ProbFuzzOnto: A Fuzzy Ontology-Driven Uncertainty Approach Using Fuzzy Bayesian Networks
Resumen: The need to deal with uncertain semantics is rising in importance in most of the important technology trends, and consequently, many proposals have emerged as solutions in recent years. Fuzzy ontologies were proposed to remedy the limitations of standard ontologies using fuzzy logic to deal with vague and imprecise knowledge. Nevertheless, fuzzy ontologies cannot deal with probabilistic knowledge which is an important characteristic of most real-world applications. This paper proposes a novel solution that aims at enhancing the knowledge representation and reasoning in fuzzy ontologies. Indeed, the proposed solution is a probabilistic extension of fuzzy ontologies with Fuzzy Bayesian Networks (FBN) that we named Probabilistic Fuzzy Ontologies (ProbFuzzOnto). It takes into account vague, imprecise, and probabilistic knowledge simultaneously. Moreover, this paper proposes a process to guide ontology engineers step by step in building ProbFuzzOnto. Also, it provides reasoning algorithms to drive implicit knowledge by utilizing explicit knowledge stored in a fuzzy ontology based on fuzzy Bayesian inference. To show the usefulness of the proposed solution, a case study in Renal Cancer is presented.
Idioma: Inglés
DOI: 10.1007/s40815-024-01796-y
Año: 2024
Publicado en: International Journal of Fuzzy Systems (2024), [21 pp.]
ISSN: 1562-2479

Factor impacto JCR: 3.6 (2024)
Categ. JCR: AUTOMATION & CONTROL SYSTEMS rank: 31 / 89 = 0.348 (2024) - Q2 - T2
Categ. JCR: COMPUTER SCIENCE, INFORMATION SYSTEMS rank: 93 / 258 = 0.36 (2024) - Q2 - T2
Categ. JCR: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE rank: 80 / 204 = 0.392 (2024) - Q2 - T2

Factor impacto CITESCORE: 7.7 - Information Systems (Q1) - Software (Q1) - Theoretical Computer Science (Q1) - Control and Systems Engineering (Q1) - Artificial Intelligence (Q1) - Computational Theory and Mathematics (Q1)

Factor impacto SCIMAGO: 0.714 - Artificial Intelligence (Q2) - Computational Theory and Mathematics (Q2) - Theoretical Computer Science (Q2) - Information Systems (Q2) - Software (Q2) - Control and Systems Engineering (Q2)

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2020-113903RB-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA/T42-23R
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2026-01-12-13:20:05)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Lenguajes y Sistemas Informáticos



 Registro creado el 2025-02-10, última modificación el 2026-01-12


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)