advancement of new technologies like artificial intelligence (AI), the hybrid
methodology has recently emerged, combining bottom-up models with machine learning
(ML) or statistical models [10]. Through ML, a subset of AI that allows machines to learn
from data and improve over time without being explicitly programmed for each task, it
is possible to analyze patterns of energy behavior that are characterized by the variables
of the building [41]. This approach enhances the potential and representativeness of the
models, addressing a significant challenge: the treatment, analysis, and communication of
massive amounts of data on building energy efficiency [17]. This potential can be highly
valuable for creating large-scale models, as the most limiting factor is the lack of data and
the complexities in the interoperability of various datasets [18].

The hybrid approach has been combined with the archetype-based one. Bass et al. [10]
identify two primary sources of bias in data: the absence or limitation of data at the
building scale and the presence of mislabeled data. To enhance model accuracy, they
suggest employing hybrid models that integrate machine learning or statistical inference
with physics-based models. Various techniques have been studied for both building
clustering and energy consumption prediction. Ali et al. [42] conducted a comparative
study of ML techniques for building clustering to define archetypes. Ali et al. [43] and
Li et al. [24] use ML to predict energy consumption, testing different ML algorithms to
determine the most accurate approach. Garbasevschi [44] employs machine learning to
predict building age using random forest techniques and incorporating geospatial variables
to enrich the model, which is applied to eight cities in Germany. Piras et al. [45] developed a
model that compares various machine learning algorithms to forecast energy consumption
in renewable energy communities.

In this study, a novel approach is proposed by combining a model based on EPCs and
other open sources, such as land registries, with machine learning. This enriched model
allows for the prediction of the energy performance of buildings, specifically obtaining
their GHG emissions and NRPEC, based on their physical and geospatial characteristics.

Building upon previous studies, this model will encompass the entire residential
building stock of a country as large as Spain, offering an optimal solution to provide
insights into residential energy performance while ensuring efficient resource consumption.

2. Materials and Methods
2.1. Calculation

This paper proposes a novel model which combines a national-scale EPC-based UBEM [9]
with ML/AI. The methodology employed consists of seven steps: (1) case study selection;
(2) preliminary data collection; (3) geospatial data enhancement; (4) algorithm selection;
(5) training and testing the models; (6) model validation; and (7) model applicability.

2.2. Case Study Selection

The case study selected is the residential building stock in Spain. It is considered
a suitable case study as it has open data available on a building-by-building basis from
multiple information sources, as already discussed in previous studies [9]. Moreover, these
sources of information, which are detailed in Section 2.3, are common across European
countries, which allows the findings to be extrapolated to other EU countries.

2.3. Preliminary Data Collection

A national-scale EPC-based model was developed following the methodology defined
by Beltrán-Velamazán et al. [9]. This model includes a GIS database that combines data
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from EPCs, Spain’s cadastral data, the INSPIRE cadastral data of Spain, climate zones, and
the size of the municipality where the building is located. The input data used are those
existing and valid as of 1 January 2024.

This preliminary model contains the geographic and physical data of all buildings
in Spain available in Spain’s cadastre, excluding the regions of Navarra and the Basque
Country, which have their own cadastral systems. It also contains the energy information of
all buildings with at least one EPC available in the open databases published by the regions
of Spain. EPCs provide information on the energy performance of buildings, specifically
the NRPEC (non-renewable primary energy consumption) in kWh/(m2y) and the GHG
emissions in kgCO2eq/(m2y).

As of 1 January 2024, Spain, excluding the regions of Navarra and the Basque Country,
has 11 million existing buildings, of which 8.7 million are residential, and 1.2 million of
them have open EPC data. Therefore, energy performance data are available for 13.8% of
existing residential buildings. Since the objective is to train a model capable of predicting
the NRPEC and the GHG emissions of all residential buildings of the country, the energy
performance data and physical characteristic of the buildings will be used to train the
algorithm. From the open EPCs, only the target variables to be predicted, NRPEC and
GHG emissions, are used. To ensure the model’s applicability, it uses information from
other accessible sources for all buildings in Spain as input data to learn NRPEC and GHG
emissions patterns.

This database is generated with open data provided by public sources, and the tool
for generating the database is available on the GitHub of the article [9]. The steps related
to pre-processing the data, feature extraction, and outlier detection have already been
developed in the input database as detailed in [9]. By means of the cadastral reference, it is
possible to link the information available on a building from different information sources.
This data will be used to train the model and relate its physical characteristics to its energy
performance (Figure 2).
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2.4. Geospatial Data Enhancement

To produce more accurate predictions, several geospatial features have been added to
the dataset. As outlined by Xie et al. [46], it is possible to enhance our understanding of
buildings using technology that enriches simpler geospatial data.

This geospatial information is obtained from the 2D GIS and alphanumerical data
of the cadastre through programming, combining the available information to obtain the
following characteristics of the buildings:

• Facades and Party Walls

An important feature is to differentiate between the building surfaces in contact with
the external air (facades) and the surfaces in contact with adiabatic elements (party walls).
The surface area in contact between buildings is calculated in GIS, knowing the building’s
floor plan geometry and its number of floors, both data obtained from the Spanish cadastre.
A standard story height of 3 m is assigned for the calculation, following the methodology
developed in [47]. For better machine learning training, these data are expressed as a
percentage of facade surface area relative to the total envelope area.

• Envelope and Compactness

Knowing the building’s floor plan geometry and its number of stories, the square
meters of the envelope and the cubic meters of volume are calculated. Compactness is
calculated according to Spanish legislation [48], considering the entire envelope in contact
with the external air and the ground and excluding the party wall surface area. The formula
used is Equation (1).

Compactness =
V

∑ Ai
m3/m2 (1)

where:

V = Volume enclosed by the energy envelope
Ai = Area o f the envelope in contact with external air or the ground

2.5. Algorithm Selection

Six supervised machine learning techniques have been employed to predict the energy
performance of buildings: generalized linear model, deep learning, decision tree, random
forest, gradient boosted trees, and support vector machine (SVM). The algorithms were
selected to represent a diverse range of machine learning approaches, ensuring a compre-
hensive evaluation of several of the most used predictive performance algorithms to find
the optimal solution for this problem.

For all six techniques, a grid search system was implemented, testing different hy-
perparameter combinations to determine the configuration that best fits the regression
problem. The results obtained for each technique are detailed in Section 3.1.

2.6. Training and Testing the Models

To train the model, Python 3.12.0 and XGBoost 2.0.3 [49] were used. XGBoost is an op-
timized gradient boosting library that builds decision tree ensembles to solve classification
and regression tasks efficiently. An important aspect of model training is mitigating overfit-
ting and underfitting. To achieve this, XGBoost implements various techniques. To address
underfitting, it allows for controlling model complexity through parameters such as the
maximum tree depth and the number of boosting rounds. To prevent overfitting, XGBoost
incorporates mechanisms such as regularization, the minimum child weight for leaf nodes,
and random sampling of data and features, effectively reducing model complexity and
improving generalization.
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The algorithm was calibrated, and 10-fold cross-validation was employed, generating
a model with 90% of the data and testing it with the remaining 10%. This means that
alternately in 10 subgroups, all the data were used to test the model, obtaining more robust
validation data and preventing overfitting and underfitting of the model. This procedure
was carried out analogously to [43].

The input variables for training the models include physical and geographic charac-
teristics. The target variables to be predicted are the energy information, the NRPEC in
kWh/(m2y) and the GHG emissions in kgCO2eq/m2y, using as predictor variables the
geographic and physical information.

The data used were:

• Energy information
• NRPEC (kWh/m2y)
• GHG emissions (kgCO2eq/m2y)
• Physical characteristics
• Use (residential, offices, etc.)
• Number of floors
• Number of building units by use
• Housing size (m2)
• Year or construction
• Building typology
• Building type according to the Spanish Long-Term Renovation Strategy (LTRS)
• Building quality
• Roof area (m2)
• Year of renovation
• Renovation cost
• Type of municipality
• Geographical characteristics
• Georeferenced building
• Building perimeter
• Climate zone
• Percentage of exposed surface of the envelope
• Volume
• Compactness

2.7. Model Validation

Model validation is a critical point in the development of UBEMs to ensure they meet
their intended objectives. Currently, there is no consensus in the literature on which indica-
tors or acceptable values to use when evaluating an UBEM, resulting in widely varying
acceptable accuracy values. Ramos Ruiz et al. [50] study the validation of energy models,
highlighting NMBE, CV(RMSE), and R2 as the most used indicators in literature, referenc-
ing the ASHRAE guideline as the primary standard in the field. Oraiopoulos et al. [23]
evaluate the accuracy of different UBEMs, both for single buildings and aggregated build-
ings, based on NMBE, CV(RSME) and R2, finding UBEM accuracies ranging from NMBE
−15 to +4% and CV(RMSE) between 3–50%, with aggregated CV(RMSE) values of 10–20%.

The ASHRAE Guideline 14-2014 Measurement Of Energy, Demand, And Water Sav-
ings [51] uses NMBE and CV(RMSE) to validate models, considering acceptable results at a
monthly scale with NMBE ± 5% and CV(RMSE) < 15%. However, the ASHRAE Guideline
applies this validation to district-scale models, categorized as ‘UBEM for building-level
recommendations’ according to the Ang et al. [19] categorization, where each model type
requires different precision levels. As noted in [23] aggregated building precision of-
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ten exceeds ASHRAE’s recommended values, while single-building precision, especially
CV(RMSE), tends to be higher.

At a national scale, Bass et al. [10] study simulation accuracy using AutoBEM software
to create a national-scale UBEM in the US with OpenStudio and EnergyPlus, validating the
model using median error (MdE) and R2. They achieved an R2 of 0.069 due to high model
dispersion and median errors of −3% in residential use, indicating a balance between
overestimation and underestimation.

Based on the review of existing scientific literature, we identified the most pertinent
indicators for model evaluation as those outlined in Equations (2)–(4). These indicators
are the most frequently employed in UBEM studies and have established reference values.
They are as follows:

Normalized mean bias error (NMBE (%)):

NMBE(%) =
∑n

i=1(mi − si)

∑n
i=1(mi)

∗ 100 (2)

Coefficient of variation of root mean square error (CV(RMSE) (%)):

CV(RSME)(%) =

√
1
n ∑n

i=1(mi − si)
2

m
∗ 100 (3)

Coefficient of determination (R2):

R2 = 1 − ∑n
i=1(mi − si)

2

∑n
i=1(mi − m)2 (4)

where

mi = measured values
si = simulated values
n = number o f measured data points
m = mean o f measured values

The selected metrics, NMBE, CV(RMSE), and R2, are widely used to evaluate predictive
models in this field, but each has inherent limitations that must be considered, particularly
when applied to energy models with large datasets, such as those at the national scale.

NMBE quantifies the average bias of predictions normalized by the observed mean.
This metric is particularly useful at large scales to assess whether the model adequately
represents the ‘mass’ of buildings, capturing the values of the most frequent building types.
However, when positive and negative errors offset each other, it may falsely indicate a
good model fit. For this reason, it is important to include scatter plots of measured versus
predicted values in the results to better understand the model’s behavior.

CV(RMSE) measures the variability of normalized errors but does not distinguish
between systematic (bias) and random errors. Due to the quadratic nature of RMSE
calculations, this metric is highly sensitive to outliers, disproportionately penalizing cases
with large errors. Models dealing with large datasets at national scales often contain
outliers, including mislabeled or erroneous data, as well as correct data from statistically
infrequent buildings that the model struggles to predict. These outliers significantly impact
the CV(RMSE) value.

R2 is a metric with a limited capacity to evaluate the model comprehensively. It
assesses the overall model fit relative to variability, but a high R2 value does not guaran-
tee accuracy, as it may be misleading in the presence of systematic errors or overfitting.
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Moreover, R2 does not provide information about the actual magnitude of errors, which is
crucial for practical applications.

While these metrics are effective for smaller datasets, their interpretation becomes
more complex at the national scale. Although the primary objective is to calculate energy
performance for large numbers of buildings rather than to represent each individual build-
ing precisely, the data are presented both at the individual building level and aggregated
into groups of 100 buildings. This dual approach ensures that the model functions well for
building groups without masking potential errors in specific building types or regions.

Since no single metric is perfect, several are evaluated, and the graphs are analyzed so
that the metrics complement each other and allow for an appropriate interpretation of the
performance of the generated model.

Big data models often use data partitioning for validation. This technique enables
developers to train the model on one subset, validate its performance on another, and
assess its generalization ability on unseen data. By partitioning, models can effectively
address the challenges posed by the size and complexity of Big Data, ensuring the model
does not overfit to the training data. To avoid validation biases caused by partitions that fail
to adequately reflect geographic and climatic diversity, a 10-fold cross-validation approach
was adopted, reducing the risk of fitting too closely to the training set. This method
ensures that all building types, climates, and other determining factors are evaluated. Since
cadastral data are organized by region, the entire dataset was randomly shuffled before
performing the cross-validation to minimize potential biases.

These cross-validation strategies, combined with the use of multiple metrics and visu-
alizations, provide a more comprehensive approach to addressing the inherent limitations
of each metric, thereby increasing confidence in the model’s performance. Despite the
challenges of working with large datasets and multiple building types, this methodologi-
cal approach offers a reliable representation of energy predictions at both aggregate and
individual building levels.

To evaluate the model, all available data were used, covering the 1,246,864 residential
buildings. The NMBE, CV(RMSE), and R2 values were obtained for both individual
buildings and aggregated buildings, along with figures showing the relationship between
EPC values and the predictions. The results of the model validation are presented in
Section 3.2, while a specific case study predicting data for Madrid, a region excluded from
the training dataset, is detailed in Section 3.3.2.

2.8. Model Applicability

The potential of the nUBEM model is demonstrated according to the following points:

• Its ability to cover the current lack of data;
• Its capacity for mapping zones with better and worse energy performance at the

building level;
• The potential to calculate progress indicators.

Several of the progress indicators required by the 2024 EPBD recast for the MS [2]
were obtained using the nUBEM model. The selected indicators are those considered to
best define the characteristics of the residential building stock and its energy performance:

• Number of buildings and total floor area per energy performance class;
• Number of buildings, number of dwellings and total floor area per the 43% worst-

performing buildings (including a definition);
• Annual operational greenhouse gas emissions per building type.

In relation to the applicability of the model, several issues must be defined:
Spain is divided into different climate zones, which are defined in Spanish regu-

lations [48] using letters from A to E for winter climates and the letter alpha for the
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Canary Islands, and numbers from 1 to 4 for summer climates, both ranging from mild to
harsh. This results in a total of 15 climate zones from the combination of values for winter
and summer.

The energy classes in Spain are divided into NRPEC energy classes and GHG emissions
energy classes, with labels ranging from A to G, and the threshold values are organized
according to [52]. This document sets threshold values for each energy class depending on
three factors: the climate zone, the type of building (single-family house and multi-family
house), and whether the building is in a peninsular or extrapeninsular climate.

Figure 3 shows, as an example, the threshold value ranges to determine the energy
class of multi-family buildings in peninsular climates according to their climate zone. The
figure illustrates how the threshold values for the classes vary significantly by climate zone,
as the heating and cooling requirements vary greatly. The model automatically assigns the
corresponding class to each building according to the regulation. The results of the model
validation are presented in Section 3.3.
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3. Results
3.1. Algorithm Evaluation

Comparing the results of the algorithms, the findings are summarized in Table 1.
The technique that yielded the best results is gradient boosted trees, with XGBoost as the
algorithm that performed the best for this problem, while deep learning also produced
similar results. The algorithm with the best results was XGBoost, featuring hyperparameters
of 500 trees, a learning rate (eta) of 0.05, and a maximum depth which allowed for each tree
of 10. XGBoost outperformed other algorithms in the nUBEM framework due to its ability
to manage complex, high-dimensional datasets and capture non-linear relationships critical
for energy performance modeling. Additionally, XGBoost’s efficiency with large datasets



Appl. Sci. 2025, 15, 514 13 of 27

and its interpretability through feature importance analysis make it ideal for understanding
key drivers of energy performance.

Table 1. Performance of the different algorithms. In green: best performance. In light green:
alternatives with close performance. In white: alternatives with lower performance.

Model NMBE % CV(RMSE) % R2

Generalized linear model 0.031 42.2 0.24
Deep learning 0.028 38.7 0.36
Decision tree 0.030 40.8 0.29

Random forest 0.029 39.4 0.36
Gradient boosted trees 0.028 38.4 0.38

Support vector machine 0.029 39.5 0.32

3.2. Model Evaluation

Based on the results obtained in the previous section, the XGBoost algorithm was cho-
sen to be used, calibrating its parameters to develop the complete model. In Figures 4 and 5,
we can see the graph comparing the simulated values using ML and the actual values from
the EPCs, in both NRPEC and GHG emissions. The results show a capability to predict the
aggregate energy performance of buildings with high precision.

The results of the NRPEC model at the single-building scale show a normalized
mean bias error (NMBE) of −0.027% and a coefficient of variation of the root mean
square error (CV(RMSE)) of 37.7%. These metrics indicate that the model performs accu-
rately in aggregate, as its NMBE of −0.027%—closer to 0 than the ASHRAE standard of
±5%—demonstrates minimal bias in predictions. However, its CV(RMSE) of 37.7% (ideally
closer to 0) surpasses the ASHRAE benchmark of 15%, suggesting less reliable precision
in individual building estimates. When buildings are analyzed in aggregate, the model’s
performance improves markedly, meeting or exceeding ASHRAE standards. In fact, aggre-
gating buildings by typology and city achieves compliance with ASHRAE criteria in 99%
of cases for groups with over 100 buildings.
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It is important to note that the ASHRAE guidelines apply specifically to models in the
‘UBEM for building-level recommendations’ category, which require detailed knowledge
and high precision for each individual building—expectations that exceed the objectives
and capabilities of this model. The presented nUBEM falls under the ‘UBEM for stock-level
carbon reduction strategies’ category, where precision requirements are less stringent. De-
spite this, the model performs commendably close to ASHRAE standards. The low NMBE
value shows it is highly capable of predicting overall building stock performance, while the
higher CV(RMSE) reflects expected limitations, particularly due to limited information on
outliers. Notably, these results align well with findings from Oraiopoulos et al. [23], who
documented similar trends in accuracy for aggregated building data in UBEM studies. Con-
sistent with existing literature, the elevated CV(RMSE) at the individual-building level is a
typical outcome for large-scale urban building energy models (UBEMs). Figures 4 and 5 fur-
ther illustrate these results, showing that the model performs well in predicting aggregate
building performance but encounters challenges with anomalous individual values.

In a similar manner, the GHG emissions prediction shows similar trends, with an
NMBE of 0.049% and a CV(RMSE) of 43.3%, leading to conclusions similar to those pre-
sented in NRPEC. It should be noted that the increase in data dispersion is due to the
lack of information regarding the energy vector in the open data, which adds a layer of
uncertainty when making predictions.

The model’s primary aim is to estimate NRPEC and GHG emissions for large groups
of buildings, facilitating the calculation of progress indicators and the identification of
poorly performing areas. While it does not provide precise predictions for every individual
building in the Spanish residential stock—due to limitations in available data—it effectively
assesses the performance of different city areas and analyzes the characteristics of buildings
with low energy efficiency.

In Table 2, a comparison is presented between the model proposed in this study,
referred to as nUBEM, and other models in scientific literature. The table indicates the type
of model according to its purpose, the number of buildings used to evaluate the model, the
scale of the model, and its accuracy in terms of individual building values and aggregated
building results. As can be seen in the table, the nUBEM results are very satisfactory, with
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the model accurately predicting the building stock and achieving very positive values
compared to those found in the scientific literature, especially in comparison with studies
analyzing large scales, such as the presented study.

Table 2. Comparison of UBEM models by purpose according to [19], number of buildings, scale and
accuracy obtained for single building and aggregate total values. (2: UBEM for stock-level carbon
reduction strategies, 3: UBEM for building-level recommendations, UBEM for buildings-to-grid (B2G)
integration, NMBE: normalized mean bias error, CV(RMSE): coefficient of variation of root mean
square error, R2: coefficient of determination, NRPEC: non-renewable primary energy consumption,
GHG: greenhouse gas emissions, EC: energy consumption, AEU: annual energy use, HD: heating
demand, AED: annual energy demand).

Characteristics Accuracy in Single
Building

Accuracy in Aggregated
Buildings

Model Type of
Model

Number of
Buildings Scale NMBE % CV

(RMSE) % R2 Deviation in
Total Values %

R2 Total
Values

nUBEM (this paper’s model) 2 1,246,864 Country −0.027 37.7 0.39 −0.177
(NRPEC) 0.998

nUBEM (this paper’s model) 2 1,246,864 Country −0.049 43.3 0.36 0.198 (GHG
emissions) 0.998

AutoBEM [10] 2 50,843 Country - - 0.069 - -

Filogamo et al. [53] 2 1,717,000
(dwellings) Region - - - −7.77 (EC) -

Olivo et al. [54] 2 859,740 City - - - 5 (AEU) 0.74

Gassar et al. [55] 2 - City - - - - 0.998

CESAR [56] 3 78 City - - - −1.05 (HD) -

Johari et al. [57] 3 2044 City 10 54 - 10 (AED) -

Johari et al. [58] 4 2326 City - - - 14 (AED) -

Aguacil et al. [35] 3 400
(dwellings) City 25 - - - -

Li and Yao [24] 3 573 District - 17.3 - - -

Heinderthaler et al. [27] 3 53 District
heating 1 10 32 0.83 - -

Heinderthaler et al. [27] 3 13 District
heating 2 −9 44 0.76 - -

Garbasevschi et al. [44] 2 245,490 City - - - 4.5 -

At larger scales, the model achieves an R2 value that is more precise than the one
obtained with the AutoBEM model (where values closer to 1 indicate better performance).
Moreover, by examining the graphs included in their paper [10], it becomes clear that the
nUBEM model handles both deviation and data dispersion more effectively, resulting in a
model that better represents energy performance. As highlighted in the same paper [10],
the challenge of predicting the type of energy carrier used for heating adds complexity,
which increases the margin of error. This is also reflected in the nUBEM model, where the
results for predicting GHG emissions are slightly lower than those of the NRPEC model,
partly due to the lack of information about the energy vector. A significant difference
lies in the source of the data used. For similar data, such as physical and geographical
characteristics of buildings, the information was obtained from very different sources.

AutoBEM employs data derived from open-access sources that are not collected by
official organizations (e.g., cadastral records or EPCs) but instead extracted from digital
terrain models (DTMs), surveys, and annual maps of global artificial impervious areas.
This approach has a great potential for direct application in other countries. However, it
also increases the risk of mislabeled data and raises the computational requirements for
processing the information. In contrast, leveraging public information sources such as
cadastral records, responsible for collecting, processing, and publishing data, facilitates
easier access to information. These public sources enable the collection of reliable building
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data, such as use, construction date, or number of dwellings, while demanding fewer
computational resources to manage.

Regarding the regional-scale model presented by Filogamo et al., the model classifies
the housing in the region of Sicily into archetypes, obtaining aggregate results that under-
estimate the total energy consumption by 7.77%, which is considered within acceptable
limits. However, as the results can only be compared at a regional scale, it is not possible
to determine whether the generated archetypes accurately represent the housing or if
overestimations and underestimations are compensated for at the regional level. At this
point, the use of EPCs to generate the model allows for a more detailed analysis of the
results, enabling the assessment of whether the simulations accurately reflect the energy
behavior of buildings. The nUBEM model achieves a total deviation much lower than that
of Filogamo et al. (where closer to 0 is better). However, it is important to note that as more
data are incorporated, the results are likely to improve. Additionally, the model should be
compared at an individual scale to facilitate more accurate assessments of its performance.

Compared to city-scale models, this model still achieves very good results, both at the
individual and aggregate levels, as it has been able to learn from a large number of patterns
due to the availability of a significant amount of data. District-scale models, however,
show better performance than our model, mainly because they are able to identify and
handle infrequent cases more effectively, as they typically have a much more detailed and
higher-level information, resulting in higher CV(RMSE) and R2 values.

For instance, Heinderthaler et al. present two district heating systems with satisfactory
results in terms of precision, particularly in the R2 metric, especially when incorporating
additional results. By examining their figures, the model reflects reasonable accuracy across
various building types. However, as the authors highlight, the model fails to provide
valid results at the individual archetype scale due to high CV(RMSE) values and a limited
number of samples. Nonetheless, the aggregated results are already acceptable for small
numbers of buildings.

Li and Yao employ a hybrid approach for modelling heating and cooling energy con-
sumption of building stock at the district scale, utilizing diverse data sources on buildings
and supplementing them with national statistical data. This results in highly detailed
archetypes, incorporating factors such as air infiltration, window-to-wall ratio, and occu-
pant, equipment, and lighting density, among others. These detailed models are used to
train various machine learning models, achieving a high level of result precision.

3.3. Model Usefulness

As mentioned above, Europe is committed to measuring the decarbonization of ex-
isting buildings in order to evaluate the effectiveness of building retrofitting policies. The
model here proposed allows for the measurement of decarbonization progress at the coun-
try level by periodically and automatically checking the NRPEC and GHG emissions. With
this information, data-driven policies can be supported, and a national renovation strategy
based on data can be defined.

As an example of the model applicability, the potential applicability and the data
improvement obtained is shown, obtaining various progress indicators required by the
2024 EPBD recast. These indicators help define the residential building stock and its
characteristics, aiding in the formulation of national renovation goals and plans.

3.3.1. Potential of the Model to Cover the Lack of Currently Existing Data

Currently, the existing data on residential buildings with EPCs in open databases
cover approximately 13.8% of Spanish residential buildings. In Figure 6, the evolution
of the available nationwide data that can be obtained with this model can be observed.
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The buildings encompass all climate zones of Spain, and the number of certified buildings
allows for the generation of an almost complete overview of the Spanish residential sector.
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3.3.2. Mapping Zones with Better and Worse Energy Performance at Building Level

In Figure 7, a zoomed-in view of the nUBEM model in the Barajas area of Madrid
is shown, contrasting newly constructed residential buildings with the historic center
of Barajas. The buildings are ranked by their NRPEC, and their corresponding energy
performance class is displayed. It is noteworthy how the historic center of Barajas (in red,
on the right) shows much lower energy efficiency compared to the new larger blocks (in
green, on the left), where the most efficient buildings were constructed in 2017 and the
least efficient in 2008. The green buildings on the left side of the image were constructed
in 2023, in contrast to the historic center buildings, which date from 1950–1980. This case
is particularly interesting as Madrid is not among the regions of Spain that provide open
access to their EPCs, making it a valuable study in how the model can fill information gaps.
The model has learned the relationships between variables on a national scale and applies
them appropriately across all regions.
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This model provides acceptably accurate NRPEC and GHG emissions values for evalu-
ating districts, neighborhoods, and larger scales, helping to identify energy-inefficient areas.
The value obtained for each building is a statistical estimate based on its characteristics,
derived through the ML algorithm. While statistically accurate when grouping buildings,
it is important to note that the individual NRPEC value predicted for each building cannot
be considered accurate for every precise building, as a building may have unique charac-
teristics that fall outside the usual parameters and having unpredictable NRPEC for the
algorithm. Therefore, individual validation of a building is necessary to accurately deter-
mine its energy performance. This single building exact energy performance prediction of
individual buildings exceeds the model’s capabilities, as this is not the model’s objective
and surpasses the capacities of the currently available data.

3.3.3. Number of Buildings and Total Floor Area per Energy Performance Class

Energy classes in Spain show a strong tendency towards class E, which dominates
with 81% of buildings and covers the majority of the Spanish residential sector, followed by
class F with 7.7%, class D with 5.2%, class G with 4.4%, and the most efficient classes (A, B,
and C), which account for 1.4%. These results seem to align with the trends shown in the
official report [59], which, although showing more positive results, indicates that 80% of
EPCs fall within the three worst letters. The reality of the current building stock, where
new buildings must be certified but existing ones only if they are rented or sold, seems to
confirm that the percentage of inefficient ratings is much higher.

Tables 3 and 4 shows the average and total values of NRPEC and GHG emissions per
energy class. As shown in Figure 3, since the ranges vary by climate zone and building type,
many of the G ratings in the Canary Islands (with lower ranges) cause the average value of
the G ratings to be lower than those of classes E and F, which at first glance seems odd.

Table 3. Number of buildings, built surface area, average NRPEC kWh/(m2y) and total NRPEC
kWh/y per energy performance class in Spain. NRPEC: non-renewable primary energy consumption,
GHG: greenhouse gas emissions.

Energy Class Number of
Buildings

Built Surface
Area

Average NRPEC
kWh/m2y

Total NRPEC
kWh/y

Average GHG
Emissions

kgCO2/m2y

Total GHG
Emissions kgCO2/y

A 10,983 3,417,313 46.24 145,579,347 11.11 32,216,048
B 45,363 16,755,555 64.78 946,536,410 14.15 197,355,494
C 73,090 32,431,374 94.31 2,514,654,132 20.14 519,241,248
D 451,393 118,902,156 165.95 17,956,642,013 37.16 3,962,400,366
E 7,054,623 2,238,048,969 246.58 473,078,264,181 53.57 101,165,823,218
F 664,791 144,744,180 275.06 34,500,491,341 58.56 7,302,608,855
G 378,870 125,572,100 184.23 20,621,312,769 41.84 4,781,965,848

Table 4. Number of buildings, built surface area, average GHG emissions kgCO2/(m2y) and total
GHG emissions kgCO2/y per GHG emissions class in Spain. NRPEC: non-renewable primary energy
consumption, GHG: greenhouse gas emissions.

GHG Class Number of
Buildings

Built Surface
Area

Average GHG
Emissions

kgCO2/m2y

Total GHG
Emissions kgCO2/y

Average NRPEC
kWh/m2y

Total NRPEC
kWh/y

A 15,474 6,214,555 9.57 51,271,987 52.37 292,471,440
B 54,397 23,280,581 13.97 267,932,772 68.65 1,395,593,965
C 79,213 32,594,351 21.39 578,346,685 103.86 2,866,056,800
D 711,303 190,294,671 35.00 6,116,364,525 168.69 29,479,214,410
E 7,124,092 2,267,940,997 53.94 1.034 × 1011 248.96 4.838E11
F 458,036 79,337,176 66.52 4,603,973,106 290.79 20,157,771,543
G 236,598 80,209,316 39.99 2,936,866,706 159.86 11,674,277,526
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3.3.4. Number of Buildings and Total Floor Area per the Worst-Performing 43%
of Buildings

The 2024 EPBD recast establishes the identification of the worst-performing 43% of
buildings, establishing the number of buildings and total floor area of the worst-performing
43% of residential buildings as mandatory indicators [2]. The European directive requires
establishing the definition of worst-performing buildings. For this study, we hold that
the NRPEC value is the most appropriate indicator to determine which buildings are the
least efficient.

With this model proposed, the 43% with a higher NRPEC per m2 is identified, ob-
taining a total of 3,732,037 buildings with 5,748,002 dwellings which correspond to a
built surface area of 612,877,691 m2. The average NRPEC of this group of buildings is
303.46 kWh/(m2·y), and the total NRPEC of 179,919,636,781 kWh/y.

Analyzing the worst-performing 43% of buildings, we observed the following outlines:

• Single-family houses are 92% of the worst-performing buildings.
• The buildings located in climate zones D and E, the coldest, represent 80.10% of

the buildings.
• The buildings built before 1940 are 35.34%; between 1941–1960, 16.15%; between 1961

and 1980, 25.41%; and between 1981 and 2007, 22.62%.
• The limit to be considered a building in the worst-performing 43% of buildings is an

NRPEC of 253.22 kWh/(m2*y).

This model enables targeted identification of building zones with specific energy
performance across municipalities, districts, regions, and climate zones. Given that NRPEC
values vary significantly by climate zone, the model is able to isolate the lowest-performing
43% of buildings within each climate zone in Spain. This approach identifies not just the
highest-consuming buildings, which are generally concentrated in colder zones, but those
with the poorest energy performance relative to the energy demands of their respective
climate zones. Table 5 outlines the NRPEC and GHG emissions thresholds that categorize
a building within the lowest 43% of performers in each climate zone. These findings
highlight the significance of the climatic zone, with the top 43% of energy consumption
being 2.6 times higher in cold zones compared to warm zones, alongside emissions that are
2.3 times greater. This underscores the pressing need for targeted interventions in these
areas, as they present the highest potential for energy savings.

Table 5. Limit value of the NRPEC to be considered a building in the worst-performing 43% of
buildings in every climate zone in Spain.

Climate Zone Limit Value kWh/m2y GHG Limit kgCO2eq/m2y

Alpha 3 125.4 32.2
A2 148.6 34.8
A3 146.9 28.7
A4 153.4 29.5
B3 194.1 42.8
B4 192.1 38.0
C1 250.0 56.0
C2 229.3 49.4
C3 220.1 45.5
C4 230.8 47.2
D1 293.7 67.4
D2 284.7 63.4
D3 278.8 60.5
E1 328.3 74.3



Appl. Sci. 2025, 15, 514 20 of 27

3.3.5. Annual Operational Greenhouse Gas Emissions (kgCO2eq/m2y) per Building Type

Residential buildings in Spain have an average NRPEC of 239.35 kWh/m2y and av-
erage GHG emissions of 52.04 kgCO2eq/m2y. The data is shown in Table 6, classifying
the types of buildings according to the classification used by Spain’s Long-Term Renova-
tion Strategy (LTRS-ERESEE) [60,61]. This classification has also been used in previous
studies [62–67] and is structured based on the building type: single-family housing, multi-
family blocks with three or fewer floors, and multi-family blocks with four or more floors,
followed by the building’s construction period.

Table 6. Number of buildings, built surface area, average GHG emissions kgCO2/(m2y) and total
GHG emissions kgCO2/y per residential building type in the Spanish LTRS (ERESEE). SFH: single-
family house, MFH-A: multi-family house with 3 or fewer floors, MFH-B: multi-family house with
more than 3 floors.

Building Type Number of
Buildings

Built Surface
Area

Average NRPEC
kWh/m2y

Total NRPEC
kWh/y

Average GHG
Emissions

kgCO2/m2y

Total GHG
Emissions
kgCO2/y

SFH < 1940 2,134,183 301,957,824 266.36 76,066,608,307 57.95 16,697,047,758
SFH 1941-60 933,516 127,930,130 268.90 32,719,342,689 58.56 7,146,662,044
SFH 1961-80 1,461,467 212,817,509 262.20 53,086,111,371 57.20 11,642,788,779
SFH 1981-07 2,464,120 387,925,847 224.34 82,938,611,561 49.22 18,338,783,131
SFH 2008-11 222,509 39,467,137 171.80 6,341,922,091 37.49 1,394,566,222
SFH 2012-23 195,711 38,363,725 111.66 3,817,920,395 23.64 808,278,271

MFH-A < 1940 91,408 26,152,128 237.64 5,979,520,959 51.42 1,291,723,803
MFH-A 1941-60 71,817 20,638,135 238.01 4,836,948,841 51.16 1,037,677,545
MFH-A 1961-80 149,544 54,103,556 224.35 11,890,514,820 48.19 2,543,450,158
MFH-A 1981-07 251,349 208,529,917 196.73 39,098,724,933 42.04 8,288,545,922
MFH-A 2008-11 28,532 32,523,999 162.83 5,110,705,256 34.34 1,067,181,849
MFH-A 2012-23 11,379 14,596,361 99.93 1,276,785,871 20.91 260,238,373
MFH-B < 1940 48,503 40,228,068 221.33 8,636,836,437 46.74 1,823,774,145
MFH-B 1941-60 57,417 60,688,978 234.77 13,757,176,878 49.32 2,896,350,094
MFH-B 1961-80 277,315 455,999,315 214.47 93,474,623,910 45.03 19,700,388,275
MFH-B 1981-07 239,096 537,966,687 188.02 96,028,587,556 39.34 20,027,333,473
MFH-B 2008-11 28,888 74,935,487 153.71 10,862,847,649 31.65 2,232,384,138
MFH-B 2012-23 12,358 45,046,627 94.11 3,839,665,175 18.94 764,431,671

It is noteworthy that NRPEC and GHG emissions have significantly decreased over
recent decades, primarily due to energy regulations introduced in 2008 and 2019 within
the construction sector. This trend underscores the critical challenge of decarbonizing the
building stock, as a substantial portion of energy consumption and emissions originates
from buildings constructed between 1960 and 2007.

4. Discussion
The results validate the model’s effectiveness for its intended purpose: creating

a national-scale representation of building energy performance to inform data-driven
decarbonization policies. The model estimates NRPEC and GHG emissions for over
1,246,000 buildings across Spain, enabling a comprehensive analysis of the residential
building stock. Its high reliability in aggregating building data supports decarbonization
strategy development and impact assessment at multiple levels—district, neighborhood,
city, region, and national—and across building typologies within urban or regional areas.
Additionally, the model identifies characteristics and locations of the lowest-performing
building typologies.

While the model lacks precision at the individual building scale due to limited energy
system data and the influence of unidentifiable outliers, this limitation does not detract
from its purpose. Its design centers on large-scale analysis rather than single-building
specificity, making it well suited for informing broad decarbonization strategies.
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4.1. Key Variables in the Model

To understand which variables in the model are most important for predicting NRPEC,
we can use the XGBoost algorithm to obtain the total gain of each input variable in the
model. This allows us to determine the improvement in accuracy that each variable
contributes to the overall model.

Figure 8 highlights that climate zone is the most influential variable in the model
by a significant margin, followed by construction date, compactness, and housing size.
These four variables are crucial for accurately characterizing NRPEC, underscoring their
high relevance. Additionally, the percentage of exposed envelope surface is identified
as a significant factor within the ML algorithm, contributing valuable insights derived
from the model. Another noteworthy variable is building quality, an internal metric
from the Spanish cadastre primarily used for tax purposes. Interestingly, it enhances the
model by providing supplementary information that improves its predictive accuracy. It is
important to note the limited impact of the year of renovation and renovation cost variables,
which, while theoretically vital for assessing building energy performance, are of limited
relevance in the current model. Although recorded in Spain’s cadastre, these variables lack
specificity, as the cadastre does not indicate whether the renovations were energy-related or
focused on other aspects of the building, such as an interior home renovation for aesthetic
reasons. This lack of detail is compounded by the absence, until the 2024 EPBD, of a legal
definition at the EU level for what qualifies as a deep renovation. The new EPBD defines
deep renovation as one in line with the ’energy efficiency first’ principle, focusing on
essential building elements and transforming a building into a nearly zero-energy building.
However, member states, including Spain, have not yet fully incorporated this definition
into their national regulations.
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This limitation could significantly skew predictions for older versus newer buildings
because the lack of detailed renovation data makes it difficult to accurately assess the
energy performance improvements made over time. For older buildings, the absence of
information on whether these renovations qualify as deep renovations (or any energy-
related upgrades) could lead to over- or underestimations of their energy performance.
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As renovation efforts expand across building stock, these variables will become essen-
tial for understanding energy consumption more precisely. To ensure the future success of
tools such as this nUBEM, Spain should integrate detailed renovation data—aligned with
the 2024 EPBD—into its cadastre to better capture the decarbonization of its building stock.
This data should clearly indicate which renovations qualify as deep renovations under
the EPBD definition. Additionally, it should include information on other levels of energy
improvement, allowing for a more granular assessment of the building stock’s progress
toward decarbonization. Ensuring detailed data collection on renovation types will be vital
for the continued development of accurate and actionable energy performance models.

4.2. Limitations

The model’s limitations are influenced by the data access restrictions and data com-
pleteness and detail. For instance, as noted in [9], the Basque Country and Navarre maintain
their own cadastres and cadastre INSPIRE datasets, which are excluded from this model,
limiting geographic comprehensiveness. Additionally, the lack of detailed data on building
systems and energy carriers is a significant source of bias; including such data would
substantially enhance model accuracy. Another challenge is the presence of mislabeled or
erroneous entries in available databases, especially in the energy performance certificates
(EPCs). These issues necessitate extensive data cleaning, introducing potential errors into
the algorithm and affecting precision.

Although the model’s validation is adequate, individual building predictions may not
be fully reliable due to missing data on building systems, a low percentage of buildings
with EPCs, and inconsistencies in EPC data. Therefore, while the model is a robust tool
for analyzing patterns and trends among groups of buildings within specific areas or
typologies, it is less suited for precise, single-building analysis.

4.3. Future Research

Future work could involve creating an EU-BEM, European Union building energy
model, encompassing all EU countries that adhere to common frameworks for obtaining
the necessary information to develop these models. This would enable the analysis of
decarbonization progress at a supranational scale, facilitate data pooling among different
countries, and evaluate the effectiveness of various energy renovation strategies and policies
within the community framework. This would allow for the following:

• Evaluating different policies and technologies for reducing energy consumption and
emissions from buildings.

• Obtaining progress indicators in different MSs in a consistent method and using the
same procedures.

• Gathering large-scale information to support data-driven decision-making.
• Developing strategies to achieve climate goals.
• Evaluating and comparing the performance of different renovation policies and strategies.
• Assessing in what way some renovation policies have performed better than others,

depending on the chosen case scenario.
• Increasing the amount of data to enhance the algorithm’s understanding of the patterns

defining energy behavior.

To make the EU-BEM a reality, several challenges must be addressed, mainly con-
cerning data availability, processing, privacy, and standardization. While it is possible
to process INSPIRE cadastral buildings data across Europe, a thorough examination and
standardization of each country’s data is still required.

Moreover, the integration of data-rich sources such as building information modeling
(BIM), digital twins, and digital building logbook (DBL) data represents a significant
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advancement in both precision and scope [68]. These technologies provide access to detailed
information about key energy-related characteristics, thereby substantially enhancing the
model’s predictive capabilities. Additionally, this integration addresses current gaps
associated with the lack of data on construction systems, offering a more robust foundation
for evaluating the energy performance of the building stock.

5. Conclusions
This study proposes the development of a model named nUBEM, national-scale

urban building energy model, which, based on the physical and geospatial characteristics
of buildings, is capable of predicting NRPEC and the GHG emissions through artificial
intelligence. For this, the XGBoost algorithm was trained with a dataset containing all
residential buildings in Spain that have an open EPC and open data on their physical and
geospatial characteristics.

The generated model uses open data from the cadastre, cadastre INSPIRE, digital
terrain models (DTMs), and national statistics. To train the model, it employs the NRPEC
and the GHG emissions from the EPCs as target variables. All this information is provided
by open government sources and under the common frameworks of various European
directives, making it potentially applicable to all EU member states that have implemented
these common frameworks.

It is observed that gradient boosted trees, and in particular, the XGBoost algorithm, is
the best-performing algorithm for this type of data and purpose, achieving better results in
NMBE and RMSE and R2 compared to the other techniques analyzed. This aligns with other
similar analyses that also find Gradient Boosted Trees to be the most effective predicting
building energy performance [43].

The nUBEM was shown to accurately predict the primary non-renewable energy con-
sumption of buildings on a national scale. As of 1 January 2024, only 13.8% of residential
buildings in Spain have an EPC. This model allows for the assessment of energy perfor-
mance across all existing buildings nationwide, encompassing a total of 1,246,864 structures.

By identifying the least efficient buildings, the model aids in developing targeted
renovation strategies focused on the 43% of residential buildings that perform the worst, in
accordance with the requirements of the 2024 recast of the EPBD. The nUBEM demonstrated
its effectiveness as a tool for generating progress indicators that facilitate the analysis of
the residential building stock and its energy behavior, ultimately promoting data-driven
policies and effective building renovation plans.

Furthermore, the results obtained have proven to be accurate compared to existing sci-
entific literature, achieving national-scale outcomes that surpass those of previous studies.
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