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5.7. Cálculo del máximo de reflexión en FOBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.8. Código MatLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



1. Introducción

1.1. Objetivos

El grafeno es un material formado por una capa monoatómica de carbono formando una extructura
hexagonal periódica. Su origen se remonta al grafito (cuya estructura se resolvió en 1916 [1]), que consta,
esencialmente, de varias capas de grafeno; aunque éste término no se toma hasta 1987 [3]. En 1949, Philip
Russel Wallace calculó la estructura de bandas de este material [2]. Según estos cálculos, se predećıa que
el grafeno era una estructura inestable y es por eso que se tardó en comenzar a tratar de obtener una
sola lámina de grafeno. A nivel experimental, se comenzó trabajando con láminas de grafito muy finas:
las primeras imágenes (tomadas por microscopio electrónico de transmisión) de grafito de pocas capas
datan de 1948 [4]. Posteriormente, se llegó a detectar grafito del grosor de un átomo [5], lo que condujo al
crecimiento epitaxial de grafeno en otros materiales [6]. Estos resultados de 1997, no obstante, no daban
como resultado grafeno, pues para considerarlo como tal deb́ıa estar en vaćıo y no crecido sobre otro
material (ya que entonces se produce hibridación entre los orbitales del grafeno y los del material sobre el
que se crece).

No fue hasta 2004 cuando se consiguió aislar una capa de grafeno aislada. Andre Geim y Kostya
Novoselov, de la universidad de Manchester, lograron aislar capas de grafeno a través de grafito mediante
la técnica de ((cinta adhesiva Scotch)) [7]. En 2010 se les otorgó el premio Nobel por este trabajo.

Durante los últimos años se ha estudiado el grafeno debido a sus múltiples propiedades, como por
ejemplo su flexibilidad y elasticidad [8] o sus altas conductividades eléctrica [9] y térmica [10]. En este
trabajo nos centraremos en su capacidad como conductor de ondas electromagnéticas: desarrollaremos
un modelo de propagación de plasmones de superficie en grafeno (graphene surface plasmons, GSP), es
decir, cómo ciertos modos de ondas electromagnéticas (transversales magnéticos) pueden confinarse en la
superficie del grafeno y cómo, a través de impurezas en la conductividad (bien inducidas por un potencial o
bien propias del material) se puede modificar la propagación de tales plasmones. Concretamente, el estudio
de este trabajo se focaliza en unas impurezas distribuidas espacialmente en forma de gaussianas para la
conductividad eléctrica. Al final del trabajo, discutiremos las posibles aplicaciones de este sistema para
casos experimentales.
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1.2. Fundamentos

1.2.1. Propagación de ondas electromagnéticas en el vaćıo

El problema que se plantea es el siguiente: tenemos una onda electromagnética viajando en el vaćıo
que llega a una superficie infinita (la lámina de grafeno). Queremos averiguar qué cantidad de esa onda
se refleja y cuánta se transmite. Para ello, partamos de la base: para describir cómo se propaga una onda
electromagnética nos basamos en las ecuaciones de Maxwell (sistema CGS)[11]:

∇ ·D = 4πρ

∇ ·B = 0

∇×E = −1

c

∂B

∂t

∇×H =
4π

c
J +

1

c

∂D

∂t

(1)

Teniendo en consideración que D = E + 4πP, H = B − 4πM y en el vaćıo no hay cargas (ρ = 0) ni
corrientes (J = 0), entonces el sistema se reduce a

∇ ·E = 0

∇ ·H = 0

∇×E = −1

c

∂H

∂t

∇×H =
1

c

∂E

∂t

(2)

Resolver este sistema es resolver un problema de seis incógnitas: las tres componentes del campo
eléctrico E y las tres del campo magnético H. No obstante, se puede comprobar que, en el caso del vaćıo, el
problema se reduce sólo a dos incógnitas: las dos últimas ecuaciones relacionan directamente el rotacional
de ambos campos con la derivada temporal del otro, de modo que, si tenemos uno de ellos calculado, el otro
puede calcularse directamente a través de esas relaciones. Esto reduce el problema a sólo tres incógnitas
(las tres del campo eléctro o las tres del campo magnético).

Por otro lado, las dos primeras ecuaciones (divergencia del campo igual a cero) establece una relación
directa entre sus tres componentes. Si, por ejemplo, tomásemos una onda plana1 E(r, t) = E0e

i(k·r−ωt)

tendŕıamos que2

∇ ·E =

(
ûx

∂

∂x
+ ûy

∂

∂y
+ ûz

∂

∂z

)
E0e

i(k·r−ωt) = E0e
−iωt(ûxikx + ûyiky + ûziky)e

ik·r = 0,

como E0 = E0xûx + E0yûy + E0zûz y ûi · ûj = δij , entonces se tiene que

1El caso de onda plana es interesante pues, tal como veremos posteriormente, cualquier onda puede expresarse como
superposición de ondas planas.

2ûx,ûy y ûz son los vectores de la base de R3 en el espacio eucĺıdeo.
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k ·E0 = 0⇒ E0z = −kxE0x + kyE0z

kz
,

de modo que, con saber el valor de k y dos componentes del campo eléctrico, ya conocemos la tercera
y, de acuerdo con lo anterior, también conocemos el campo H.

Aśı, nuestro problema consiste en calcular las componentes x e y del campo: tenemos que calcular el
vector bidimensional de componentes E0x y E0y. Este vector puede expresarse en una base vectorial de
dimensión dos; como veremos más adelante, la base más adecuada es la de modos transversales eléctricos

y magnéticos, de modo que, teniendo en cuenta que k‖ =
√
k2
x + k2

y, definimos los vectores de la base como

ap =
1

k‖

(
kx
ky

)
(Modo transversal magnético) as =

1

k‖

(
−ky
kx

)
(Modo transversal eléctrico) (3)

Se puede comprobar que, para una onda transversal magnética, E0z 6= 0 pero que para una transversal
eléctrica E0z = 0. Además, estos vectores componen una base ortonormal3. De esta manera, una onda
plana se puede expresar como

E =
∑
µ

εµaµe
i(k·r−ωt),

donde la suma esta extendida a los dos modos y εµ es la componente del campo en cada uno de los
vectores de la base. Si ahora aplicamos la expansión de ondas planas de Rayleigh [12], podemos expresar
cualquier onda como superposición de ondas planas. Si cada una de esas ondas tiene una descomposición
en la base propuesta, una onda cualquiera puede expresarse como

E =

∫
dk
∑
µ

εµaµe
i(k·r−ωt) (4)

Una identidad muy útil que cumplen los modos transversales es la siguiente (probada en el Apéndice,
sección 5.1):

−ûz ×Hµ = YµE
µ, con Ys = qz e Yp =

1

qz
, (5)

donde hemos definido el vector de ondas normalizado q =
k

g
, con g =

√
k2
x + k2

y + k2
z =

ω

c
. A las

cantidades Yµ las llamamos impedancias. En este caso Hµ y Eµ se refieren a los vectores en el plano xy y,
además, incluimos la dependencia de onda plana en ellos.

Una vez hemos elegido la base en la que trabajaremos y hemos visto sus propiedades, pasamos a estudiar
el problema de la transmisión y la reflexión de ondas a través de una lámina bidimensional (en nuestro
caso, grafeno).

3Es decir, ai · aj = δij . Ver Apéndice, sección 5.1
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1.2.2. Cálculo de coeficientes de transmisión y reflexión, confinamiento de modos p

La situación que queremos estudiar es cómo se transmite y refleja una onda que se propaga en el vaćıo
cuando se encuentra con una lámina bidimensional (el caso del grafeno es este, una capa del grosor de un
átomo de carbono).

Figura 1: Esquema de transmisión y reflexión de la onda incidente

A partir de este punto emplearemos una notación diferente a la habitual, la cual nos facilitará notable-
mente los cálculos y la lectura. Consideremos lo siguiente: cuando escribimos una onda electromagnética de
la forma (4) estamos expresándola en una base, concretamente en la base de ondas planas. Aśı, podemos
expresar nuestra onda como la proyección de un estado perteneciente a un espacio de Hilbert H en la base
de ondas planas. Este tratamiento es el mismo que se hace en polarización a través del cálculo de Jones
[13]. Para cada polarización tendremos:

|k, µ〉 ∈ H 3 〈r| k, µ〉 = Eµe
ik·r y 〈k, µ| r〉 = Eµe

−ik·r.

Además son estados ortonormales:

〈
k′, µ′

∣∣ k, µ
〉

=
〈
k, µ′

∣∣ ∫ dr |r〉 〈r| |k, µ〉 =

∫
drei(k−k

′)Eµ ·E′µ = δµµ′δ(k− k′),

donde se ha tomado que I =

∫
dr |r〉 〈r|. De esta manera, la transmisión y reflexión pueden escribirse

en términos de estos elementos del espacio de Hilbert. Puede probarse que cada ket cumple por separado
las siguientes relaciones:

|E+〉 = |Ei〉+ |Er〉 = |k, µ,+〉+ rµk |k, µ,−〉

|E−〉 = |Et〉 = tµk |k, µ,+〉
(6)

de manera que los signos + y - en el ket indican si la onda viaja en sentido positivo o negativo del
eje z (es decir, en la dependencia de onda plana tenemos e−ikzz o eikzz). El sistema que referencia que
tomamos tiene su origen en la lámina y toma valores positivos por debajo de ella (por donde viaja la onda
transmitida) y valores negativos por encima (desde donde viene la onda incidente y hacia donde va la onda
reflejada). Los coeficientes rµk y tµk son los coeficientes de reflexión y transmisión respectivamente. Teniendo
esto en cuenta y considerando las siguientes ecuaciones de continuidad [11]:
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ûz × (E+ −E−) = 0

ûz × (H+ −H−) =
4π

c
J = −4π

c
σûz × (ûz ×E+),

(7)

que vienen de la conservación de la componente paralela al plano del campo elétrico y el salto que tal
componente del campo magnético sufre debido a la corriente inducida en el plano, puede probarse que,
teniendo en cuenta que q = k/g (vector de ondas normalizado en el vaćıo), α = 2πσ/c (conductividad
normalizada) y la relación (5), se llega a las siguientes expresiones para los diferentes modos:

rTE,sq =
−α

α+ qz
, rTM,p

q =
−αqz
αqz + 1

tTE,sq =
qz

α+ qz
, tTM,p

q =
1

αqz + 1

(8)

Vamos a probarlo. La primera condición no es más que la continuidad de la componente paralela a la
superficie del campo eléctrico, lo cual puede expresarse en términos de los coeficientes como 1 + rµq = tµq
(µ ∈ {s, p}). Por otro lado, si partimos de la segunda ecuación:

ûz × (H+ −H−)

podemos valernos de la expresión −ûz ×Hµ = YµEµ. No obstante, aqúı hay un punto sutil: el valor de
la impedancia depende de qué signo tenga qz (pues o bien es directamente proporcional a este valor o lo
es a su inversa), es decir, de en qué sentido viaje la onda en la dirección z. El sistema de referencia que
nosotros marcamos tiene z = 0 en la placa, por debajo de ella z > 0 y por encima z < 0. De este modo, la
ondas ondas incidente y transmitida viajarán en el sentido positivo del eje z, mientras que la onda reflejada
viaja en el sentido negativo (lo cual introduce un signo – en la impedancia). Si tenemos esto en cuenta,
poniendo H− = Hi + Hr y H+ = Ht (indicando los ı́ndices si es onda incidente i, transmitida t o reflejada
r):

ûz × (H+ −H−) = ûz × (Ht −Hi −Hr) = Yqµ(−Et + Ei −Er).

Por otra parte, si usamos la identidad vectorial a × (b × c) = b × (a · c) − c · (a · b), y α =
2π

c
σ la

conductividad adimensional, se tiene que el otro lado de la ecuación queda como:

−4π

c
σûz × (ûz ×E+) = −2α[ûz(ûz ·E+)−E+] = 2αE+

Donde hemos usado que E+ tiene componente z nula. Esto se ve en la propia ecuación: si tenemos ese
vector igualado a ûz ×A, con A cualquier vector de R3, el resultado será un vector en el espacio x, y, en
R2 (pues dará un vector mutuamente ortogonal a ûz y A). Si juntamos todo lo desarrollado tendremos:

Yqµ(−Et + Ei −Er) = 2αE+.

Expresemos ahora este resultado en la base de estados |k, µ〉:

Yqµ(− |Et〉) + |Ei〉 − |Er〉) = 2α |Et〉 ⇒ Yqµ(−tµq + 1− rµq) |k, µ〉 = 2αtµq |k, µ〉 ,

6



Donde hemos obviado la parte de + y − del ket, pues se refiere al sentido de propagación de la onda
en z y ya lo hemos tenido en cuenta antes. Si proyectamos sobre el bra 〈k, µ| obtenemos lo siguiente:

−tµq + 1− rµq =
2αtµq
Yqµ

(9)

Como 1 + rµq = tµq, si escribimos rµq = tµq − 1 en (9):

−tµq + 1 + 1− tq =
2α

Yqµ
tµq ⇒ −tµq + 1 =

α

Yqµ
tµq ⇒ tµq =

Yqµ
α+ Yqµ

Como rµq = tµq − 1, se tiene que

tµq =
Yqµ

α+ Yqµ
rµq =

−α
Yqµ + α

(10)

Si planteamos las impedancias para cada uno de los modos, se obtienen los resultados antes expuestos:

rTE,sq =
−α

α+ qz
, rTM,p

q =
−αqz
αqz + 1

tTE,sq =
qz

α+ qz
, tTM,p

q =
1

αqz + 1

Una de las consecuencias más importantes de estos resultados surge al hacerse la siguiente cuestión:
¿Es posible tener onda transmitida y reflejada sin que haya onda incidente para alguno de
los modos?. De ser aśı, tales ondas no vendŕıan de una onda incidente, sino de un plasmón superficial,
una onda que se propaga por la superficie. Si nos planteamos nuevamente las ecuaciones (9) y (7) pero
tomando |E+〉 = rq |k, µ,−〉 y las relaciones ya calculadas (8) sacamos dos conclusiones:

Es imposible que una onda tipo s (transversal eléctrica) viaje como un plasmón.

La onda tipo p (transversal magnética) puede viajar como plasmón si y sólo si qz = − 1

α
.

Para sacar la condición de plasmón

(
qz = − 1

α

)
basta con igualar los coeficientes de reflexión y trans-

misión (si no hay onda incidente, estos son idénticos; basta con quitar el 1, que viene de la onda incidente,
de la ecuación 1 + rµq = tµq).

Teniendo todo lo explicado en cuenta, desarrollaremos ahora un modelo unidimensional que trate de
explicar cómo se propaga el plasmón en la superficie en presencia de defectos variables en el espacio.
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2. Modelo

2.1. Planteamiento: amplitud como ecuación integral

El sistema que se plantea es el siguiente:

Figura 2: Esquema del modelo 1D.

Planteamos el modelo del siguiente modo: tenemos un campo eléctrico que viaja a través de la su-
perficie del plasmón en una dirección x. Por simplicidad, planteémos que se mueve por una red periódica
unidimensional finita de longitud L, de modo que el módulo del campo será de la forma

E(x) = eikpx +
∑
G

AGe
i(kp+G)x.

Por otro lado, la conductividad (normalizada) será la propia del material (en nuestro caso grafeno)
αg

4 y el aporte que supone el defecto, el cual añade inhomogeneidades en tal conductividad de la forma
∆α(x), siendo este parámetro la variación relativa de la conductividad. Tales inhomogeneidades pueden
ser propias de defectos del material o incluso inducidas a través de un potencial eléctrico. De este modo,
la conductividad del material contando con el defecto será

α(x) = αg + ∆α(x). (11)

Si planteamos que J = σE (ley de ohm) y la segunda relación de continuidad de (7), tenemos:

−ûz ×H+ + ûz ×H− = 2α(x)E(x).

Considerando que el sistema es simétrico respecto al plano que forma la superficie de grafeno5

4La conductividad del grafeno puede obtenerse como σ = σintra + σinter, con σintra =
2ie2t

~πΩ
ln

[
2 cosh

(
1

2t

)]
y σinter =

e2

4~

[
1

2
+

1

π
arctan

(
Ω− 2

2t
− i

2π
ln

(Ω + 2)2

(Ω− 2)2 + (2t)2

)]
, con Ω = ~ω/µ y t = T/µ, con T en unidades de enerǵıa. Para más

referencias consultar [14].
5Si Ex es simétrico (que aśı lo hemos tomado) como la divergencia del campo es nula ∂xEx + ∂zEz = 0⇒ ∂zEz = −∂xEx,

con lo que Ez es antisimétrico. El campo, por otro lado, llevará el mismo signo que Ez, pues los campos se relacionan con el
rotacional. Aśı, el campo Hy será positivo por encima de la placa y negativo por debajo.
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−ûz ×H(x) = α(x)E(x).

Si ahora consideramos el desarrollo en serie de Fourier de la conductividad α(x) =
∑
G

eiGxαG, con

αG =
1

L

∫ L

0
e−iGxα(x)dx y proyectamos sobre αG+kp =

1

L

∫ L

0
e−i(kp+G)xdx, recordando la relación (5):

−Y0δG0 − YGAG = αG +
∑
G′

αG−G′AG′ ,

donde hemos usado la notación YG = Ykp+G =
1

qz(kp +G)
. Por otro lado, como αG = αgδG0 + ∆αG y,

tal como hemos visto en el final de (1.2.2), para que haya confinamiento del plasmón se ha de cumplir que

αg = − 1

qz(kp)
, (12)

considerando todo ello tenemos

−YGAG = ∆αG +
∑
G′

αG−G′AG′ ⇒ −YGAG = ∆αG + α0AG +
∑
G6=G′

∆αG−G′AG′ ,

reorganizando términos:

(YG + α0)AG +
∑
G6=G′

∆αG−G′AG′ = −∆αG (13)

ó

(YG + αg)AG +
∑
G′

∆αG−G′AG′ = −∆αG (14)

El tratamiento hecho hasta ahora no es realista: hemos planteado nuestra lámina de grafeno como una
red unidimensional y periódica. No obstante, a ráız de este tratamiento vamos a pasar a considerar un
medio continuo, lo cual śı se acerca más a la realidad6. Hacemos el paso al continuo del siguiente modo:

∑
G

−→ L

2π

∫
dG

Definimos A(G) = LAG −→
∑
G

AG =
L

2π

∫
dGAG =

1

2π

∫
dGA(G)

∆α(G) = L∆αG =

∫ ∞
−∞

e−iGx∆α(x)dx.

De este modo, si multiplicamos por L en (14):

−∆α(G) = (YG + αg)A(G) +

∫ +∞

−∞
∆α(G′ −G)A(G′)

dG′

2π
(15)

6Hay que tener en cuenta que el tratamiento aqúı realizado es macroscópico: la estructura hexagonal del grafeno se tiene
en cuenta al calcular el valor de αg, que aqúı lo consideramos como conocido.
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Considerando esto, podemos expresar el módulo del campo eléctrico del siguiente modo:

E(x) = eikpx +

∫
dG

2π
A(G)ei(kp+G)x (16)

De este modo, para resolver el problema tenemos que conocer las componentes fourier A(G) del campo.
El cálculo de tales componentes a través de (15) tiene algunas complicaciones matemáticas: si por ejemplo
A(G) ∝ δ(G − kp), entonces tenemos un 0·∞ (que viene de (YG + αg)·δ(G − kp)). Para evitar estas
complicaciones definimos

B(G) = (YG + αg)A(G), (17)

de modo que la ecuación (15) y (16), si definimos YG = 1/qz(kp +G) quedan como

B(G) +

∫ ∞
−∞

∆α(G−G′) B(G′)

YG′ + αg

dG′

2π
= ∆α(G)

E(x) = eikpx +

∫ ∞
−∞

dG

2π

B(G)

YG + αg
ei(kp+G)x

(18)

Podemos simplificar un poco más la notación. Si hacemos G = k − kp y Y (k′) = 1/qz(k), entonces en
la primera ecuación de (18) tenemos

B(k − kp) +

∫ ∞
−∞

∆α(k − k′)B(k′ − kp)
Y (k′) + αg

dk′

2π
= −∆α(k − kp).

Si, además, definimos B̃(k) = B(k − kp) y teniendo en cuenta k = kp +G:

B̃(k) +

∫ ∞
−∞

∆α(k − k′) B̃(k′)

Y (k′) + αg

dk′

2π
= −∆α(k − kp)

E(x) = eikpx +

∫ +∞

−∞

dk

2π

B̃(k)

Y (k) + αg
eikx

(19)

Podemos hacer otro cambio más en estas ecuaciones si tomamos variables adimensionales. Como vimos,

k = qg =⇒ dk = dqg =
2π

λ
dq. Si definimos

B(q) =
1

λ
B(k) y ∆α(q) =

1

λ

∫ +∞

−∞
e−iqgx∆α(x)dx, (20)

las ecuaciones (19) se reescriben como

B(q) +

∫ +∞

−∞
∆α(q − q′) B(q′)

Y (q′) + αg
dq′ = −∆α(q − qp)

E(x) = eiqpgx +

∫ +∞

−∞
dq

B(q)

Y (q) + αg
eigqx

(21)

Será esta última ecuación la que utilicemos a lo largo de nuestro estudio.
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2.2. Ejemplo de aplicación: defecto gaussiano

Un primer ejemplo de aplicación de esta teoŕıa se puede encontrar en [15]. En este art́ıculo se estudia,
entre otros casos, la propagación de un plasmón a través de una superficie en la cual hay una impureza en
la conductividad del tipo gaussiano, es decir

∆α0(x) = δαge
− 4x2

a2 , (22)

de modo que δ da cuenta de la profundidad del defecto, a de la anchura del mismo y αg es la conduc-
tividad del grafeno. Se escogen δ negativas, de modo que el defecto es una hendidura en la conductividad.
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−10 −5  0  5  10

∆
α
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Defecto gaussiano para δ=−0.2,a=20 nm

∆α(x)

Figura 3: Distribución del defecto en la conductividad en el espacio

Para el cálculo de la amplitud B(q) del campo (sus componentes fourier, como ya hemos visto) hemos
de emplear la ecuación (21) y, para ello, necesitamos calcular la transformada de fourier del defecto a través
de (20), se obtiene (ver apéndice,5.2):

∆α0(q) =
δαg
4
√
π
ãe−

q2ã2

16 , (23)

con ã = g · a. En el caso de las N gaussianas estudiaremos los cálculos con más detalle. Por otro lado,
es importante plantear la First Order Born Approximation(FOBA), que consiste en tomar la ecuación de
B(q) de (21) y despreciar el término integral. De este modo:

B(q) +

∫ +∞

−∞
∆α(q − q′) B(q′)

Y (q′) + αg
dq′ = −∆α(q − qp)

FOBA−−−−−−−−−−→ BFOBA(q) = −∆α(q − qp). (24)

A partir de aqúı podemos calcular el coeficiente de treflexión (Ver Apéndice,(5.3)), pues
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R =

∣∣∣∣ 2πi

α3
gqp

B(−qp)
∣∣∣∣2 . (25)

Es importante matizar que los coeficientes de reflexión (R), transmisión (T ) y escape (S) que aqúı se
estudian hacen referencia al defecto, de modo que R evalúa la fracción de onda que vuelve por el plasmón
tras encontrarse con el defecto, T la fracción que lo atraviesa y S la cantidad de onda que sale de la lámina
de grafeno por el defecto. En el material suplementario de [15] se prueba la conservación de la carga, es
decir, 1 = R+ T + S (la onda se refleja, se transmite o sale de la lámina). Si tomamos B(q) = BFOBA(q),
obtenemos lo siguiente:

RFOBA0 =

∣∣∣∣ 2πi

α3
gqp

(
− δαg

4
√
π
ã exp

(
−(−2qp)

2ã2

16

))∣∣∣∣2 =

∣∣∣∣− i
√
π

2α2
gqp

ãδ exp

(
−(−2qp)

2ã2

16

)∣∣∣∣2 ,
aproximando que

1

α2
g

= 1− q2
p ≈ −q2

p,
7 nos queda que

RFOBA0 =

∣∣∣∣∣i
√
π

2
qpãδ exp

(
−
{
qpã

2

}2
)∣∣∣∣∣

2

= δ2π

4
k2
pa

2 exp

(
−(kpa)2

2

)
(26)

Basándonos en estos resultados, estudiamos a continuación una configuración conN defectos gaussianos.

7Recordar que la condición de plasmón es qz = − 1

α
y que qz =

√
1− q2.
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3. Perfil de impurezas de N gaussianas

3.1. Aplicación del modelo

El sistema que estudiamos en este apartado consta de un defecto espacial en la conductividad en forma
de N gaussianas idénticas cuyos centros están desplazados una cierta cantidad γa, donde γ es un parámetro
que controlaremos. La expresión matemática de tal defecto es:

∆α(x) =
N−1∑
n=0

∆αn(x) con ∆αn(x) = δαg exp

{
−4(x− nγa)2

a2

}
. (27)
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Figura 4: Distribución de N defectos en la conductividad en el espacio

Vamos a seguir el mismo procedimiento que para el caso de una gaussiana: veamos cómo calcular la
transformada de fourier de la conductividad del defecto. Volviendo a usar (20):

∆α(q) =
1

λ

∫ +∞

−∞
e−iqgx∆α(x)dx⇒ ∆α(q) =

N−1∑
n=0

1

λ

∫ +∞

−∞
dx∆αn(x)e−igqx. (28)

Veamos si podemos encontrar una expresión genérica para todos los sumandos. Si nos centramos en la
parte de la integral

1

λ

∫ +∞

−∞
dx∆αn(x)e−igqx =

δαg
λ

∫ +∞

−∞
dx exp

{
−(x− nγa)2

a2

}
exp (−igqx) .

Hacemos el siguiente cambio de variables: τ = x−nγa⇒ dτ = dx. Como los extremos son de integración
son infinitos y las variables de integración que planteamos difieren en una constante finita, los extremos
permanecen igual. De este modo obtenemos lo siguiente:
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δαg
λ

∫ +∞

−∞
dx exp

{
−(x− nγa)2

a2

}
exp (−igqx) =

δαg
λ

∫ ∞
−∞

dτ exp

(
−4τ2

a2

)
exp {−igq(τ + nγa)} =

=
δαg
λ

exp(−iqgnγa)

∫ ∞
−∞

dτ exp

(
−4τ2

a2
− igqτ

)
Para el cálculo de la integral basta con completar cuadrados en el exponente:

∫ ∞
−∞

dτ exp

(
−4τ2

a2
− igqτ

)
=

∫ +∞

−∞
dτ exp

{
−
(

4τ2

a2
+ 2 · 2τ

a

iqga

4
− q2g2a2

16
+
q2g2a2

16

)}
=

= exp

(
−q

2g2a2

16

)∫ ∞
−∞

dτ exp

{
−
(

2τ

a
+
iqg

4a

)2
}

Si en la integral que queda hacemos el cambio u =
2τ

a
+
igq

4a
⇒ du =

2

a
dτ y teniendo en cuenta que∫ +∞

−∞
dxe−x

2
=
√
π(Ver 5.5):

δαg
λ

∫ +∞

−∞
dx exp

{
−(x− nγa)2

a2

}
exp (−igqx) = δαg

ã

4
√
π

exp

(
−q

2ã2

16

)
exp(−iqgnγa) = ∆α0(x) exp(−iqgnγa),

(29)

con ã = ga.Si volvemos con este resultado a (28):

∆α(q) =
N−1∑
n=0

exp(−igqnl)∆α0(g) = ∆α0(q)
N−1∑
n=0

exp(−igqnl).

Recordando la expresión de la suma geométrica S =

M∑
n=0

rn ⇒ S =
rM+1 − 1

r − 1
(Ver (5.6)), en nuestro

caso r = exp(−igqγa) y M = N − 1, de manera que:

∆α(q) = ∆α0(g)
exp(−iqgNγa)− 1

exp(−igqγa)− 1
.

Si sacamos factor común en el numerador exp

(
− iqgNγa

2

)
y exp

(
− iqgγa

2

)
y considerando que sinα =

1

2i
(eiα − e−iα), se obtiene que

∆α(q) = ∆α0(q) exp

{
− igq(N − 1)γa

2

} sin

(
gqNγa

2

)
sin
(gqγa

2

) = ∆α0(q)ξ(q), (30)

con ξ(q) el factor de estructura, definido como
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ξ(q) = exp

{
− igq(N − 1)γa

2

} sin

(
gqNγa

2

)
sin
(gqγa

2

) (31)

Es importante ver que este factor de estructura ξ(q) surgirá siempre que tengamos una estructura
periódica de defectos, de modo que sus propiedades son extrapolables a cualquier tipo de variación en
la conductividad siempre que ésta sea periódica.

A partir de este resultado podemos estudiar el sistema. El primer paso será considerar la First Order
Born Approximation.

3.2. Predicción en FOBA

Del mismo modo que para una gaussiana, podemos aproximar en FOBA a través de la ecuación (24).
De este modo, el coeficiente de reflexión en tal aproximación, dado por (25) será

R =

∣∣∣∣ 2πi

α3
gqp

B(−qp)
∣∣∣∣2 ⇒ RFOBA =

∣∣∣∣−2πi∆α0(−2qp)

α3
gqp

ξ(−2qp)

∣∣∣∣2 .
Como |a · b| = |a| · |b|∀a, b ∈ C, podemos escribir

RFOBA =

(∣∣∣∣−2πi∆α0(−2qp)

α3
gqp

∣∣∣∣ |ξ(−2qp)|
)2

=

∣∣∣∣−2πi∆α0(−2qp)

α3
gqp

∣∣∣∣2 |ξ(−2qp)|2 = RFOBA0 |ξ(−2qp)|2,

donde, como hemos expresado en la ecuación, la primera parte ha sido calculada para el caso de una
sola gaussiana. Con respecto al término del factor de estructura:

|ξ(−2qp)|2 =

∣∣∣∣exp {igqp(N − 1)γa} sin (gqpNγa)

sin (gqpγa)

∣∣∣∣2 =

(
|exp {igqp(N − 1)γa}|

∣∣∣∣sin (gqpNγa)

sin (gqpγa)

∣∣∣∣)2

.

Como z = |z|eiθ∀z ∈ C, el módulo de un número complejo que consta de una exponencial imaginaria
es uno. Por lo tanto, teniendo esto en cuenta, el resutado final será

RFOBA = RFOBA0

sin2 (gqpNγa)

sin2 (gqpγa)
(32)
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A partir de esta primera aproximación podemos comprobar cómo cambia la reflexión en este sistema
respecto al de una gaussiana, estudiado en profundidad en ([15]). Si representamos gráficamente para
N = 1, 2,3 y 4 se obtiene el siguiente gráfico:
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Figura 5: Coeficiente de reflexión en FOBA para N=1,2,3 y 4.

En nuestro caso, con N = 1 recuperamos el caso ya conocido. Se aprecia que, además de un pico que
crece en magnitud y va haciéndose más estrecho conforme N aumenta, también surgen picos secundarios
para longitudes de onda del plasmón cercanas a la principal. De hecho, a cada lado del pico principal
aparecen N − 1 máximos secundarios.

El hecho de que el pico vaya aumentando conforme lo hace N viene de la indeterminación en el factor
de estructura ξ(q) que se da cuando el argumento del seno del denominador se hace nulo. Veámoslo:

ξ(q) = exp

{
− igq(N − 1)γa

2

} sin

(
gqNγa

2

)
sin
(gqγa

2

) si
gqγa

2
= mπ, con m ∈ Z =⇒ ξ(q) ∝ sin(Nmπ)

sin(mπ)
=

0

0
.

Si hacemos el ĺımite en el cual numerador y denominador tienden a cero:

ĺım
gqγa−→2mπ

sin

(
gqNγa

2

)
sin
(gqγa

2

) ≈ ĺım
gqγa−→2mπ

gqNγa

2
gqγa

2

= N,

De modo que el factor de reflexión R tiene un pico proporiconal a N2, pues es proporcional al cuadrado
del cociente del seno del doble del ángulo (Que también converge a N en la indeterminación).
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3.3. Resultados de las simulaciones

3.3.1. Discretización de la ecuación integral

Si vamos a la ecuación integral que hemos de resolver para las componentes Fourier B(q) del campo
eléctrico (21), podemos escribirla de este modo:

∆α(q − qp) = −B(q)−
∫ +∞

−∞
∆α(q − q′)G(q′)B(q′)dq′, (33)

con

G(q) =
1

Y (q) + αg
(34)

la función de green. De este modo, introduciendo la delta de Dirac, que verifica

∫ +∞

−∞
dxf(x)δ(x −

x0) = f(x0), podemos escribir B(q) =

∫ +∞

−∞
dq′B(q′)δ(q − q′). De este modo, la ecuación (33) queda

∆α(q−qp) = −
∫ +∞

−∞
dq′
[
B(q′)δ(q − q′) + ∆α(q − q′)G(q′)B(q′)

]
= −

∫ +∞

−∞
dq′B(q′)

[
δ(q − q′) + ∆α(q − q′)G(q′)

]
.

Si ahora discretizamos la ecuación, es decir,

∫ +∞

−∞
−→

+∞∑
q′=−∞

dq′ −→ ∆q′

δ(q − q′) −→ δqq′ (De delta de Dirac a delta de Kronecker),

obtenemos

∆α(q − qp) = −
+∞∑

q′=−∞
∆q′B(q′)(δqq′ + ∆α(q − q′)G(q′)). (35)

Definimos ahora las siguientes matrices y vectores:

Vector F : Fq = ∆(q − qp)

Vector B : Bq′ = B(q′)

Matriz M̃ : Mqq′ = (δqq′ + ∆α(q − q′)G(q′))∆q′.

(36)

La ecuación (36) se expresa como
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F = M̃B (37)

De modo que, para cada q (cada iteración), calcularemos la amplitud B a través de la inversa de M̃ :

B = M̃−1F. (38)

Con esta ecuación ya discretizada podemos programar un código que la resuelva (ver Apéndice, apartado
5.8). A la hora de hacerlo, es muy importante determinar cómo es el integrando. Por ejemplo, la función
de Green tiene un polo en qz =

√
1− q2 = −1/αg, de modo que, en tal polo, es necesario disminuir el

intervalo de integración, pues la función vaŕıa mucho más bruscamente.

En el caso que nos ocupa (el de N gaussianas), la única dificultad añadida al integrando es la inde-

terminación
0

0
del factor de estructura para valores de q tales que gqγa = 2mπ. Sabemos que, para esos

valores, el factor de estructura vale N (tal y como hemos visto al final de la sección 3.2). De ese modo,
basta con añadir un condicional en el código de la siguiente forma a la hora de generar el vector F y la
matriz M̃ :

%F vec to r and M matrix genera tor
for i =1:2∗N

i f rem(gamma∗( real ( q ( i ) )−real ( qp ) ) ∗g∗a /2 ,pi )==0

F( i ) =1/(4∗ sqrt (pi ) ) ∗alphaG∗g∗a∗exp(−(q ( i )−qp ) ˆ2∗( a∗g ) ˆ2/16) ∗ d e l t a ∗NumGauss ;

else

F( i ) =1/(4∗ sqrt (pi ) ) ∗alphaG∗g∗a∗exp(−(q ( i )−qp ) ˆ2∗( a∗g ) ˆ2/16) ∗ d e l t a ∗exp(−1 i ∗gamma∗( q
( i )−qp ) ∗a∗g ∗(NumGauss−1)/2) ∗ sin (NumGauss∗gamma∗( q ( i )−qp ) ∗a∗g /2) / sin (gamma∗( q ( i
)−qp ) ∗a∗g /2) ;

end
G( i , i )=qz ( i ) /(1+alphaG∗qz ( i ) ) ∗dq ( i ) ;
G1( i )=qz ( i ) /(1+alphaG∗qz ( i ) ) ;
Q1( i , i ) =1;

end
% For any reason , M matrix i s genera ted f a s t e r whether i t i s d e f ined as the
% product o f two matrix
for i =1:2∗N;

for j =1:2∗N;
i f rem(gamma∗( real ( q ( i ) )−real ( q ( j ) ) ) ∗g∗a /2 ,pi )==0
M1( i , j )=−1/(4∗sqrt (pi ) ) ∗alphaG∗a∗g∗exp(−(q ( i )−q ( j ) ) ˆ2∗( a∗g ) ˆ2/16) ∗ d e l t a ∗

NumGauss ;
else
M1( i , j )=−1/(4∗sqrt (pi ) ) ∗alphaG∗a∗g∗exp(−(q ( i )−q ( j ) ) ˆ2∗( a∗g ) ˆ2/16) ∗ d e l t a ∗exp(−1 i

∗gamma∗( q ( i )−q ( j ) ) ∗a∗g ∗(NumGauss−1)/2) ∗ sin (NumGauss∗gamma∗( q ( i )−q ( j ) ) ∗a∗g
/2) / sin (gamma∗( q ( i )−q ( j ) ) ∗a∗g /2) ;

end
end

end
M=M1∗G;

}

donde rem(a,b) es la función de resto. Aśı, si la cantidad gqγa es un múltiplo de π (es decir, rem(gqγa,π)=0),
sustituimos el factor de estructura por N (en el caso del código, NumGauss).

18



3.3.2. Comparación FOBA anaĺıtica y de simulaciones

En este apartado comprobaremos que la corrección introducida en el código para el defecto de N
gaussianas es correcta: modificamos el código para que calcule la FOBA, de modo que comentamos todas
las operaciones que involucran a la matriz M̃ e identificamos los vectores F = B, lo cual es equivalente a
quitar la integral de la ecuación (notar que ésta sólo aparece en la matriz M̃). Si comparamos los resultados
de las simulaciones con el cálculo anaĺıtico de la sección 3.2, obtenemos lo siguiente:
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Figura 6: Comparación FOBA anaĺıtica y con simulación

Se aprecia una perfecta concordancia de las simulaciones con el resultado anaĺıtico. Con esto compro-
bamos que la implementación de la modificación para un sistema periódico de N defectos se ha hecho
correctamente en el código. Pasemos ahora a estudiar casos sin aproximación: inclúımos el término integral
en la ecuación.
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3.3.3. Comparación FOBA y simulaciones

A continuación comparamos las predicciones de la FOBA con las simulaciones (incluyendo el término
integral). Los resultados son los siguientes

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  0.1  0.2  0.3  0.4  0.5  0.6

R

a/λp

Comparación con FOBA para a=20 nm y N=1 (δ=−0.2)

N=1 simulaciones
N=1 FOBA

(a) N=1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  0.1  0.2  0.3  0.4  0.5  0.6

R

a/λp

Comparación con FOBA para a=20 nm y N=2 (δ=−0.2)

N=2 simulaciones
N=2 FOBA

(b) N=2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.1  0.2  0.3  0.4  0.5  0.6

R

a/λp

Comparación con FOBA para a=20 nm y N=3 (δ=−0.2) 

N=3 simulaciones
N=3 FOBA

(c) N=3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.1  0.2  0.3  0.4  0.5  0.6

R

a/λp

Comparación con FOBA para a=20 nm y N=4 (δ=−0.2)

N=4 simulaciones
N=4 FOBA

(d) N=4

Figura 7: Comparación de FOBA con los resultados de la simulación

Aqúı los resultados empeoran: el aspecto de la función es similar, pero se ve un cierto desplazamiento
en el eje de abscisas, aśı como unas formas más irregulares en las simulaciones (aunque esto no es debido a
la imprecisión de la aproximación, sino a la resolución de la simulación). Aún aśı, se aprecia que la forma
funcional es similar (pico resonante de alta magnitud y picos secundarios). Esto nos permite estudiar la
aproximación FOBA y traspasar las conclusiones a los casos reales teniendo en cuenta este desplazamiento
en las longitudes de onda.
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3.3.4. Comportamiento con a, anchura del defecto

Al igual que en [15], realizamos simulaciones variando la anchura a de los defectos gaussianos. El
resultado que obtenemos es el siguiente
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Figura 8: Variación del coeficiente de reflexión R con la anchura de las gaussianas a

Se aprecia que, conforme aumentamos la anchura a, los picos se desplazan hacia longitudes de onda
mayores (resultado que ya se reprodućıa en [15] para N=1). Para explicar esto es necesario conocer el
origen del pico de reflexión: tal pico es debido a la resonancia de la onda que viene del vaćıo (de longitud
de onda λ) con el defecto de anchura a. De este modo, si aumentamos la anchura a la longitud de onda
resonante λ será mayor: las longitudes de onda que resuenan son más largas dado que la anchura crece.

Por otro lado, si representamos la reflexión en función de a/λp se ve que las gráficas se superponen
entre śı. Esto puede apreciarse en la expresión de la FOBA: cumple una ley de escala según la magnitud
a/λp.

También se presentan resultados para dos δ diferentes. Lógicamente, conforme δ (profundidad del
defecto) es mayor, la reflexión es mayor pues, como vemos en la aproximación FOBA (26), el coeficiente
de reflexión es proporcional a δ2. Veamos ahora más resultados de simulaciones con variaciones en este
parámetro.
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3.3.5. Comportamiento con δ, altura del defecto

Los resultados de los simulaciones para un número de gaussianas N = 2 y 3, anchura del defecto a =20
nm y una distancia relativa entre gaussianas γ = 2 variando δ son
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Figura 9: Variación del coeficiente de reflexión R con la altura de las gaussianas δ .

Vemos que llega un punto de la profundidad (δ=-0,7,-0.9) en el cual la forma de la gráfica cambia: se
va ensanchando el pico central y subiendo su intensidad hasta que rebasa llega justo al 1 (R no puede ser
mayor que 1, pues significa que se refleja más enerǵıa de la que entra en el defecto). Un resultado similar
se reproduce en [15], donde se usan defectos de anchura mucho mayor (en torno a los micrómetros). Como
veremos en el apartado 4, podemos encontrar aplicaciones en este fenómeno, las cuales involucran defectos
en esa escala.
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3.3.6. Comportamiento con N , número de gaussianas

Las simulaciones para a = 20 nm, δ=-0.2 y γ = 2 para distintos N son las siguientes:
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Figura 10: Variación del coeficiente de reflexión R con el número de gaussianas.

Los resultados son similares a los que hab́ıamos predicho para FOBA en la parte anaĺıtica: el pico
va creciendo conforme aumenta el valor de N y, además, se va estrechando. No sólo eso, sino que van
apareciendo más máximos secundarios (N − 1 a cada lado), aunque estos vaŕıan su intensidad en mucha

menor magnitud que el pico central (el correspondiente a la indeterminación
0

0
ya comentada).

Algo llamativo de estos resultados es que, como ya vimos en 3.2, el máximo de la reflexión es proporcional
a N2, de modo que la reflexión puede ser arbitrariamente grande (dado que podemos usar un número N
arbitrariamente grande). Esto dará lugar a que, para un cierto N , el valor R rebasará la unidad.

Podemos estimar a través de la FOBA en qué valor de N ocurre esto. Sabemos que, en el máximo, el
factor de estructura aporta a la reflexión un valor N2, de manera que

RFOBAmáx = RFOBA0,máx N
2.

Si analizamos la función RFOBA0 (ver Apéndice, sección 5.7) podemos extraer que ésta tiene un máximo
para a/λp = 1/

√
2π ≈ 0,22, lo que da lugar a un valor de la reflexión RFOBA0,máx ≈ 0,58δ2. Si elegimos

δ = −0,2, tendremos, juntando con el factor de estructura, que

RFOBAmáx (N) = 0,0232N2.

Aśı, si calculamos este valor para una serie de N :
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RFOBAmáx N

0,02 1

0,09 2

0,21 3

0,37 4

0,58 5

0,84 6

1,14 7

1,48 8

1,88 9

2,32 10

Cuadro 1: Valores de RFOBAmáx em función de N .

Como vemos, para el valor de N=7 ya se rebasa la unidad y se pierde el sentido f́ısico del factor de
reflexión. Sin embargo, nuestras simulaciones llegan hasta N = 12 y no se aprecia esta divergencia. La
razón es la resolución de la simulación: conforme N aumenta, el pico no sólo se hace más intenso, sino que
también se hace más estrecho, de modo que es mucho más costoso detectarlo en términos de resolución.
De este modo, no lo detectamos porque nuestra discretización no lo capta, para verlo necesitaŕıamos unas
simulaciones con una resolución mucho más baja (aqúı hemos utilizado δλ ≈ 0,13nm)8.

Por otro lado, podemos dar una visión intuitiva de los máximos de reflexión que tenemos: estos se
deben a la resonancia del plasmón con el defecto, de modo que, si añadimos más defectos defectos de la
misma anchura (con la cual resuena y provoca el máximo), o sea, incrementamos N ,la intensidad de esta
reflexión aumenta, pues resuena con más defectos. Por otro lado, la aparición de los máximos secundarios
es una combinación de otros modos de resonancia: el plasmón puede resonar entre los centros de cada una
de las gaussianas, de manera que da lugar a modos mixtos (entre diferentes defectos) de resonancia.

8En realidad la resolución vaŕıa según la zona que integremos, tal como comentábamos al comienzo. De hecho, integramos
en la variable adimensional q.
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3.3.7. Comportamiento con γ, distancia entre gaussianas

A continuación representamos el comportamiento de un defecto con N = 2, a = 20nm, δ = −0,2 y γ
cambiando:
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Figura 11: Variación del coeficiente de reflexión R con la distancia relativa entre gaussianas.

Para γ = 0 simplemente tenemos la superposición de dos gaussianas en el el mismo punto. Conforme
vamos aumentando este parámetro las gaussianas se van separando: hasta γ = 1 todav́ıa están cerca y
se superponen, formando una gaussiana de más anchura. Después, ya en γ = 2, están lo suficientemente
separadas y recuperamos la forma ya estudiada previamente.

Los resultados para γ a partir de 2.5 reflejan que, conforme aumentamos la distancia entre gaussianas,
el pico principal va disminuyendo poco a poco su intensidad y el secundario aumenta, además de que ambos
sufren un desplazamiento hacia la derecha en la longitud de onda.

La fenomenoloǵıa de estos resultados es que, conforme separamos los picos, los modos mixtos (los
que se provocan por la resonancia entre los centros de las dos gaussianas) van cambiando su longitud de
onda, pues los defectos están cada vez más alejados (de hecho, conforme γ aumenta la longitud de onda
resonancia lo hace también, lo que concuerda con esta explicación). El hecho de que el pico principal
baje de intensidad se debe a que los defectos ya no están tan próximos y los plasmones reflejados no se
superponen de inmediato igual que para γ bajas. Esto también puede explicar por qué el pico del modo
mixto aumenta: el plasmón reflejado de la segunda gaussiana interfiere con él antes de juntarse con el de
la primera y aporta ese incremento que detectamos.
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4. Conclusiones

En esta sección vamos a comentar los resultados obtenidos y su posible aplicación en los métodos
experimentales en los que se emplea el grafeno.

Grafeno formado en sustrato de SiC

En [16] se realiza un estudio en el cual se consiguen hacer defectos del orden de los nanómetros. De
ese modo, la simulación de defectos con a =20, 30, 40 ó 50 nm puede reflejar el sistema propuesto en
[16]. Resumamos los resultados obtenidos:

1. Aumentar la anchura del defecto a provoca un desplazamiento en la longitud de onda resonante
que se refleja.

2. Aumentar el número de defectos N provoca un aumento del pico resonante y un estrechamiento
del mismo, aśı como la aparición de picos secundarios.

3. Aumentar la distancia relativa entre defectos γ provoca una disminución del pico principal y un
aumento de los secundarios, aśı como un desplazamiento en la longitud de onda de ambos tipos
de picos.

4. Aumentar la profundidad del defecto δ provoca un incremento en la intensidad.

En base a esto, podŕıamos manipular las condiciones de nuestro sistema para controlar la radiación
reflejada. A través del desplazamiento de la longitud de onda con a, podemos seleccionar longitudes de
onda de interés en las cuales colocar el pico principal. Por otro lado, si aumentamos N aumentamos
la intensidad de esta onda y además la monocromatizamos más, pues el pico se estrecha: pese a
que aparezcan máximos secundarios, si N es lo suficientemente grande podŕıamos considerar esta
reflexión como despreciable. La variación en γ permite poner (en el caso, por ejemplo, de N=2) dos
longitudes de onda reflejadas al mismo nivel de intensidad. De este modo, podemos tener dos ondas
reflejadas y controlar su posición en el espectro a través de a. En este caso, si quisiésemos aumentar
la intensidad debeŕıamos variar γ, pues aumentarla con N supondŕıa la aparición de más picos.

Aśı pues, a través del sistema periódico aqúı presentado podemos manipular la onda reflejada en
el defecto en longitud de onda, resolución en la longitud de onda (cómo de monocromática es),
intensidad y reflexión múltiple (varias longitudes de onda).

Uniones p-n-p en grafeno

En los art́ıculos [17] y [18] se fabrican uniones p-n-p basadas en grafeno cuya concentración de
portadores (y, por lo tanto, su conductividad eléctrica) se modifica a través de un potencial externo.
En este caso, las condiciones de laboratorio que se reflejan en nuestros parámetros son una variación
de δ entre 0 y -0.9 y unos defectos cuya anchura a es del orden de micrómetros.

Pese a que nuestras simulaciones han sido realizadas para anchuras de defecto bajas (del orden de
nanómetros), los resultados que ahora explicamos son extrapolables a anchuras de defecto mayores,
pues la variación de este parámetro desplaza la longitud de onda donde se dan las resonancias y
vamos a disctutir sobre la intensidad de la señal, no sobre su espectro.

Tal como se refleja en las gráficas de 3.3.5, llega un punto en el aumento de δ (en torno a δ = −0,7
tanto en N = 1 como en N = 2) en el que la reflexión llega a 1 en el pico principal y provoca un
truncamiento del mismo, de forma que hay una banda (de unos 4 µm) en la cual la reflexión es
prácticamente 1. Aśı, esta saturación en la reflexión podŕıa utilizarse como un filtro pasa-banda pues,
para un cierto rango de longitudes de onda, la mayor parte de la radiación se refleja y no atraviesa
el defecto.
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5. Apéndice

5.1. Propiedades de la base de modos TM y TE

En esa sección vamos a probar unas propiedades importantes de los vectores de la base

ap =
1

k‖

(
kx
ky

)
(Modo transversal magnético) as =

1

k‖

(
−ky
kx

)
(Modo transversal eléctrico)

con k = kxûx + kyûy + kzûz y k2
‖ = k2

x + k2
y. Probemos las diferentes propiedades:

Ortonormalidad

ap · as =
1

k2
‖

(−kxky + kykx) = 0.

ap · ap =
1

k2
‖

(k2
x + k2

y) =
k2
‖

k‖2
= 1.

as · as =
1

k2
‖

(k2
y + k2

x) =
k2
‖

k2
‖

= 1,

donde hemos usado la definición de producto escalar eucĺıdeo en R2 (Si a,b ∈ R2, se define a · b =
2∑
i=1

aibi). Vemos, en resumen, que

ai · aj = δij con i, j ∈ {s, p}.

Componente z del campo eléctrico

Si llamamos E‖ a la componente de campo que se proyecta en el subespacio R2 generado por los
vectores as y ap, podemos calcular a partir de k ·E = 0 (que se cumple para ondas planas, tal como
hemos probado en 1.2.1), entonces para cada modo transversal:

TM: Ep = E‖ap + Ezûz.

k ·E⇒ k · (E‖ap+Ezûz) = 0⇒ E‖

[
1

k‖
(k2
x + k2

y)

]
+Ezkz = 0⇒ E‖

k2
‖

k‖
+Ezkz = 0⇒ Epz = −E‖

k‖

kz

TE: Es = E‖ap + Ezûz.

k ·E = 0⇒ k · (E‖as + Ezûz) = 0⇒ E‖

[
1

k‖
(−kxky + kxky)

]
+ Ezkz = 0⇒ Esz = 0
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Relación entre H y E; impedancias

Partimos de la ley de Lentz (2)

∇×E = −1

c

∂H

∂t
.

Vamos a extraer propiedades para Ep = Es‖as + Esz , Ep = Ep‖ap + Epz , Hs = Hs
‖as + Hs

z y Hp =

Hp
‖ap +Hp

z , de modo que éstas son ondas planas, es decir A‖ ∝ e−i(k·r−iωt), con A‖ = Eµ‖ , H
µ
‖ y µ el

modo (s ó p). Debido a esta dependencia, se tiene que
∂A‖

∂t
= −iωA‖, o sea que

∇×E =
iω

c
H.

Veamos ahora qué obtenemos para cada polarización:

TE(s)

En este caso tendremos E = E‖as + 0ûz, con E‖ ∝ eıvk·r, de modo que

∇×E =

∣∣∣∣∣∣∣∣
ûx ûy ûz
∂x ∂y ∂z

−
E‖ky

k‖

E‖kx

k‖
0

∣∣∣∣∣∣∣∣ = ûx

[
−
E‖kx

k‖
ikz

]
− ûy

[
E‖ky

k‖
ikz

]
+Aûz =

= −iE‖
(
kzkx
k‖

ûx +
kykz
k‖

+A′ûz

)
.

La componente z (A) no nos interesa, porque ahora vamos a aplicar a este resultado ûz×, a lo que
tal componente no aporta nada:

ûz×(∇×E) = −iE‖

∣∣∣∣∣∣∣∣
ûx ûy ûz
0 0 1

kzkx
k‖

kykz
k‖

A′

∣∣∣∣∣∣∣∣ = −iE‖
(
−kykz

k‖
ûx +

kzkx
k‖

ûy

)
= −ikz

(
−E‖

ky
k‖

+ E‖
kx
k‖
ûy

)
=

= −ikzETE .

Si llevamos esto a la ecuación de Lentz (aplicando ûz× a ambos lados):

−ikzETE = i
ω

c
ûz ×HTE .

Si tomamos g =
ω

c
y el vector de ondas normalizado en el vaćıo qz =

kz
g

, se tiene que:

−ûz ×HTE = qzE
TE = YqpE

TE ,

donde

Yqp = qz
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TM(p)

En este caso tenemos E = ETM −
E‖k‖

kz
. Seguimos el mismo procedimiento (sabiendo que, al hacer

el rotacional, ignoramos la parte de z pues luego haremos ûz×.

∇×E =

∣∣∣∣∣∣∣∣
ûx ûy ûz
∂x ∂y ∂z
E‖kx

k‖

E‖ky

k‖
−
E‖k‖

kz

∣∣∣∣∣∣∣∣ = ûx

(
−i
E‖kyk‖

kz
− i

E‖kykz

k‖

)
−ûy

(
−iE‖

k‖kx

kz
− iE‖

kxkz
k‖

)
+Aûz =

= iE‖

[
−ûx

(
kyk‖

kz
+
kykz
k‖

)
+ ûy

(
kxk‖

kz
+
kxkz
k‖

)]
.

En cada componente tenemos una expresión análoga. Tomemos kσ = kx ó ky:

kσk‖

kz
+
kσkz
k‖

=
kσk

2
‖ + kσk

2
z

kzk‖
=
kσg

2

kzk‖
=
kσ
k‖
qzg.

Aśı

∇×E = i
qzgE‖

k‖
(−ûxky + ûykx) +Aûz.

Si ahora aplicamos ûz× a esta expresión:

ûz × (∇×E) = igqz
E‖

k‖

∣∣∣∣∣∣
ûx ûy ûz
0 0 1
−ky kx A′

∣∣∣∣∣∣ = igqz
E‖

k‖
(−ûxkx − ûyky)) = −igqzETM .

Aplicamos en la ecuación de Lentz queda

−igqzETM = i
ω

c
ûz ×HTM ⇒ −ûz ×HTM =

1

qz
ETM = YqpE

TM

Con

Yqp =
1

qz

5.2. Cálculo de la transformada de fourier en el defecto Gaussiano

Vamos a resolver la transformada de fourier de un defecto gaussiano:

∆α0(x) = δαge
− 4x2

a2 .

Si planteamos la transformada de fourier mediante 20

∆α0(q) =
1

λ

∫ +∞

−∞
e−iqgx∆α0(x)dx⇒ ∆α(q) =

1

λ

∫ +∞

−∞
dxδαge

−iqgxe−
4x2

a2 .
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Si completamos cuadrados en el exponente de la exponencial:

∆α0(q) =
δαg
λ

∫ ∞
−∞

dx exp

(
−4x2

a2
− igqx

)
=

∫ +∞

−∞
dx exp

{
−
(

4x2

a2
+ 2 · 2x

a

iqga

4
− q2g2a2

16
+
q2g2a2

16

)}
=

= exp

(
−q

2g2a2

16

)∫ ∞
−∞

dx exp

{
−
(

2x

a
+
iqg

4a

)2
}

Si en la integral que queda hacemos el cambio u =
2x

a
+
igq

4a
⇒ du =

2

a
dx y teniendo en cuenta que∫ +∞

−∞
dxe−x

2
=
√
π(Ver 5.5):

∆α0(q) =
1

λ

∫ +∞

−∞
e−iqgx∆α0(x)dx = δαg

ã

4
√
π

exp

(
−q

2ã2

16

)
,

con ã = ga.

5.3. Cálculo de coeficiente de reflexión R

El estudio de este coeficiente (junto con el de transmisión T y escape S) se detalla en el material
suplementario de [15]. El origen de estos coeficientes viene considerar el campo en la lámina de grafeno
transmitiéndose por el plasmón, dado por la fórmula

E(x) = eiqpgx +

∫ +∞

−∞
dq

B(q)

Y (q) + αg
eigqx = eiqpgx +

∫ +∞

−∞
dqB(q)G(q)eigqx.

Lo que planteamos es lo siguiente: queremos conocer el campo que se refleja y transmite por el defecto,
es decir, el campo a una distancia arbitrariamente grande del defecto en ambos sentidos, o sea x −→ ±∞
(Onda de reflejada si x −→ −∞ y onda transmitida si x −→ +∞. Para este cálculo nos basaremos en
la expresión aqúı presentada, pero haremos la asunción de que la transformada de fourier de la amplitud
B(q) es una función suave (es decir, sin polos) de q, de modo que, en el infinito, el mayor aporte lo dará la
función de Green G(q) que, en el caso de los modos TM (que son los que se propagan en la lámina como
plasmones):

G(q) =
qz

1 + αgqz
,

donde se ha empleado la impedancia Yqp ya calculada en 5.1. Se puede ver (ver Apéndice, apartado
5.4) que una integral el producto de una función f(q) sin polos con la función de Green G(q) tiene como
resultado

I =

∫ +∞

−∞
dqG(q)f(q) =

i2π

qpα3
g

f(qp),

con qp donde tenemos el polo. Si aplicamos esto al campo eléctrico, tenemos, por ejemplo, que

ĺım
x−→+∞

E(x) = ĺım
x−→+∞

{
eiqpgx +

∫ +∞

−∞
dqB(q)G(q)eigqx

}
= ĺım

x−→+∞

{
eikpx +

B(qp)e
ikpx2πi

qpα3
g

}
= eikpx(1+τ),
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con τ = 2πi
α3
gqp
B(qp). Hemos asumido que Imqp > 0, de modo que el término exponencial convergerá. Un

tratamiento análogo nos llevara a que

ĺım
x−→−∞

E(x) = eikpx + ρe−ikpx,

con ρ =
2πi

α3
gqp

B(−qp). De este modo, los coeficientes de reflexión y transmisión se definen como

R = |ρ|2 =

∣∣∣∣2πiαg B(−qp)
∣∣∣∣2 T = |1 + τ |2 = R = |ρ|2 =

∣∣∣∣1 +
2πi

αg
B(qp)

∣∣∣∣2

5.4. Cálculo de integrales con la función de Green

Vamos a plantear el cálculo de una integral del tipo

I =

∫ +∞

−∞
dqG(q)f(q) =

∫ +∞

−∞

f(q)dq

Yq + αg
.

La función de Green puede expresarse también como:

G(q) =
1

Yq + αg
=

1
1

qz
+ αg

=
qz

qz + αg
,

donde sólo tenemos en cuenta los modos confinados en la superficie (es decir, los TM). Tenemos que
tener en cuenta que qz =

√
1− q2. Para hacer esta integral nos valdremos del teorema de los residuos de

Cauchy, que establece para un recorrido cerrado:

∮
f(z)dz = 2πi

∑
Re(f(z0), z0),

donde la suma se extiende a los distintos polos situados en z0 (distintos puntos) donde la función f(z)
tiene polos. Si tenemos en cuenta esto y asumiendo que nuestra f(q) no tendrá polos, tratemos de calcular

∫ +∞

−∞

dq

1 + qzαg

a través de sus polos. Tal función tiene polos en qzp = −dfrac1αg. A los polos en la variable q lo
llamamos qp. Si en la integral hacemos el cambio de variable q = qp − x (Aśı tendremos polos en x = 0:

∫ +∞

−∞

dq

1 + qzαg
=
−∞
+∞

dx

1 +
√

1− (qp − x)2
αg,

donde hemos empleado que qz =
√

1− q2. Si asumimos que x << 1, desarrollando la ráız:

√
1− (qp − x)2 =

√
1− q2

p − x2 + 2xqp ≈
√

1− q2
p + 2xqp.
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Si ahora sacamos factor común (1− q2
p) = qpz:

√
1− q2

p + 2xqp =

√
(1− q2

p)(1−
2xqp

1− q2
p

) = qpz

√
1− 2xqp

qpz
.

Considerando que, si x << 1 entocnes
√

1− x = 1− x

2
, el denominador queda como:

1 + qzp(1−
xqp
q2
zp

)αg = 1 + qzpαg −
xqpαg
qzp

.

Como qzp = − 1

αg
⇒ 1 + qzpαg = 0, el numerador queda como −xqpαg

qzp
y la integral a resolver es

∫ −∞
+∞

dx

−x
qzp
qpαg

=

∫ +∞

−∞

dx

x

qzp
qpαg

.

Si le aplicamos el teorema de los residuos en el cero (que es donde está el polo):

qzp
qpαg

∫ +∞

−∞

dx

x
=

qzp
qpαg

2πi ĺım
x−→0

(x− 0)
1

x
= 2πi

qzp
qpαg

.

Si lo juntamos con lo anterior, el resultado es

I =

∫ +∞

−∞
G(q)f(q)dq =

2πi

qpα3
g

f(qp)

5.5. Cálculo de la integral de una gaussiana

En este apartado vamos a calcular el valor I =

∫ +∞

−∞
dxe−x

2
. Para ello, si consideramos el cuadrado de

esta cantidad, tendremos la siguiente integral doble:

I2 =

∫ +∞

−∞
dxe−x

2

∫ +∞

−∞
dye−y

2
.

Si pasamos a coordenadas polares, donde r2 = x2 + y2, dxdy = rdrdθ y los extremos de integración
pasan a ser r de 0 a +∞ y θ de 0 a 2π. De este modo:

I2 =

∫ +∞

r=0

∫ 2π

θ=0
re−r

2
drdθ = 2π

∫ +∞

r=0
re−r

2
dr = 2π

[
−1

2
e−r

2

]+∞

0

= 2π.

O sea que, como I2 = 2π,

I =

∫ +∞

−∞
dxe−x

2
=
√

2π .
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5.6. Cálculo de la suma geométrica

En este apatado vamos a calcular el valor S =
∑N

n=0 r
n. Consideremos lo siguiente:

S = 1 + r + ...+ rN

rS = r + r2 + ...+ rN+1

Si hacemos ahora rS − S:

rS − S = S(r − 1) = rN+1 − 1⇒ S =
N∑
n=0

rn =
rN−1 − 1

r − 1

5.7. Cálculo del máximo de reflexión en FOBA

Recordando la forma del coeficiente de reflexión en FOBA para una gaussiana:

RFOBAO = δ2π

4
(kpa)2δ2 exp

{
−1

2
(kpa)2

}
.

Si ahora escribimos kp =
2π

λ
y sustituimos luego x =

(
a

λp

)
, tenemos:

RFOBA0 (λp) = δ2π

4

(
2π

a

λp

)2

exp

{
−1

2

(
2π

a

λp

)2
}
⇒ RFOBA0 (x) = δ2π3x exp {−2πx} .

Si ahora derivamos respecto de x e igualamos a cero:

∂RFOBA0 (x)

∂x
= 0⇒ π3δ3(e−2πx − 2πxe−2πx) = 0⇒ 1− 2πx = 0⇒ x =

1

2π
.

Si deshacemos el cambio de variable:

x =
1

2π
⇒ a

λp
=

1√
2π

.

Aqúı tenemos un extremo. Para saber si es un máximo o un mı́nimo debeŕıamos hacer la segunda
derivada. No obstante, si sustituimos en la expresión y ésta no se anula (pues el valor mı́nimo que alcanza
el factor de reflexión es cero), será un máximo:

RFOBA0

(
a

λp
=

1√
2π

)
=
δ2π2

2

1

e
≈ 0,58δ2 .
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5.8. Código MatLab

Aqúı se presenta el código MatLab empleado para las simulaciones, concretamente para el caso N =
2, a = 20 nm, δ = −0,2 y γ = 2. Este código ha sido desarrollado (para el caso de un defecto gaussiano)
por Pablo Pons9, estudiante de doctorado en el departamento de F́ısica de la Materia Condensada en la
Universidad de Zaragoza. Las modificaciones realizadas para el caso de las N gaussianas se han comentado
en la sección (3.3.1).Las simulaciones se han realizado en el cluster del Instituto de investigación de bio-
computación y F́ısica de Sistemas Complejos (BiFi) con distintos códigos como éste, variando los distintos
parámetros que se han estudiado en la sección 3.3.

function main
%= echo ( de l t a , a )

% Phys i ca l cons tan t s
c =2.99792458 e8 ; %[m/s ] speed o f l i g h t
h=4.135667516 e−15; %[eV ] planck ’ s cons tant
eps0 =8.8541878176 e−12; %[F/m] vacuum p e rm i t i v i t t y
e =−1.602176565e−19; %[C] e l e c t r on charge
%

%FEM Parameters
N1=1000; % number o f va l u e s c a l c u l a t e d between qmax and qp+e1
N2=600; % . . . qp+e2 and qp−e2 ; shou ld be an even number to s p l i t po in t s in two reg i ons
N22=600; % . . .
N3=300; % . . . qp−e2 and 1+e1
N4=300; % . . . 1+e1 and 1−e1 ; shou ld be an even number to avoid 1 zero
N5=300; % . . . 1−e1 and 0
N=N1+N2+N22+N3+N4+N5 ; %
e1 =0.33; % ha l f range f o r zone 4
e2 =4; % ha l f range f o r zone 2
e3 =150; % times the r e a l par t o f the po l e f o r h a l f range f o r zone 2.2
f 3 =1000000; %
qmf=1; %
%

% Graphene parameters
mu=0.2; %[eV ] chemica l p o t e n t i a l
d e l t a =−0.2;
%de l t a=str2num ( d e l t a ) ; % d e f e c t Depth [−1:0]
a=20e−9;
%a=str2num (a ) ; %[m] d e f e c t Width
%

%Many gauss ian parameters

NumGauss=2; %Number o f gauss ian d i s t r i b u t i o n s we are us ing .
gamma=2; %The d i s t ance between two ad jacen t gauss ians i s d=gamma∗a , thus gamma measure how

much are each gauss ian separa ted one from another .

% Spectra range
Nk=130; % number o f po in t s e va l ua t ed ( at l e a s t 2)
lmin=5e−6; %minimum vacuum wave length
lmax=22e−6; %maximum vacuum wave length
%

% Relex ion and vacuum wave length vec t o r d e f i n i t i o n
R=zeros (Nk : 1 ) ; % Ref l e x i on ( shou ld be [ 0 : 1 ] )

9Contacto: pons@unizar.es
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l f=zeros (Nk : 1 ) ; %Vacuum wave leng th
%

sout=sprintf ( ’C: /TFG/d0. %da %dN%dg %d R . txt ’ ,− d e l t a ∗10 , a ∗10ˆ9 ,NumGauss ,gamma) ;
sbq=sprintf ( ’C: /TFG/d0. %da %dN%dg %d Bq . txt ’ ,− d e l t a ∗10 , a ∗10ˆ9 ,NumGauss ,gamma) ;
% Opening f i l e s
output = fopen ( sout , ’w ’ ) ;
Bq =fopen ( sbq , ’w ’ ) ;
%

for k=1:Nk
% Operation Point
lambda=lmin+(lmax−lmin ) /(Nk−1)∗(k−1) ; % vacuum wave length
omega=c/lambda∗2∗pi ; % angu lar f requency
g=omega/c ; % vacuum wavevector
sigma=pi∗e ˆ2/(2∗h∗abs ( e ) ) ∗sqrt (−1) ∗(8∗mu/(h∗omega )−1/(2∗pi ) ∗ log ( (2∗mu+h∗omega /(2∗pi ) )

ˆ2/(2∗mu−h∗omega /(2∗pi ) ) ˆ2) ) ; %condu c t i v i t y
alphaG=sigma /(2∗ eps0 ∗c ) ; % normal ized c ondu c t i v i t y
alphaG=1 i ∗imag( alphaG )+imag( alphaG ) / f3 ; %
qp=sqrt (1−1/alphaG ˆ2) ; % graphene normal ized wavevector ( wi thou t d e f e c t s )
qpz=imag( sqrt(1−qp ˆ2) ) /abs ( imag( sqrt(1−qp ˆ2) ) ) ∗sqrt(1−qp ˆ2) ; %
qpmax=qmf∗20∗ sqrt (2 ) /( a∗g )+2∗real ( qp ) ; %maximum wavevector
%

% Matrix / vec t o r d e f i n i t i o n
M1=zeros (2∗N,2∗N) ; %
M=zeros (2∗N,2∗N) ; %M matrix (M1∗G)
F=zeros (2∗N, 1 ) ; % Independent terms vec to r (FOBA)
B=zeros (2∗N, 1 ) ; % Fie l d v ec t o r
G=zeros (2∗N,2∗N) ; %
G1=zeros (2∗N, 1 ) ; %
Q1=zeros (2∗N,2∗N) ; %
q=zeros (2∗N, 1 ) ; % normal ized wavevector
qz=zeros (2∗N, 1 ) ; %
dq=zeros (2∗N, 1 ) ; %
%

% q and dq v e c t o r s genera tor
for i =1:N1 % zone 1

q ( i )=−qpmax+(qpmax−real ( qp )−e2 ) /N1∗( i −0.5) ;
q ( i+N+N5+N4+N3+N2+N22)=real ( qp )+e2+(qpmax−real ( qp )−e2 ) /N1∗( i −0.5) ;
dq ( i )=(qpmax−real ( qp )−e2 ) /N1 ;
dq ( i+N+N5+N4+N3+N2+N22)=(qpmax−real ( qp )−e2 ) /N1 ;

end
for i =1:N2/2 % zone 2

q ( i+N1)=−real ( qp )−e2+(e2−abs ( imag( qp ) ) ∗ e3 ) /N2∗2∗( i −0.5) ;
q ( i+N1+N2/2+N22)=−real ( qp )+abs ( imag( qp ) ) ∗ e3+(e2−abs ( imag( qp ) ) ∗ e3 ) /N2∗2∗( i −0.5) ;
q ( i+N+N5+N4+N3)=real ( qp )−e2+(e2−abs ( imag( qp ) ) ∗ e3 ) /N2∗2∗( i −0.5) ;
q ( i+N+N5+N4+N3+N2/2+N22)=real ( qp )+abs ( imag( qp ) ) ∗ e3+(e2−abs ( imag( qp ) ) ∗ e3 ) /N2∗2∗( i

−0.5) ;
dq ( i+N1)=(e2−abs ( imag( qp ) ) ∗ e3 ) /N2∗2 ;
dq ( i+N1+N2/2+N22)=(e2−abs ( imag( qp ) ) ∗ e3 ) /N2∗2 ;
dq ( i+N+N5+N4+N3)=(e2−abs ( imag( qp ) ) ∗ e3 ) /N2∗2 ;
dq ( i+N+N5+N4+N3+N2/2+N22)=(e2−abs ( imag( qp ) ) ∗ e3 ) /N2∗2 ;

end
for i =1:N22 % zone 22

q ( i+N1+N2/2)=−real ( qp )−abs ( imag( qp ) ) ∗ e3+2∗abs ( imag( qp ) ) ∗ e3/N22∗( i −0.5) ;
q ( i+N+N5+N4+N3+N2/2)=real ( qp )−abs ( imag( qp ) ) ∗ e3+2∗abs ( imag( qp ) ) ∗ e3/N22∗( i −0.5) ;
dq ( i+N1+N2/2)=2∗abs ( imag( qp ) ) ∗ e3/N22 ;
dq ( i+N+N5+N4+N3+N2/2)=2∗abs ( imag( qp ) ) ∗ e3/N22 ;

end
for i =1:N3 % zone 3
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q ( i+N1+N2+N22)=−real ( qp )+e2+(real ( qp )−e2−1−e1 ) /N3∗( i −0.5) ;
q ( i+N+N5+N4)=1+e1+(real ( qp )−e2−1−e1 ) /N3∗( i −0.5) ;
dq ( i+N1+N2+N22)=(real ( qp )−e2−1−e1 ) /N3 ;
dq ( i+N+N5+N4)=(real ( qp )−e2−1−e1 ) /N3 ;

end
for i =1:N4 % zone 4

q ( i+N1+N2+N22+N3)=−1−e1+2∗e1/N4∗( i −0.5) ;
q ( i+N+N5)=1−e1+2∗e1/N4∗( i −0.5) ;
dq ( i+N1+N2+N22+N3)=2∗e1/N4 ;
dq ( i+N+N5)=2∗e1/N4 ;

end
for i =1:N5 % zone 5

q ( i+N1+N2+N22+N3+N4)=−1+e1+(1−e1 ) /N5∗( i −0.5) ;
q ( i+N)=(1−e1 ) /N5∗( i −0.5) ;
dq ( i+N1+N2+N22+N3+N4)=(1−e1 ) /N5 ;
dq ( i+N)=(1−e1 ) /N5 ;

end
%

%qz vec to r genera tor
for i =1:2∗N

qz ( i )=sqrt(1−q ( i ) ˆ2) ;
end
%

%Theory
%
% In t e g r a l
%B( q )=−\Del ta \ a lpha ( q−q p )−\ i n t {−\ i n f t y }ˆ{+\ i n f t y }\Del ta \ a lpha ( q−q ’ )G(q ’ )B( q ’ ) dq ’
%
%FEM
% \Del ta \ a lpha ( q−q p )=\sum {q’=−q {max}}ˆ{ q {max}}[−\ d e l t a {q , q ’}−\Del ta \ a lpha ( q−q ’ )G(q

’ ) \Del ta q ’ ]B( q ’ )
% F=[M]∗B
%

%F vec to r and M matrix genera tor
for i =1:2∗N

i f rem(gamma∗( real ( q ( i ) )−real ( qp ) ) ∗g∗a /2 ,pi )==0

F( i ) =1/(4∗ sqrt (pi ) ) ∗alphaG∗g∗a∗exp(−(q ( i )−qp ) ˆ2∗( a∗g ) ˆ2/16) ∗ d e l t a ∗NumGauss ;

else

F( i ) =1/(4∗ sqrt (pi ) ) ∗alphaG∗g∗a∗exp(−(q ( i )−qp ) ˆ2∗( a∗g ) ˆ2/16) ∗ d e l t a ∗exp(−1 i ∗gamma∗( q
( i )−qp ) ∗a∗g ∗(NumGauss−1)/2) ∗ sin (NumGauss∗gamma∗( q ( i )−qp ) ∗a∗g /2) / sin (gamma∗( q ( i
)−qp ) ∗a∗g /2) ;

end
G( i , i )=qz ( i ) /(1+alphaG∗qz ( i ) ) ∗dq ( i ) ;
G1( i )=qz ( i ) /(1+alphaG∗qz ( i ) ) ;
Q1( i , i ) =1;

end
% For any reason , M matrix i s genera ted f a s t e r whether i t i s d e f ined as the
% product o f two matrix
for i =1:2∗N;

for j =1:2∗N;
i f rem(gamma∗( real ( q ( i ) )−real ( q ( j ) ) ) ∗g∗a /2 ,pi )==0
M1( i , j )=−1/(4∗sqrt (pi ) ) ∗alphaG∗a∗g∗exp(−(q ( i )−q ( j ) ) ˆ2∗( a∗g ) ˆ2/16) ∗ d e l t a ∗

NumGauss ;
else
M1( i , j )=−1/(4∗sqrt (pi ) ) ∗alphaG∗a∗g∗exp(−(q ( i )−q ( j ) ) ˆ2∗( a∗g ) ˆ2/16) ∗ d e l t a ∗exp(−1 i
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∗gamma∗( q ( i )−q ( j ) ) ∗a∗g ∗(NumGauss−1)/2) ∗ sin (NumGauss∗gamma∗( q ( i )−q ( j ) ) ∗a∗g
/2) / sin (gamma∗( q ( i )−q ( j ) ) ∗a∗g /2) ;

end
end

end
M=M1∗G;
for i =1:2∗N

M( i , i )=M( i , i )−1;
end
%

%Solve f i e l d B
%B=M\F;
%

%
S1=0;
for i =1:N4+N5

S1=S1+dq (N−(N4+N5)/2+ i ) /qz (N−(N4+N5)/2+ i ) ∗abs (G1(N−(N4+N5)/2+ i ) ∗B(N−(N4+N5)/2+ i ) )
ˆ2 ;

end
S1=S1∗4∗pi/ real ( qp ) /abs ( alphaG ) ˆ3
%

%
l f ( k )=lambda ;
B(N1+N2/2+N22/2)
B(2∗N−N1−N2/2+N22/2+1)
R1=abs(−2∗pi ∗(B(N1+N2/2+N22/2)+B(N1+N2/2+N22/2+1) ) /2∗ sqrt (−1) /( alphaGˆ3∗qp ) ) ˆ2
T1=abs(1−2∗pi ∗(B(2∗N−N1−N2/2−N22/2)+B(2∗N−N1−N2/2−N22/2−1) ) ∗sqrt (−1) /2/( alphaGˆ3∗qp ) ) ˆ2
R( k )=R1 ;
plot ( real ( q ) , real (B) , real ( q ) , imag(B) , real ( q ) , imag(F) )
%

% Writing f i l e s
for i =1:2∗N

fpr intf (Bq , ’ %e\ t %e\ t %e\ t %e\ t %e\n ’ , l f ( k ) , q ( i ) , real (B( i ) ) , imag(B( i ) ) , imag(F( i ) )
) ;

end
fprintf (Bq , ’ \n ’ ) ;
fpr intf ( output , ’ %e\ t %e\ t %e\ t %e\ t %e\n ’ , l f ( k ) , real ( qp ) /g , R( k ) , T1 , S1 ) ;

%
end
plot ( l f ,R)
disp ( ’ S imulat ion i s over ! ’ ) ;
% Clos ing f i l e s
fc lose ( output ) ;
fc lose (Bq) ;
%
end
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