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1. Introduccion

1.1. Objetivos

El grafeno es un material formado por una capa monoatémica de carbono formando una extructura
hexagonal periédica. Su origen se remonta al grafito (cuya estructura se resolvié en 1916 [1]), que consta,
esencialmente, de varias capas de grafeno; aunque éste término no se toma hasta 1987 [3]. En 1949, Philip
Russel Wallace calculé la estructura de bandas de este material [2]. Segin estos célculos, se predecia que
el grafeno era una estructura inestable y es por eso que se tardé en comenzar a tratar de obtener una
sola lamina de grafeno. A nivel experimental, se comenzé trabajando con laminas de grafito muy finas:
las primeras imégenes (tomadas por microscopio electrénico de transmisiéon) de grafito de pocas capas
datan de 1948 [4]. Posteriormente, se llegd a detectar grafito del grosor de un dtomo [5], lo que condujo al
crecimiento epitaxial de grafeno en otros materiales [6]. Estos resultados de 1997, no obstante, no daban
como resultado grafeno, pues para considerarlo como tal debia estar en vacio y no crecido sobre otro
material (ya que entonces se produce hibridacién entre los orbitales del grafeno y los del material sobre el
que se crece).

No fue hasta 2004 cuando se consiguié aislar una capa de grafeno aislada. Andre Geim y Kostya
Novoselov, de la universidad de Manchester, lograron aislar capas de grafeno a través de grafito mediante
la técnica de «cinta adhesiva Scotch» [7]. En 2010 se les otorgé el premio Nobel por este trabajo.

Durante los ultimos anos se ha estudiado el grafeno debido a sus multiples propiedades, como por
ejemplo su flexibilidad y elasticidad [8] o sus altas conductividades eléctrica [9] y térmica [10]. En este
trabajo nos centraremos en su capacidad como conductor de ondas electromagnéticas: desarrollaremos
un modelo de propagacién de plasmones de superficie en grafeno (graphene surface plasmons, GSP), es
decir, cémo ciertos modos de ondas electromagnéticas (transversales magnéticos) pueden confinarse en la
superficie del grafeno y cémo, a través de impurezas en la conductividad (bien inducidas por un potencial o
bien propias del material) se puede modificar la propagacién de tales plasmones. Concretamente, el estudio
de este trabajo se focaliza en unas impurezas distribuidas espacialmente en forma de gaussianas para la
conductividad eléctrica. Al final del trabajo, discutiremos las posibles aplicaciones de este sistema para
casos experimentales.



1.2. Fundamentos
1.2.1. Propagacion de ondas electromagnéticas en el vacio

El problema que se plantea es el siguiente: tenemos una onda electromagnética viajando en el vacio
que llega a una superficie infinita (la ldmina de grafeno). Queremos averiguar qué cantidad de esa onda
se refleja y cuanta se transmite. Para ello, partamos de la base: para describir como se propaga una onda
electromagnética nos basamos en las ecuaciones de Maxwell (sistema CGS)[11]:

V. -D=4nmp
V-B=0

1
VxE:—la—B W)
c Ot
10D

4
H=—J+ -
VX c +08t

Teniendo en consideracién que D = E + 47P, H = B — 47M y en el vacio no hay cargas (p = 0) ni
corrientes (J = 0), entonces el sistema se reduce a

V-E=0
V-H=0
2
VxE:—la—H @)
c Ot
Vtzla—E
c Ot

Resolver este sistema es resolver un problema de seis incognitas: las tres componentes del campo
eléctrico E y las tres del campo magnético H. No obstante, se puede comprobar que, en el caso del vacio, el
problema se reduce sélo a dos incégnitas: las dos ultimas ecuaciones relacionan directamente el rotacional
de ambos campos con la derivada temporal del otro, de modo que, si tenemos uno de ellos calculado, el otro
puede calcularse directamente a través de esas relaciones. Esto reduce el problema a sélo tres incognitas
(las tres del campo eléctro o las tres del campo magnético).

Por otro lado, las dos primeras ecuaciones (divergencia del campo igual a cero) establece una relacién
directa entre sus tres componentes. Si, por ejemplo, tomésemos una onda plana! E(r,t) = Egeikr—wt)
tendrfamos que?

0 0 0 . . )
o5+ %Fy - u) Eoe' &9 = Boe ™! (i,ik, + Gy ik, + Gik,)e™ T =0,

V.E:< 0z

como Eqg = Fo,t,; + Eoyt, + Eo.U, y 4; - 4 = 0;;, entonces se tiene que

'El caso de onda plana es interesante pues, tal como veremos posteriormente, cualquier onda puede expresarse como
superposicién de ondas planas.
20z, y @, son los vectores de la base de R?® en el espacio euclideo.
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de modo que, con saber el valor de k y dos componentes del campo eléctrico, ya conocemos la tercera
y, de acuerdo con lo anterior, también conocemos el campo H.

Asi, nuestro problema consiste en calcular las componentes z e y del campo: tenemos que calcular el
vector bidimensional de componentes Ey, y Eo,. Este vector puede expresarse en una base vectorial de
dimensién dos; como veremos més adelante, la base més adecuada es la de modos transversales eléctricos

y magnéticos, de modo que, teniendo en cuenta que kjj = 4/ k2 + kg, definimos los vectores de la base como

1 1 [ -
ap = o~ < zm ) (Modo transversal magnético) A= ( kky ) (Modo transversal eléctrico) (3)
[ Y [ x

Se puede comprobar que, para una onda transversal magnética, Ey, # 0 pero que para una transversal
eléctrica Ep, = 0. Ademds, estos vectores componen una base ortonormal®. De esta manera, una onda
plana se puede expresar como

_ i(k-r—wt)
E= E Epaue ,
o

donde la suma esta extendida a los dos modos y ¢, es la componente del campo en cada uno de los
vectores de la base. Si ahora aplicamos la expansién de ondas planas de Rayleigh [12], podemos expresar
cualquier onda como superposicién de ondas planas. Si cada una de esas ondas tiene una descomposicién
en la base propuesta, una onda cualquiera puede expresarse como

E = /deeuauei(k'r‘“t) (4)
m

Una identidad muy 1itil que cumplen los modos transversales es la siguiente (probada en el Apéndice,
seccion 5.1):

1
—t, xH'=Y,E! conY;=q, eY,=—| (5)

4

k
donde hemos definido el vector de ondas normalizado q = —, con g = /kZ +kJ + k2 = LA las
c

cantidades Y), las llamamos impedancias. En este caso H* y E# se refieren a los vectores en el plano xy vy,
ademads, incluimos la dependencia de onda plana en ellos.

Una vez hemos elegido la base en la que trabajaremos y hemos visto sus propiedades, pasamos a estudiar
el problema de la transmisién y la reflexién de ondas a través de una ldmina bidimensional (en nuestro
caso, grafeno).

3Es decir, aj - a; = 0;;. Ver Apéndice, seccién 5.1
) J J )



1.2.2. Calculo de coeficientes de transmision y reflexion, confinamiento de modos p

La situacién que queremos estudiar es como se transmite y refleja una onda que se propaga en el vacio

cuando se encuentra con una ldmina bidimensional (el caso del grafeno es este, una capa del grosor de un
atomo de carbono).

Onda incidente [i )

A

\
‘Q
»,
»,
p)
“
L

N

Onda transmitida |t )

Figura 1: Esquema de transmision y reflexion de la onda incidente

A partir de este punto emplearemos una notacion diferente a la habitual, la cual nos facilitard notable-
mente los calculos y la lectura. Consideremos lo siguiente: cuando escribimos una onda electromagnética de
la forma (4) estamos expresandola en una base, concretamente en la base de ondas planas. Asi, podemos
expresar nuestra onda como la proyeccion de un estado perteneciente a un espacio de Hilbert H en la base

de ondas planas. Este tratamiento es el mismo que se hace en polarizacién a través del calculo de Jones
[13]. Para cada polarizacién tendremos:

Ik, p) € H 3 (r| k,p) = E ™"y (k,pl r) = E e T,

Adema4s son estados ortonormales:

(K 1| ke, ) = (k. 1| / dr |r) (] |k, ) = / dre’* VB, - B, = 5, 0(k — K),

donde se ha tomado que I = [ dr|r) (r|. De esta manera, la transmisién y reflexién pueden escribirse

en términos de estos elementos del espacio de Hilbert. Puede probarse que cada ket cumple por separado
las siguientes relaciones:

’E+> = ‘EZ> + ’ET> = ’kalu7 +> + T‘ﬁ |k7 22 _>

(6)
[E-) = [Ey) =t [k, +)

de manera que los signos + y - en el ket indican si la onda viaja en sentido positivo o negativo del
eje z (es decir, en la dependencia de onda plana tenemos e~*=% o ¢¥¥2?). El sistema que referencia que
tomamos tiene su origen en la ldmina y toma valores positivos por debajo de ella (por donde viaja la onda
transmitida) y valores negativos por encima (desde donde viene la onda incidente y hacia donde va la onda
reflejada). Los coeficientes ry, y ti. son los coeficientes de reflexién y transmisién respectivamente. Teniendo
esto en cuenta y considerando las siguientes ecuaciones de continuidad [11]:



i, x (Ex —E_)=0

R 4 4T R (7)
i, x (Hy —H_) = ?J == 0l % (u, x E4),
que vienen de la conservacién de la componente paralela al plano del campo elétrico y el salto que tal
componente del campo magnético sufre debido a la corriente inducida en el plano, puede probarse que,
teniendo en cuenta que q = k/g (vector de ondas normalizado en el vacio), & = 270 /c (conductividad
normalizada) y la relacién (5), se llega a las siguientes expresiones para los diferentes modos:

FTEs _ —o FTMp _ —aq;
4 a+q.’ 4 aq, + 1
(8)
tTE,s _ 4 , tTM,p — 1 _
1 a+q, a ag, + 1

Vamos a probarlo. La primera condicién no es mas que la continuidad de la componente paralela a la
superficie del campo eléctrico, lo cual puede expresarse en términos de los coeficientes como 1+ rf = tg
(1 € {s,p}). Por otro lado, si partimos de la segunda ecuacién:

’llz X (H+ — H_)

podemos valernos de la expresion —i, X H, = Y,E,. No obstante, aqui hay un punto sutil: el valor de
la impedancia depende de qué signo tenga ¢, (pues o bien es directamente proporcional a este valor o lo
es a su inversa), es decir, de en qué sentido viaje la onda en la direccién z. El sistema de referencia que
nosotros marcamos tiene z = 0 en la placa, por debajo de ella z > 0 y por encima z < 0. De este modo, la
ondas ondas incidente y transmitida viajaran en el sentido positivo del eje z, mientras que la onda reflejada
viaja en el sentido negativo (lo cual introduce un signo — en la impedancia). Si tenemos esto en cuenta,
poniendo H_ = H; + H, y H; = H, (indicando los indices si es onda incidente i, transmitida ¢ o reflejada

T):
G x (Hy —H_) = 4. x (Hy — H; — Hy) = You(—Eq + E; — E,).

Por otra parte, si usamos la identidad vectorial a x (b x¢c) =b x (a-¢c)—c-(a-b),ya = —o0cla
c

conductividad adimensional, se tiene que el otro lado de la ecuaciéon queda como:

4
T, % (i x By) = —2afi, (4 - Ey) — E4] = 20,
C

Donde hemos usado que E; tiene componente z nula. Esto se ve en la propia ecuacién: si tenemos ese
vector igualado a 7, x A, con A cualquier vector de R3, el resultado serd un vector en el espacio x,y, en
R? (pues dard un vector mutuamente ortogonal a @, y A). Si juntamos todo lo desarrollado tendremos:

You(—Ei + E; — E,) = 20E,.

Expresemos ahora este resultado en la base de estados |k, u):

You(=[En) + [Ei) = [Er)) = 20 [Er) = Yau(—tq + 1 —rq) [k, p) = 2atq [k, ) ,



Donde hemos obviado la parte de + y — del ket, pues se refiere al sentido de propagacién de la onda
en z y ya lo hemos tenido en cuenta antes. Si proyectamos sobre el bra (k, u| obtenemos lo siguiente:

2ath
—tﬁ%—l—rézy (9)
au

Como 1+ rf = th, si escribimos 74 =ty — 1 en (9):

2« o Y.
41+l —tg=th = —th 1= —th=th= —&
atl Tt T Yqu o a’t Yau @ 4 at+ Y
Como 75 =t — 1, se tiene que
Y. -«
th=—2_ h=— " 10
T a+Yq T Yyu+a (10)

Si planteamos las impedancias para cada uno de los modos, se obtienen los resultados antes expuestos:

TEs _ —© TMp .  —9qz
’I“q = , Tq _ "
a+qy aq, +1
(TEs _ 4z IMp _ 1
a - J q -
a+q, aq, + 1

Una de las consecuencias mas importantes de estos resultados surge al hacerse la siguiente cuestion:
.Es posible tener onda transmitida y reflejada sin que haya onda incidente para alguno de
los modos?. De ser asi, tales ondas no vendrian de una onda incidente, sino de un plasmén superficial,
una onda que se propaga por la superficie. Si nos planteamos nuevamente las ecuaciones (9) y (7) pero
tomando |Ey) = rq |k, p, —) y las relaciones ya calculadas (8) sacamos dos conclusiones:

» Es imposible que una onda tipo s (transversal eléctrica) viaje como un plasmon.

» La onda tipo p (transversal magnética) puede viajar como plasmén si y sélo si ¢, = ——.
e

. 1 . . .
Para sacar la condicion de plasmén | g, = —— | basta con igualar los coeficientes de reflexion y trans-
e

misién (si no hay onda incidente, estos son idénticos; basta con quitar el 1, que viene de la onda incidente,
de la ecuacién 1+ rf = th).

Teniendo todo lo explicado en cuenta, desarrollaremos ahora un modelo unidimensional que trate de
explicar como se propaga el plasmén en la superficie en presencia de defectos variables en el espacio.



2. Modelo

2.1. Planteamiento: amplitud como ecuacion integral

El sistema que se plantea es el siguiente:

E[:‘]‘)I — (j‘u’.',,.m 1 Z A.,_l{;(,-‘.‘:‘;if',"r(':'j.i' ?.\"I

0 > — —>
: Aa(x) X

L

Figura 2: Esquema del modelo 1D.

Planteamos el modelo del siguiente modo: tenemos un campo eléctrico que viaja a través de la su-
perficie del plasmén en una direccién z. Por simplicidad, planteémos que se mueve por una red periddica
unidimensional finita de longitud L, de modo que el médulo del campo sera de la forma

E(l‘) _ 6ikpa: + ZAGei(karG)x-
G

Por otro lado, la conductividad (normalizada) serd la propia del material (en nuestro caso grafeno)
ag4 y el aporte que supone el defecto, el cual anade inhomogeneidades en tal conductividad de la forma
Aa(z), siendo este pardmetro la variacién relativa de la conductividad. Tales inhomogeneidades pueden
ser propias de defectos del material o incluso inducidas a través de un potencial eléctrico. De este modo,
la conductividad del material contando con el defecto serd

a(z) = ag + Aa(z). (11)

Si planteamos que J = oE (ley de ohm) y la segunda relacién de continuidad de (7), tenemos:

—Uy, x Hy + 0, x H_ = 2a(x)E(2).

Considerando que el sistema es simétrico respecto al plano que forma la superficie de grafeno®

2ie> 1
4La conductividad del grafeno puede obtenerse como o = Gintra + Tinter, CON Cintra = ve In [2 cosh (§>} YV Cinter =

hr()
1 1 Q-2 i, (Q+2)?
2t

3 + — arctan >], con Q = hw/py t =T/u, con T en unidades de energfa. Para mds

1h - 21 Q= 2)2 1 (20)2
referencias consultar [14].
5Si E, es simétrico (que asi lo hemos tomado) como la divergencia del campo es nula 0z E; + 0, E, =0 = 0.E. = -0, Ex,

con lo que E, es antisimétrico. El campo, por otro lado, llevarad el mismo signo que E., pues los campos se relacionan con el
rotacional. Asi, el campo H, serd positivo por encima de la placa y negativo por debajo.



—1, x H(z) = a(z)E(z).

Si ahora consideramos el desarrollo en serie de Fourier de la conductividad a(z) = Zeicxo@, con

G

I I
aG =7 / e"GIa(m)dx y proyectamos sobre agig, = I / et &2 4y recordando la relacién (5):
0 0

~Yobao — YoAe = ag + Y ag—aAar,

G/
., 1
donde hemos usado la notacion Yo = Yy, 16 = m Por otro lado, como ag = a4dqo + Aag y,
qz\Fp
tal como hemos visto en el final de (1.2.2), para que haya confinamiento del plasmén se ha de cumplir que
1
[0 = — 5 12
g qz( k‘p) ( )
considerando todo ello tenemos
—YoAq = Aag + Z ag_aAg = —YoAq = Aag + apgAg + Z Aag_cAgr,
o GAG!
reorganizando términos:
(YG + O[())AG + Z Aag_G/AG/ = —AO[G (13)
GAG!
o
(Yo + ag)Ag + > Aag_eAg = —Aag (14)
G/

El tratamiento hecho hasta ahora no es realista: hemos planteado nuestra lamina de grafeno como una
red unidimensional y periédica. No obstante, a raiz de este tratamiento vamos a pasar a considerar un
medio continuo, lo cual sf se acerca més a la realidad®. Hacemos el paso al continuo del siguiente modo:

L
;—}%/dG

L 1
Definimos A(G) = LAg — g Ag = o /dGAG =5 /dGA(G)
T T
G

Aa(G) = LAag = / e 9% Aa(z)dz.
De este modo, si multiplicamos por L en (14):
oo dG’
—Aa(G) = (Yo + ay)A(G) + Aa(G' — G)A(G") 5 (15)

SHay que tener en cuenta que el tratamiento aqui realizado es macroscépico: la estructura hexagonal del grafeno se tiene
en cuenta al calcular el valor de agy, que aqui lo consideramos como conocido.



Considerando esto, podemos expresar el médulo del campo eléctrico del siguiente modo:

. d .
BE(z) = e 4 / %A(G)e“kﬁ@w (16)

De este modo, para resolver el problema tenemos que conocer las componentes fourier A(G) del campo.
El célculo de tales componentes a través de (15) tiene algunas complicaciones matematicas: si por ejemplo
A(G) x 6(G — k), entonces tenemos un 0-o0o (que viene de (Yo + «g)-6(G — kp)). Para evitar estas
complicaciones definimos

B(G) = (Yo + ag)A(G), (17)
de modo que la ecuacién (15) y (16), si definimos Yo = 1/¢.(k, + G) quedan como

~ B(G") d¢
/ Aa(G — G)YG/ o o = = Aa(G)

. 4G B(G)
E _ ikpz i(kp+G)z
W= [ Tera

(18)

Podemos simplificar un poco més la notacién. Si hacemos G =k — k, y Y (k') = 1/¢.(k), entonces en
la primera ecuacién de (18) tenemos

B(K — ky) A’ _

Y(K) +ag2m —Aalk—ky).

Bk — k) + /oo Aa(k — k)

Si, ademas, definimos B(k) = B(k — k,) y teniendo en cuenta k = k, + G-

B(K) ak’
/ Aa(k —K) (k>+a9gf—Aa(k—kp)

(19)
E(.%’) _ eikpa: + /+OO % B(k) eilm
oo 2mY (k) 4+ ay
Podemos hacer otro cambio més en estas ecuaciones si tomamos variables adimensionales. Como vimos,

2
k= qg = dk = dgg = ;dq. Si definimos

1 1 [t~
B@) =3B v Aal)—3 [ e Aa@s, (20)
las ecuaciones (19) se reescriben como
+o0 B(q')
B(q) + Aa(q—q)—"—dq¢ = —Aa(q—
(9) . a(q Q)Y(q’)Jrag q a(q — gp)

(21)
oo B(q)

E(x) = "9 4 / dq

eing
oo Y(q)+ oy

Sera esta ultima ecuacion la que utilicemos a lo largo de nuestro estudio.

10



2.2. Ejemplo de aplicacion: defecto gaussiano

Un primer ejemplo de aplicacién de esta teoria se puede encontrar en [15]. En este articulo se estudia,
entre otros casos, la propagacién de un plasmoén a través de una superficie en la cual hay una impureza en
la conductividad del tipo gaussiano, es decir

422

Aag(x) = dage™ o2, (22)

de modo que ¢ da cuenta de la profundidad del defecto, a de la anchura del mismo y oy es la conduc-
tividad del grafeno. Se escogen & negativas, de modo que el defecto es una hendidura en la conductividad.

Defecto gaussiano para 6=-0.2,a=20 nm
-0.06 T T T

Aa(x)

-0.08 - i

01 \ / ]

—012 | \ / g

ol Vo

-0.16 - -

Ao
7
I

-0.18 - -

0.2 : — -
~10 -5 0 5 10

X (nm)

Figura 3: Distribucién del defecto en la conductividad en el espacio

Para el célculo de la amplitud B(g) del campo (sus componentes fourier, como ya hemos visto) hemos
de emplear la ecuacion (21) y, para ello, necesitamos calcular la transformada de fourier del defecto a través
de (20), se obtiene (ver apéndice,5.2):

AaO(Q) = ae 16, (23)

con a = g -a. En el caso de las N gaussianas estudiaremos los cédlculos con mas detalle. Por otro lado,
es importante plantear la First Order Born Approzimation(FOBA), que consiste en tomar la ecuacién de
B(q) de (21) y despreciar el término integral. De este modo:

FOBA

o B(¢) d¢' = —Aa(q - gp) ————— B"P4(q) = —~Aalg —qp). (24)

B(q) + - Aa(q — q/)m

A partir de aqui podemos calcular el coeficiente de treflexién (Ver Apéndice,(5.3)), pues

11



. 2
21

R =
a3qp

B(=qp) (25)

Es importante matizar que los coeficientes de reflexién (R), transmisién (T') y escape (S) que aqui se
estudian hacen referencia al defecto, de modo que R evalia la fraccién de onda que vuelve por el plasmén
tras encontrarse con el defecto, T' la fraccion que lo atraviesa y S la cantidad de onda que sale de la lamina
de grafeno por el defecto. En el material suplementario de [15] se prueba la conservacién de la carga, es
decir, 1 = R+ T + S (la onda se refleja, se transmite o sale de la ldmina). Si tomamos B(q) = BF9BA(q),
obtenemos lo siguiente:

; _ 2~2 2 : _ 2-2\ |2
e (- (2075 - S ()
pqp 4\/T 16 2a2qy 16

1
aproximando que — =1 — qg ~ —q§,7 nos queda que
Q

g
~\ 2
z'\fqpcw exp (— {qga} )

Basandonos en estos resultados, estudiamos a continuacién una configuracién con N defectos gaussianos.

FOBA _
Ry =

2

k 2
= 522145]%&2 exp (—( »0) > (26)

RFOBA _
0 2

L . 1
"Recordar que la condicién de plasmén es g. = —— y que ¢. = /1 — ¢2.
@

12



3. Perfil de impurezas de N gaussianas

3.1. Aplicacion del modelo

El sistema que estudiamos en este apartado consta de un defecto espacial en la conductividad en forma
de N gaussianas idénticas cuyos centros estan desplazados una cierta cantidad ya, donde 7y es un parametro
que controlaremos. La expresién matematica de tal defecto es:

= T — nya)?
Aa(z) = Z Aoy (xz)  con Aay(x) = dag exp {—W} . (27)
n=0

Defectos gaussianos para 6=-0.2,a=20 nm, N=4 y y=2
O T T T T T T T T
- - Aa(x)
//\\ / \\\ ~ 74
/ \\

-0.02 | [

\ \

_004_ “““J‘ “‘“\ “““‘" \\w \‘"‘“‘ \‘\\ \““‘ T

~0.08 | _

Ao

il :
-
onafl ] :

sl || ]

018t | | |

0 20 40 60 80 100 120 140
X (nm)

Figura 4: Distribucién de N defectos en la conductividad en el espacio

Vamos a seguir el mismo procedimiento que para el caso de una gaussiana: veamos cémo calcular la
transformada de fourier de la conductividad del defecto. Volviendo a usar (20):

+o0 . N-1 1 +o0 .
Aa(q) = / e "9 Aa(x)dr = Aa(q) = Z )\/ dzAay, (x)e 99", (28)
n=0 o

—0o0

Veamos si podemos encontrar una expresién genérica para todos los sumandos. Si nos centramos en la
parte de la integral

[ e iggr _ 00 [T (z — nya)? :
)\/ deAay, (z)e 9 = )\/ da;exp{—az}exp (—igqz) .

—0o0 —00

Hacemos el siguiente cambio de variables: 7 = r—nya = dr = da. Como los extremos son de integracién
son infinitos y las variables de integracién que planteamos difieren en una constante finita, los extremos
permanecen igual. De este modo obtenemos lo siguiente:

13



S 400 _ 2 ) e 4 2
% dx exp {_(:Urwa)} exp (—igqr) = ()l\g/ dr exp (—2) exp{—igq(T + nya)} =
oo a

2
oo a

day ) & 4%
= exp(—iggnya) drexp | ——5 —igqr
a

— 00

Para el célculo de la integral basta con completar cuadrados en el exponente:

0o 4,7_2 . +o00 47.2 27 qua q292a2 (]292612
/_OodTexp<—a2—zgqr>:/_oo dTeXp{—<a2+2-a 1 16 + 16 )}:

2g%a\ [ 21 iqg\”
:exp< 1 £1]6 )/ dr exp _<a+éfj>
—00

2
Si en la integral que queda hacemos el cambio u = — —i— lg—q = du = —d7 y teniendo en cuenta que
a a a
“+o0o
/ dwe ™" = Vm(Ver 5.5):
—00
5 400 _ 2 ~ 252
% . dx exp {—W} exp (—igqr) = 0oy \af exp < qlg > exp(—iggnya) = Aag(z) exp(—iggnya),
(29)
con a = ga.Si volvemos con este resultado a (28):
N-1
A« Z exp(—iggnl)Aap(g) = Aap(q Z exp(—iggnl).
n=0
M TM+1 -1
Recordando la expresion de la suma geométrica S = Z ™= 9= ——1 (Ver (5.6)), en nuestro
7” —

n=0
caso r = exp(—igqya) y M = N — 1, de manera que:

exp(—iggN~ya) — 1
Ao = A« - .
@ (9) exp(—igqya) — 1

: . iggN~ya iqgya - e
Si sacamos factor comun en el numerador exp | — —5 y exp g y considerando que sin o =

?(eio‘ — e, se obtiene que
i

. (99N~a
Aa(q) = Aag(q) exp{—ZgQ(N; UW} ( 2 ) = Aao(q)é(q), (30)

sin <gq7a)
2

con £(q) el factor de estructura, definido como

14



£(g) = exp {—ing — DW} " <gqj;[m> (31)

2 sn (70
2

Es importante ver que este factor de estructura £(q) surgird siempre que tengamos una estructura
peridodica de defectos, de modo que sus propiedades son extrapolables a cualquier tipo de variacién en
la conductividad siempre que ésta sea periddica.

A partir de este resultado podemos estudiar el sistema. El primer paso sera considerar la First Order
Born Approximation.

3.2. Prediccién en FOBA

Del mismo modo que para una gaussiana, podemos aproximar en FOBA a través de la ecuacién (24).
De este modo, el coeficiente de reflexién en tal aproximacién, dado por (25) sera

2

2mi 2miAag(—2 2
= ‘ ;TZ B(-gq)| = RFOPA — ‘_ i OZ?())( Qp)g(_qu)
Xgp Ygp
Como |a - b| = |a| - |b|Va,b € C, podemos escribir

2

2miAop(—2
- 2RLO0C20) e ag, )2 = REOPA(~20,) 2

RFOBA _ (‘ _ 2miAap(—2gp)
a3qp

3
agqp

|£<—2qp>|)2 |

donde, como hemos expresado en la ecuacién, la primera parte ha sido calculada para el caso de una
sola gaussiana. Con respecto al término del factor de estructura:

sin (9gp, Nva)
sin (ggpya)

sin (9gp Nva)

_ 2 —
1€(—2¢p)| sin (ggpya)

exp {iggp(N — 1)ya}

) 2
Como z = ]z\esz € C, el modulo de un nimero complejo que consta de una exponencial imaginaria
es uno. Por lo tanto, teniendo esto en cuenta, el resutado final sera

2
- (\exp{z‘gqp(N — 1)ya}|

2
FOBA _ propASn” (9gyNva)
RFOBA _ gPOBASY 1941 74)

sin® (ggpva) (32)
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A partir de esta primera aproximacién podemos comprobar como cambia la reflexion en este sistema
respecto al de una gaussiana, estudiado en profundidad en ([15]). Si representamos graficamente para
N =1,2,3 y 4 se obtiene el siguiente grafico:

R en FOBA analitica (6=-0.2,a=20 nm y y=2)
0.4 T T T T

Trete
AN =

0.35

0.3

0.25 | §

0.15 | -
01t -

0.05 3 |

e Lot ot TRy **.-‘—'\;‘.
0 0.1 0.2 0.3 0.4 0.5 0.6
a/\Ap

Figura 5: Coeficiente de reflexion en FOBA para N=1,2,3 y 4.

En nuestro caso, con N = 1 recuperamos el caso ya conocido. Se aprecia que, ademds de un pico que
crece en magnitud y va haciéndose mas estrecho conforme N aumenta, también surgen picos secundarios
para longitudes de onda del plasmén cercanas a la principal. De hecho, a cada lado del pico principal
aparecen N — 1 maximos secundarios.

El hecho de que el pico vaya aumentando conforme lo hace N viene de la indeterminacion en el factor
de estructura £(gq) que se da cuando el argumento del seno del denominador se hace nulo. Veadmoslo:

sin 9V

_ igg(N —1)ya 2 . gqya sin(Nmm) 0

f(Q)—eXp{— 2 sin(gq7a> s =5 — =mm, conmeZ:g(q)ocW_a,
2

Si hacemos el limite en el cual numerador y denominador tienden a cero:

sin (gqN 7“) 99N~a
2 2
If S L EVAPUR T _ 2 _N
gqva—zmn (gqva) sva Doy 947a )
2 2

De modo que el factor de reflexién R tiene un pico proporiconal a N2, pues es proporcional al cuadrado
del cociente del seno del doble del dngulo (Que también converge a N en la indeterminacion).
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3.3. Resultados de las simulaciones
3.3.1. Discretizaciéon de la ecuacion integral

Si vamos a la ecuacién integral que hemos de resolver para las componentes Fourier B(q) del campo
eléctrico (21), podemos escribirla de este modo:

Aa(q - qp) = —B(q) — +OO Aa(q - 4¢)G(¢")B(d')ddq, (33)

—00

con

G(q) = Y(q)lJrag (34)

+oo
la funcién de green. De este modo, introduciendo la delta de Dirac, que verifica / dzf(x)d(z —

400 -
x0) = f(x0), podemos escribir B(q) = / dq'B(¢")é(q — ¢'). De este modo, la ecuacién (33) queda

—0o0

+o0 +oo
Aa(g—gp) = - / dq [B(¢)8(q — ) + Dol - ¢)G(¢)B()] = — / A4¢B(() [5(q - ) + Dalg - ¢)G(d)] -

— 00 —0o0

Si ahora discretizamos la ecuacién, es decir,

e

d¢ — A¢

+oo

d(qg—¢") — dqq (De delta de Dirac a delta de Kronecker),
obtenemos

Aa(q — gp) Z Aq'B(¢) (64 + Aalg — ¢)G(d))- (35)

q'=—00

Definimos ahora las siguientes matrices y vectores:
Vector F : F, = A(q — qp)
Vector B: By = B(¢') (36)
Matriz M : Myy = (049 +Aa(q —¢')G(¢)A].

La ecuacién (36) se expresa como
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F = MB (37)

De modo que, para cada ¢ (cada iteracién), calcularemos la amplitud B a través de la inversa de M:

B = M"'F. (38)

Con esta ecuacion ya discretizada podemos programar un cédigo que la resuelva (ver Apéndice, apartado
5.8). A la hora de hacerlo, es muy importante determinar cémo es el integrando. Por ejemplo, la funcién
de Green tiene un polo en ¢. = /1 —¢?> = —1/a,, de modo que, en tal polo, es necesario disminuir el
intervalo de integracién, pues la funcién varia mucho mas bruscamente.

En el caso que nos ocupa (el de N gaussianas), la tnica dificultad anadida al integrando es la inde-

terminacion — del factor de estructura para valores de ¢ tales que ggvya = 2mm. Sabemos que, para esos
valores, el factor de estructura vale N (tal y como hemos visto al final de la seccién 3.2). De ese modo,
basta con anadir un condicional en el cddigo de la siguiente forma a la hora de generar el vector F y la
matriz M:

%F vector and M matriz generator
for i=1:2xN
if rem(gammax(real(q(i))—real(qgp))*g*a/2,pi)==0

F(i)=1/(4+sqrt(pi))*alphaGxgxaxexp(—(q(i)—qp) "2x(axg) "2/16)*delta*NumGauss;
else

F(i)=1/(4xsqrt(pi))=alphaGxgxaxexp(—(q(i)—qp) " 2x(axg) 2/16)*delta*xexp(—11i*gammax(q
gi)fc)ip)*ajg;k(NumGaussfl)/Q)*sin(NumGauss*gamna*(q(i)fqp)*a*g/Z)/sin(gamna*(q(i
—qp) *axg/2);

end
G(i,i1)=qz(i)/(1+alphaGx*qz(i))*dq(i);
G1(i)=qz(i)/(14+alphaGxqz(i));
QL(i,i)=1;

end
% For any reason, M matriz is generated faster whether it is defined as the
% product of two matriz
for i=1:2xN;
for j=1:2xN;
if rem(gammax(real(q(i))-real(q(j)))=g*a/2,pi)==
Mi(i,j)=—1/(4xsqrt(pi))*alphaGxaxgxexp(—(q(i)—q(j)) "2x(axg)"2/16)xdeltax
NumGauss;;
else
Mi(i,j)=—1/(4xsqrt (pi))*alphaGxaxgxexp(—(q(i)—q(j)) "2x(axg) "2/16)xdeltaxexp(—1i
xgammax (q(1)—q(j))*axg*(NumGauss—1)/2) *sin (NumGaussxgammax (q(1)—q(]))*axg
/2)/sin (gammax (q(i)—q(]j))+*axg/2);
end
end
end
MEM1xG

donde rem(a,b) es la funcién de resto. Asi, si la cantidad ggya es un multiplo de 7 (es decir, rem(gqvya,m)=0),
sustituimos el factor de estructura por N (en el caso del cédigo, NumGauss).
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3.3.2. Comparaciéon FOBA analitica y de simulaciones

En este apartado comprobaremos que la correccién introducida en el cédigo para el defecto de N
gaussianas es correcta: modificamos el cédigo para que calcule la FOBA, de modo que comentamos todas
las operaciones que involucran a la matriz M e identificamos los vectores F = B, lo cual es equivalente a
quitar la integral de la ecuacién (notar que ésta sélo aparece en la matriz M ). Si comparamos los resultados
de las simulaciones con el cdlculo analitico de la seccién 3.2, obtenemos lo siguiente:

R en FOBA analitica (6=-0.2,a=20 nm y y=2) comparada con FOBA de simulaciones R en FOBA analitica (6=-0.2,a=20 nm y y=2) comparada con FOBA de simulaciones

0.1 T T T T . T 0.4 T T T . . T
Simulacién N=1 + Simulacién N=3  +
Analitico, N=1 Analitico, N=3
0.09 Simulacién N=2 X 4 Simulacién N=4 X
3 Analitico, N=2 v 0.35 [ Analitico, N=4 v b
0.08 i 4 i
v"a 0.3 7
0.07 X % i P
025 x E
0.06 | g i 5 P
; X
x 005} g - 02 Pl E
.04 :; :E'_ - :
0.0 X 0.15 | P X 7
X
0.03 i
ety 01 7]
0.02 - T 4 :
" * 0.05 | /i .
0.01 *f ; 3
X i P B
0 0.1 0.2 0.3 0 0.1 0.4 0.6
a/Ap
(a) N=1,2 (b) N=3,4

Figura 6: Comparacién FOBA analitica y con simulacion

Se aprecia una perfecta concordancia de las simulaciones con el resultado analitico. Con esto compro-
bamos que la implementacion de la modificacién para un sistema periddico de N defectos se ha hecho
correctamente en el codigo. Pasemos ahora a estudiar casos sin aproximacién: incluimos el término integral
en la ecuacion.
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Comparacién FOBA y simulaciones
A continuacién comparamos las predicciones de la FOBA con las simulaciones (incluyendo el término

integral). Los resultados son los siguientes
Comparacién con FOBA para a=20 nm y N=1 (3=-0.2) Comparaciéon con FOBA para a=20 nm y N=2 (3=-0.2)
0.03 T — — 0.12 — —T
o + N=1 simulaciones ~ + N=2 simulaciones ~ +
+ + N=1 FOBA ------- =2 FOBA -------
+ +
+ + + +
0.025 N . R 0.1 . R
+
+ N +
+
0.02 | N g 0.08 | " -
+ + +
N
+ |
P % -
o 0015 s/ E o 006 | * R
o/ N,
+ \,
+o N +
0.01 F/ N b 0.04 1
+/ + +
f ! N +
£/ \
3:’/ +N + i
0.005 E 0.02 \ 4
o + / N + o+
N /\k v/ L .
0 ! ! I | e 0 i fis ;:r/ | L pE el
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
a/lp a/Ap
(a) N=1 (b) N=2
Comparacién con FOBA para a=20 nm y N=3 (3=-0.2) Comparacion con FOBA para a=20 nm y N=4 (3=-0.2)
0.25 T T T T 04 T T T L T
N=3 simulaciones ~ + N=4 simulaciones ~ +
N=3 FOBA ------- N=4 FOBA -------
iy 0.35 E
0.2+ N E
03 | 1
" fod
.25 | B
0.15 - B 0.25
+
+ +
o o 0.2 B
0.1 | ,
. 0.15 . e
+
+ 0.1 | B
0.05 | - g i ‘
i : v :
v ! 4 0.05 / | . J
] 3 - + 00 A==
e N+ N e T gEaN KPR
0 ,\.ﬁr’ IS e et Ty e ) %Jr/ E e T d !
0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
a/lp a/kp
(d) N=4

(c) N=3
Figura 7: Comparacién de FOBA con los resultados de la simulaciéon

Aqui los resultados empeoran: el aspecto de la funcién es similar, pero se ve un cierto desplazamiento
en el eje de abscisas, asi como unas formas mas irregulares en las simulaciones (aunque esto no es debido a
la imprecisién de la aproximacién, sino a la resolucién de la simulacién). Avn asi, se aprecia que la forma
funcional es similar (pico resonante de alta magnitud y picos secundarios). Esto nos permite estudiar la
aproximaciéon FOBA y traspasar las conclusiones a los casos reales teniendo en cuenta este desplazamiento

en las longitudes de onda.

20



3.3.4. Comportamiento con a, anchura del defecto

Al igual que en [15], realizamos simulaciones variando la anchura a de los defectos gaussianos. El
resultado que obtenemos es el siguiente

Reflexién variando la anchura del defecto (N=2;y=2) R para distintos a (8=-0.2, N=2, y=2)

045 T T T T T T T 012 T T T T T
a=20 nm; 4= -0.2 —— a=20 nm ——
a=30 nm; 8= -0.2 a=30 nm

04 F a=40 nm; 8= -0.2 -------- | a=40 nm --
: a=50 nm; 6= -0.2 a=50 nm -~
i a=20 nm; g= -0.4 0.1
! i a=30 nm; 6= -0.4
0.35 - ] ! a=40 nm; 8= —0.4 « - - - |
! i a=50 nm; 8= -0.4 - - \
03 0.08 / \
{
0.25 -
o 0.06 -
o2} ] \
/ \
015 | 0.04 | / \
, \
\
0.1
0.02 |-
0.05 |-
l'/—\‘
0 - A 0 7 \/ I 1 > I \‘-»-.,»
4 6 8 10 12 14 16 18 20 22 0 0.1 0.2 0.3 0.4 0.5
A (um) a/Ap
(a) Variacién con a (b) Comprobacién de ley de escala

Figura 8: Variacién del coeficiente de reflexién R con la anchura de las gaussianas a

Se aprecia que, conforme aumentamos la anchura a, los picos se desplazan hacia longitudes de onda
mayores (resultado que ya se reproducia en [15] para N=1). Para explicar esto es necesario conocer el
origen del pico de reflexién: tal pico es debido a la resonancia de la onda que viene del vacio (de longitud
de onda \) con el defecto de anchura a. De este modo, si aumentamos la anchura a la longitud de onda
resonante \ sera mayor: las longitudes de onda que resuenan son mas largas dado que la anchura crece.

Por otro lado, si representamos la reflexiéon en funcién de a/\, se ve que las graficas se superponen
entre si. Esto puede apreciarse en la expresién de la FOBA: cumple una ley de escala segin la magnitud
a/Xp.

También se presentan resultados para dos ¢ diferentes. Légicamente, conforme § (profundidad del
defecto) es mayor, la reflexién es mayor pues, como vemos en la aproximacién FOBA (26), el coeficiente
de reflexién es proporcional a §2. Veamos ahora més resultados de simulaciones con variaciones en este
parametro.
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3.3.5.

Comportamiento con d, altura del defecto

Los resultados de los simulaciones para un nimero de gaussianas N = 2 y 3, anchura del defecto a =20
nm y una distancia relativa entre gaussianas v = 2 variando ¢ son

0.9

0.8

0.7

0.6

x 05

0.4

0.3

0.2

0.1

Reflexion variando §(a=20 nm; N=2; y=2)

Reflexién variando §(a=20 nm; N=3; y=2)

AN NN
{3 (O T T T ]

POO0O0O0O

0.8

[eZReZRer e e7Re)

1
00000
ONPW =

(a) N=2

Figura 9: Variacion del coeficiente de reflexion R con la

(b) N=3

altura de las gaussianas ¢ .

Vemos que llega un punto de la profundidad (6=-0,7,-0.9) en el cual la forma de la gréfica cambia: se
va ensanchando el pico central y subiendo su intensidad hasta que rebasa llega justo al 1 (R no puede ser
mayor que 1, pues significa que se refleja méas energia de la que entra en el defecto). Un resultado similar
se reproduce en [15], donde se usan defectos de anchura mucho mayor (en torno a los micrémetros). Como

veremos en el apartado 4, podemos encontrar aplicaciones en este fenémeno, las cuales involucran defectos
en esa escala.
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3.3.6. Comportamiento con N, niimero de gaussianas
Las simulaciones para a = 20 nm, §=-0.2 y v = 2 para distintos N son las siguientes:

Reflexion variando N(a=20 nm; 6=-0.2;y=2)
1 T T T T

09

Z2Z2Z2Z22|
NN 01—

=

=z
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4
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02

0.1

£
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0 L }L:’;‘—mfm' 1 e R
4 5 6 7 8 9 10
A (um)

Figura 10: Variacion del coeficiente de reflexién R con el nimero de gaussianas.

Los resultados son similares a los que habfamos predicho para FOBA en la parte analitica: el pico
va creciendo conforme aumenta el valor de IV y, ademas, se va estrechando. No sélo eso, sino que van
apareciendo més méximos secundarios (N — 1 a cada lado), aunque estos varfan su intensidad en mucha

0
menor magnitud que el pico central (el correspondiente a la indeterminacién g 2 comentada).

Algo llamativo de estos resultados es que, como ya vimos en 3.2, el maximo de la reflexién es proporcional
a N2, de modo que la reflexiéon puede ser arbitrariamente grande (dado que podemos usar un ntimero N
arbitrariamente grande). Esto dard lugar a que, para un cierto N, el valor R rebasara la unidad.

Podemos estimar a través de la FOBA en qué valor de N ocurre esto. Sabemos que, en el maximo, el
factor de estructura aporta a la reflexién un valor N2, de manera que

FOBA _ pFOBA 72
Rméx - RO,méx N7

Rg OBA (ver Apéndice, seccién 5.7) podemos extraer que ésta tiene un maximo

FOBA 2 Q :
omax ~ 0,586%. Si elegimos

Si analizamos la funcién
para a/A, = 1/v21 =~ 0,22, lo que da lugar a un valor de la reflexiéon R
6 = —0,2, tendremos, juntando con el factor de estructura, que

REOBA(N) = 0,0232N2.

z
max

Asi, si calculamos este valor para una serie de N:
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Rr}:lngA
0,02
0,09

0,21

0,37

0,58

0,84

1,14

1,48

1,88

2,32

—
o@ooﬂo:m.&w‘sz

Cuadro 1: Valores de RF9BA om funcién de N.

max

Como vemos, para el valor de N=7 ya se rebasa la unidad y se pierde el sentido fisico del factor de
reflexién. Sin embargo, nuestras simulaciones llegan hasta N = 12 y no se aprecia esta divergencia. La
razon es la resolucién de la simulacion: conforme N aumenta, el pico no sélo se hace mas intenso, sino que
también se hace mas estrecho, de modo que es mucho méds costoso detectarlo en términos de resolucién.
De este modo, no lo detectamos porque nuestra discretizaciéon no lo capta, para verlo necesitariamos unas
simulaciones con una resolucién mucho més baja (aqui hemos utilizado §A =~ 0,13nm)3.

Por otro lado, podemos dar una visién intuitiva de los méaximos de reflexién que tenemos: estos se
deben a la resonancia del plasmén con el defecto, de modo que, si anadimos més defectos defectos de la
misma anchura (con la cual resuena y provoca el maximo), o sea, incrementamos N ,la intensidad de esta
reflexién aumenta, pues resuena con méas defectos. Por otro lado, la apariciéon de los maximos secundarios
es una combinacion de otros modos de resonancia: el plasmén puede resonar entre los centros de cada una
de las gaussianas, de manera que da lugar a modos mixtos (entre diferentes defectos) de resonancia.

8En realidad la resolucién varfa segiin la zona que integremos, tal como comentdbamos al comienzo. De hecho, integramos
en la variable adimensional q.
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3.3.7. Comportamiento con v, distancia entre gaussianas

A continuacién representamos el comportamiento de un defecto con N = 2, a = 20nm, § = —0,2 y ~
cambiando:
Reflexion variando vy (bajas) (N=2;a=20 nm;$=-0.2) Reflexion variando y (altas) (N=2;a=20 nm;8=-0.2)

016 T T T T T T T 012 T T T T T T T
0.14
012
0.1 |

o 0.08 -

0.06

0.02

(a) v=0 a 2 (b) v=2.5a4

Figura 11: Variacion del coeficiente de reflexién R con la distancia relativa entre gaussianas.

Para v = 0 simplemente tenemos la superposicién de dos gaussianas en el el mismo punto. Conforme
vamos aumentando este parametro las gaussianas se van separando: hasta v = 1 todavia estan cerca y
se superponen, formando una gaussiana de mas anchura. Después, ya en 7 = 2, estan lo suficientemente
separadas y recuperamos la forma ya estudiada previamente.

Los resultados para v a partir de 2.5 reflejan que, conforme aumentamos la distancia entre gaussianas,
el pico principal va disminuyendo poco a poco su intensidad y el secundario aumenta, ademas de que ambos
sufren un desplazamiento hacia la derecha en la longitud de onda.

La fenomenologia de estos resultados es que, conforme separamos los picos, los modos mixtos (los
que se provocan por la resonancia entre los centros de las dos gaussianas) van cambiando su longitud de
onda, pues los defectos estan cada vez mas alejados (de hecho, conforme v aumenta la longitud de onda
resonancia lo hace también, lo que concuerda con esta explicacién). El hecho de que el pico principal
baje de intensidad se debe a que los defectos ya no estan tan préoximos y los plasmones reflejados no se
superponen de inmediato igual que para v bajas. Esto también puede explicar por qué el pico del modo
mixto aumenta: el plasmoén reflejado de la segunda gaussiana interfiere con él antes de juntarse con el de
la primera y aporta ese incremento que detectamos.
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4. Conclusiones

En esta seccién vamos a comentar los resultados obtenidos y su posible aplicacién en los métodos
experimentales en los que se emplea el grafeno.

s Grafeno formado en sustrato de SiC

En [16] se realiza un estudio en el cual se consiguen hacer defectos del orden de los nanémetros. De
ese modo, la simulacién de defectos con a =20, 30, 40 6 50 nm puede reflejar el sistema propuesto en
[16]. Resumamos los resultados obtenidos:

1. Aumentar la anchura del defecto a provoca un desplazamiento en la longitud de onda resonante
que se refleja.

2. Aumentar el nimero de defectos IV provoca un aumento del pico resonante y un estrechamiento
del mismo, asi como la aparicién de picos secundarios.

3. Aumentar la distancia relativa entre defectos v provoca una disminucién del pico principal y un
aumento de los secundarios, asi como un desplazamiento en la longitud de onda de ambos tipos
de picos.

4. Aumentar la profundidad del defecto § provoca un incremento en la intensidad.

En base a esto, podriamos manipular las condiciones de nuestro sistema para controlar la radiacién
reflejada. A través del desplazamiento de la longitud de onda con a, podemos seleccionar longitudes de
onda de interés en las cuales colocar el pico principal. Por otro lado, si aumentamos N aumentamos
la intensidad de esta onda y ademas la monocromatizamos mas, pues el pico se estrecha: pese a
que aparezcan maximos secundarios, si N es lo suficientemente grande podriamos considerar esta
reflexién como despreciable. La variacién en v permite poner (en el caso, por ejemplo, de N=2) dos
longitudes de onda reflejadas al mismo nivel de intensidad. De este modo, podemos tener dos ondas
reflejadas y controlar su posicién en el espectro a través de a. En este caso, si quisiésemos aumentar
la intensidad deberiamos variar -, pues aumentarla con N supondria la aparicién de mas picos.

Asi pues, a través del sistema peridédico aqui presentado podemos manipular la onda reflejada en
el defecto en longitud de onda, resolucién en la longitud de onda (cémo de monocromatica es),
intensidad y reflexién multiple (varias longitudes de onda).

= Uniones p-n-p en grafeno

En los articulos [17] y [18] se fabrican uniones p-n-p basadas en grafeno cuya concentracién de
portadores (y, por lo tanto, su conductividad eléctrica) se modifica a través de un potencial externo.
En este caso, las condiciones de laboratorio que se reflejan en nuestros pardmetros son una variacién
de § entre 0 y -0.9 y unos defectos cuya anchura a es del orden de micrémetros.

Pese a que nuestras simulaciones han sido realizadas para anchuras de defecto bajas (del orden de
nanémetros), los resultados que ahora explicamos son extrapolables a anchuras de defecto mayores,
pues la variaciéon de este parametro desplaza la longitud de onda donde se dan las resonancias y
vamos a disctutir sobre la intensidad de la senal, no sobre su espectro.

Tal como se refleja en las graficas de 3.3.5, llega un punto en el aumento de § (en torno a 6 = —0,7
tanto en N = 1 como en N = 2) en el que la reflexién llega a 1 en el pico principal y provoca un
truncamiento del mismo, de forma que hay una banda (de unos 4 um) en la cual la reflexién es
practicamente 1. Asi, esta saturacion en la reflexién podria utilizarse como un filtro pasa-banda pues,
para un cierto rango de longitudes de onda, la mayor parte de la radiacion se refleja y no atraviesa
el defecto.
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5. Apéndice

5.1. Propiedades de la base de modos TM y TE

En esa seccién vamos a probar unas propiedades importantes de los vectores de la base

1 L/ -
ap = - ( Zw ) (Modo transversal magnético) ag = = < kky ) (Modo transversal eléctrico)
Il Y [ z

con k = ki, + kytiy + k., y kﬁ =k + kg Probemos las diferentes propiedades:

s Ortonormalidad

1
ap cAg = ?(_kxky + kykx) =0
l
a,-a i(14:2 + k2) k—ﬁ 1
P P x -
K V7 ke
1 ki
dg * Ag ?(kz + ki) kfg = 1,

donde hemos usado la definicién de producto escalar euclideo en R? (Si a,b € R?, se define a-b =

2
E a;b;). Vemos, en resumen, que
=1

a;-a; =09;; con i,j€ {s,p}.

= Componente z del campo eléctrico

Si llamamos Ej a la componente de campo que se proyecta en el subespacio R? generado por los
vectores as y a,, podemos calcular a partir de k- E = 0 (que se cumple para ondas planas, tal como
hemos probado en 1.2.1), entonces para cada modo transversal:

m: Ep = EHap + EZ’fLZ.

i

1
7(14332; + ks):| +FE.k,=0= E”k——{—Ezk;Z =0=|FEl = _E”
I

Ky

Ry
ks

k'E:>k~(EHap+EZ’LALZ) ZO:>E|| |:

TE: E, = Eja, + E.i..

1
k-E=0=k-(Eja, +E.i.)=0=E [k(—kxk:y + /.czk;y)] + Bk, =0=
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= Relacién entre H y E; impedancias
Partimos de la ley de Lentz (2)
10H

E= -2
VX c Ot

Vamos a extraer propiedades para Ep = Efa, + EZ, Ep = Eﬁap + EL, Hg = Hjas + HY y Hp =

Hﬁ’ap + HZ, de modo que éstas son ondas planas, es decir Ay o e~ illker—iwt) oon A= EﬁL, H|’|L y el

modo (s 6 p). Debido a esta dependencia, se tiene que —— = —iwA|, o sea que

ot
VvV xE=“H.
C

Veamos ahora qué obtenemos para cada polarizacion:
TE(s)

En este caso tendremos E = Ejas + 0w, con E) x ewkr

, de modo que

fig Gy s
) 9, 0 E)k; . } [Eky . ]
V xE = x Y fl=dy | — k,| — 1 ik, | + A, =
Eyky Bk B { Ry 1K
Ky Ky

k ks . kyk. N

La componente z (A) no nos interesa, porque ahora vamos a aplicar a este resultado 4, X, a lo que
tal componente no aporta nada:

T
A . 0o 0 1 . kyks  kok . ky ke
i R Y (‘knu” kn “y>:_ZkZ <_E”kn+E”’fuuy B
ki Ky
= —ik.E"".

Si llevamos esto a la ecuacién de Lentz (aplicando @, x a ambos lados):
w
—ik, BTP = iZa, x H'P.
c

. w . . kz .
Si tomamos g = — y el vector de ondas normalizado en el vacio ¢, = —, se tiene que:
¢ 9

—t, x H'P = ¢, ETF = Y ,ETF |,

donde
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TM(p)
Ek
el Seguimos el mismo procedimiento (sabiendo que, al hacer

En este caso tenemos E = ETM —
z
el rotacional, ignoramos la parte de z pues luego haremos 1, x.

Gy Gy i,
o) ) 9] By kyky .Ek‘yk‘z> < Rk kek >
VxE = z Y o =y | —¢ — 4 — Uy | —IF — B =2 |+ Ad, =
Ejke  Ejky Bk ( ks | A
ki Ky k-
= [—ax (ZZ” + z” ) + 1, ( kz” + 3 )} :

En cada componente tenemos una expresion andloga. Tomemos k; = ky 6 ky:

kok? +kok? kg ky
= = = 4.9

ko N kok
ke Ky kk koky o Ky
Asi
E
V X E =i ik, + k) + A
I
Si ahora aplicamos 4, X a esta expresion:
|| e E
0 0 1 |= qu,zFH( Ugky 7:Lyky)) = _ingETM

Aplicamos en la ecuacién de Lentz queda

. LW
—zquETM =1i—1Uy X H™ =
c

Con
1

Calculo de la transformada de fourier en el defecto Gaussiano

5.2.

»

Vamos a resolver la transformada de fourier de un defecto gaussiano:

4z

Aag(x) = dage o2 .

Si planteamos la transformada de fourier mediante 20

_ 4z
2

L 1 [t |
Aao(q) = )\/ e M9 Aqy (z)dx = Aa(q) = )\/ dzdoge 9% a7 .
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Si completamos cuadrados en el exponente de la exponencial:

5ag > 422 2z iqga  ¢?¢%d®  ¢*¢%a®
Aag(q) = — /OodxeXp <—a2—zgqx>= dzexp{ ( R I T e —
= exp q292a2 dx exp qu
16 ,
2x zgq

Si en la integral que queda hacemos el cambio u = —

o a 4a
/ dwe ™" = Vv (Ver 5.5):

—00

= du = fdx y teniendo en cuenta que
a

—0o0

1ot a ¢2a2
Aao(q)—)\/ e ' Aao(x)dx:cSagmexp Tl

con a = ga.

5.3. Calculo de coeficiente de reflexién R

El estudio de este coeficiente (junto con el de transmisién 7' y escape S) se detalla en el material
suplementario de [15]. El origen de estos coeficientes viene considerar el campo en la ldmina de grafeno
transmitiéndose por el plasmoén, dado por la férmula

+oo +00
E(l‘) — 6iqua: _|_/ dq B(Q) eigq:c _ ez’quz +/ qu(q)G(q)eigqx‘
—00 Y(q) + Qg —00

Lo que planteamos es lo siguiente: queremos conocer el campo que se refleja y transmite por el defecto,
es decir, el campo a una distancia arbitrariamente grande del defecto en ambos sentidos, o sea x* — 400
(Onda de reflejada si x — —oo y onda transmitida si © — +o00. Para este cdlculo nos basaremos en
la expresién aqui presentada, pero haremos la asuncién de que la transformada de fourier de la amplitud
B(q) es una funcién suave (es decir, sin polos) de ¢, de modo que, en el infinito, el mayor aporte lo dara la
funcién de Green G(q) que, en el caso de los modos TM (que son los que se propagan en la ldmina como
plasmones):

qz
G(q) = ———,
<q) 1+ ayq.

donde se ha empleado la impedancia Yy, ya calculada en 5.1. Se puede ver (ver Apéndice, apartado
5.4) que una integral el producto de una funcién f(q) sin polos con la funcién de Green G(q) tiene como
resultado

+oo 127
1= [ " acr = 2 s,

— 00 qp g

con ¢, donde tenemos el polo. Si aplicamos esto al campo eléctrico, tenemos, por ejemplo, que

. +o00 ) ) B ik:pz2 ; )
lim FE(z)= lim {equg:c —|—/ qu(q)G(q)equ‘T} = lim {empz + (qp)em} = ko (147),

3
r—+00 r—+00 — 0o r— 400 qpag

30



2mi
adqp
tratamiento andlogo nos llevara a que

con T = B(qp). Hemos asumido que Img, > 0, de modo que el término exponencial convergera. Un

lim  E(x) = e*® 4 pe~ kT,

T——00
o
con p = 37r ‘B (—gp). De este modo, los coeficientes de reflexién y transmisién se definen como
gip
, |2mi 2 ) ) 2mi 2
R=loP = |T"B(~q)|  T=|1+rP=R=pP =1+ " B(g)
g g

5.4. Calculo de integrales con la funcién de Green

Vamos a plantear el calculo de una integral del tipo

+oo +oo
= [ Cacs= [ L0

e oo Yoty

La funciéon de Green puede expresarse también como:

1 1 qz

_n+%_i+%_%+%’
z

G(q)

donde sélo tenemos en cuenta los modos confinados en la superficie (es decir, los TM). Tenemos que
tener en cuenta que g, = y/1 — ¢2. Para hacer esta integral nos valdremos del teorema de los residuos de
Cauchy, que establece para un recorrido cerrado:

§ 21z = 200 3 Re(f (20 20).

donde la suma se extiende a los distintos polos situados en 2 (distintos puntos) donde la funcién f(z)
tiene polos. Si tenemos en cuenta esto y asumiendo que nuestra f(gq) no tendra polos, tratemos de calcular

+o0 dq
/m1+%%
a través de sus polos. Tal funcién tiene polos en ¢, = —dfraclay. A los polos en la variable ¢ lo
llamamos gp. Si en la integral hacemos el cambio de variable ¢ = g, — z (As{ tendremos polos en z = 0:

/+°° dg —00 d
= Q
—00 1+q,zag +oo1 + 1—((]p—IL’)2
donde hemos empleado que ¢, = 1/1 — ¢2. Si asumimos que = << 1, desarrollando la raiz:

\/1—(gp — ) :\/1—qg—:r2+2xqu\/1—q12,+2xqp.
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Si ahora sacamos factor comiin (1 — ¢2) = gp.:

2xq 2xq
\/1_q12y+2x%0:\/(1_(]%)(1_1_52):%& 1- qp-
7 V pz

x
Considerando que, si x << 1 entocnes /1 —x=1— 5 el denominador queda como:

xq T
1+ qzp(1 — 2p)ag:1+quozg— P
qZp Zp
1 TqpQ
Como ¢.p = - = 1+ q.pay = 0, el numerador queda como —% y la integral a resolver es
g zp

/_‘X’ dz g¢.p _/+°° dz q.p
+oo T dpQy -0 T ang‘

Si le aplicamos el teorema de los residuos en el cero (que es donde est4 el polo):

T g 1
qp/ &= & 9n Ym (z — 0)— = 2miL2
Wy ) 0o T Qpog 30 x Iy

Si lo juntamos con lo anterior, el resultado es

Foo 271
I= G(q)f(9)dg = — f(qp)
oo apary
5.5. Calculo de la integral de una gaussiana
o0 5
En este apartado vamos a calcular el valor I = dze™™ . Para ello, si consideramos el cuadrado de

—00
esta cantidad, tendremos la siguiente integral doble:

+oo 2 +o0 2
I? —/ dxe™ / dye™¥".
—0o —0o0

Si pasamos a coordenadas polares, donde r? = 22 4 32, dedy = rdrdf y los extremos de integracién
pasan a ser  de 0 a 400y 6 de 0 a 27. De este modo:

+oo 21 ) +o00 5 1 9 +oo
I’ = / / re” " drdf = 27r/ re " dr =27 [—e_r } = 2.
r=0 Jo=0 r=0 2 0

O sea que, como I? = 2,
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5.6. Calculo de la suma geométrica

En este apatado vamos a calcular el valor S = ZnNzo r™. Consideremos lo siguiente:
S=1+r+.+r"

rS=r+ri4 4N

Si hacemos ahora rS — S

N41 Y PNl -1
rS—-S=Sr-1)=r —1= S:ngor — —

5.7. Calculo del maximo de reflexién en FOBA

Recordando la forma del coeficiente de reflexiéon en FOBA para una gaussiana:

T 1
RSOBA _ 521(]%@)252 exp {_Q(kpa)2} :

2T

A

. - el a
Si ahora escribimos &, = y sustituimos luego x = [ — |, tenemos:

Ap

2 2
1
Rg P4 0n) =65 (2”5) e"p{‘2 (2”51;) }:’RﬁoB%)=527r%exp{—2m}-

Si ahora derivamos respecto de x e igualamos a cero:

HRFOBA 1
O (@) _ g, T8 (e — 2mape ) = 0= 1 -2mx =0= 1 = —.
Ox 2

Si deshacemos el cambio de variable:

Aqui tenemos un extremo. Para saber si es un maximo o un minimo deberiamos hacer la segunda
derivada. No obstante, si sustituimos en la expresién y ésta no se anula (pues el valor minimo que alcanza
el factor de reflexién es cero), serd un maximo:

1 8221
RFOBA (a _ ) =~ ~ 0,582
0 A V27 2 e
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5.8. Cdbdigo MatLab

Aqui se presenta el codigo MatLab empleado para las simulaciones, concretamente para el caso N =
2,a =20 nm,0 = —0,2 y v = 2. Este cidigo ha sido desarrollado (para el caso de un defecto gaussiano)
por Pablo Pons?, estudiante de doctorado en el departamento de Fisica de la Materia Condensada en la
Universidad de Zaragoza. Las modificaciones realizadas para el caso de las N gaussianas se han comentado
en la seccién (3.3.1).Las simulaciones se han realizado en el cluster del Instituto de investigacién de bio-
computacién y Fisica de Sistemas Complejos (BiFi) con distintos c6digos como éste, variando los distintos
parametros que se han estudiado en la seccién 3.3.

function main
% echo(delta ,a)

% Physical constants

c=2.99792458e8; %m/s] speed of light
h=4.135667516e—15; % eV] planck’s constant
eps0=8.8541878176e—12; % F/m] wvacuum permitivitty
e=—1.602176565e—19; % C] electron charge

%

%FEM Parameters
N1=1000; % number of walues calculated between qmazx and qp+el

N2=600; % ... gqp+e2 and qp—e2; should be an even number to split points in two regions
N22=600; % ...

N3=300; % ... qp—e2 and 1+el

N4=300; % ... I1+el and 1—el; should be an even number to avoid 1 zero

N5=300; % ... I—el and 0

N=NIHN24+N224N3HN4+N5; %

e1=0.33; % half range for zome 4

e2=4; % half range for zone 2

e3=150; % times the real part of the pole for half range for zone 2.2
£3=1000000; %

qmf=1; %

%

% Graphene parameters
mu=0.2; %eV] chemical potential

delta=-0.2;

Jelta=str2num (delta); % defect Depth [—1:0]
a=20e —9;

Ja=str2num (a); %m] defect Width

%

Wlany gaussian parameters

NumGauss=2; INumber of gaussian distributions we are using.
gamma=2; %lhe distance between two adjacent gaussians is d=gammaxa, thus gamma measure how
much are each gaussian separated one from another.

% Spectra range

Nk=130; % number of points evaluated (at least 2)
Ilmin=5e —6; % minimum vacuum wavelength
lmax=22e —6; % maximum vacuum wavelength

%

% Relexion and vacuum wavelength vector definition
R=zeros (Nk:1); % Reflexion (should be [0:1])

Q .
9Contacto: pons@unizar.es
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lf=zeros(Nk:1); % Vacuum wavelength
%

sout=sprintf(’C:/TFG/d0. %da %N %lg %R . txt ’,—deltax10,a%x10"9,NumGauss,gamma) ;
sbq=sprintf(’C:/TFG/d0. %da %N %lg %l_Bq . txt >,—deltax10,a%10"9,NumGauss ,gamma) ;
% Opening files

output = fopen(sout, 'w’);
Bq =fopen(sbq, ’'w’);

%

for k=1:Nk

% Operation Point

lambda=Ilmin+(lmax—lmin) /(Nk—1)x(k—1); % vacuum wavelength

omega=c/lambdax2xpi; % angular frequency

g=omega/c; % vacuum wavevector

sigma=pixe~2/(2xhxabs(e))*sqrt(—1)*(8*mu/(hxomega) —1/(2xpi)*log ((2*muth*xomega/(2xpi))
"2/(2+mu—h*omega/(2xpi)) "2)); Zonductivity

alphaG=sigma /(2xepsOxc); % normalized conductivity

alphaG=1liximag(alphaG)+mag(alphaG)/f3; %

qp=sqrt(1—1/alphaG"2); % graphene normalized wavevector (without defects)

gpz=imag(sqrt(l—qp"2))/abs(imag(sqrt(1—qp"2)))*sqrt(l—ap”2); %

gpmax=qmf*20*sqrt (2) /(axg)+2+real(qp); % mazimum wavevector

%

% Matriz/vector definition

Ml=zeros (2*N,2xN); %

Mezeros (2xN,2xN) ; %M matriz (MixG)
F=zeros(2+«N,1); % Independent terms vector (FOBA)
B=zeros (2xN,1); % Field vector

G=zeros (2*N,2+N); %

Gl=zeros (2xN,1); %

Ql=zeros (2xN,2xN); %

g=zeros (2«N,1); % normalized wavevector

qz=zeros (2xN,1); %
dg=zeros (2*N,1); %
%

% q and dq vectors gemerator
for i=1:N1 % zone 1
q(1i)=qpmax+(gpmax—real (qp)—e2)/N1x(i—0.5);
q (I+HNHN5HNAHN3HN24+N22)=real (qp )+e2+(gpmax—real (qp)—e2) /N1 (i —0.5) ;
dq(i)=(gpmax—real(qp)—e2) /N1;
dq ( 1-H\NHN5+N4+HN3+N2+N22 ) =(gpmax—real (qp)—e2) /N1;
end
for i=1:N2/2 % zone 2
q(i4N1l)=real (qp)—e2+(e2—abs(imag(qp))*e3)/N2x2x(i —0.5);
q(i+N14N2/2+N22)=real (qp)+abs(imag(qp) ) xe3+(e2—abs(imag(qp) ) *e3) /N2x2x(i —0.5) ;
q (i-HN+N5+N4+N3)=real (qp)—e2+(e2—abs(imag(qp) ) *e3) /N2x2x(i —0.5) ;
q (1-HNHN5+N4+N3+N2/24+N22)=real (qp )+abs (imag(qp) ) xe3+(e2—abs (imag(qp) ) xe3) /N2*x2x (i
—0.5);
dq(i4N1)=(e2—abs(imag(qp))*e3) /N2x2;
dq (i4+N1+N2/24+N22)=(e2—abs (imag(qp) ) xe3) /N2x2;
dq (i-NHN5+N4+N3) =(e2—abs (imag(qp) ) xe3) /N2x2;
dq (i1-HNHN5+N4+N3+N2/24+N22) =(e2—abs (imag(qp) ) xe3) /N2x2;
end
for 1=1:N22 % zone 22
q(i4N14N2/2)=real (qp)—abs(imag(qp) ) *e3+2+abs(imag(qp) )*e3/N22x(i —0.5) ;
q (1+NHN5+N4+N3+N2 /2)=real (qp)—abs (imag(qp) ) xe3+2«abs (imag(qp) ) xe3 /N22x(i —0.5) ;
dq (i+N1+N2/2)=2x«abs (imag(qp) ) *e3 /N22;
dq ( 1HNHN5HN44HN3+N2 /2) =2«abs (imag(qp) ) xe3 /N22;
end
for i=1:N3 % zone 3
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q (i+NI4+N24N22)=real (qp)+e2+(real (qp)—e2—1—el) /N3 (i —0.5) ;
q(i-H\+N5+N4)=1+el+(real (qp)—e2—1—el) /N3x(i —0.5)
dq (i+N1+N2+N22)=(real (qp)—e2—1—el) /N3;
dq (i-H\HN5+N4) =(real (qp)—e2—1—el) /N3;

end

for i=1:N4 % zone 4

q (14N14+N24+N224+N3)=—1—el+2xel /N4x (i —0.5) ;
q(i-H\HN5)=1—el+2xel /N4x(i —0.5);

dq (1-+N1+N2+N22+N3) =2xel /N4;

dq (i+HN\+N5)=2xel /N4;

end

for i=1:N5 % zone 5
q (1-+NIHN2+N224N3+N4 ) =I+el+(1—el) /N5x (i —0.5) ;
q(i+N)=(1—el) /N5x(i —0.5);
dqg (i+NI+N24N22+N3+N4) =(1—el) /N5;
dq(i+N)=(1—el) /N5;

end

%

%z vector generator

for i=1:2xN
qz(i)=sqrt(l—q(i) 2);

end

%

dlheory

%

% Integral

ZB(q):—\Delta\alpha(q—qu)—\intf{—\mfty}A{+\infty}\Delta\alpha(q—q ')G(q’)B(q’)dq’

% FEM

%\ Delta\ alpha (q—q-p )=\sum_{q¢’=—q-{maz}} { ¢g-{maz}}[-\ delta_{q,q} =\ Delta\ alpha (q—q’)G(q
")\ Delta q’]B(q’)

% F=[M]+B

%

%F vector and M matriz generator
for i=1:2xN
if rem(gammax(real(q(i))—real(qp))=*g=*a/2,pi)==0

F(i)=1/(4xsqrt(pi))*alphaGxgxaxexp(—(q(i)—qp) "2x(axg) "2/16)*delta*NumGauss;
else

F(i)=1/(4+sqrt(pi))*alphaGxgxaxexp(—(q(i)—qp) "2x(axg) "2/16)*xdeltaxexp(—11is*gammasx(q
; i)— (;p)*ajg;k(NumGauss 1)/2)*51n(NumGauss*gamma*(q( i)—qp)*axg/2)/sin (gammax(q(1
xaxg /2

end
G(i,i)=qz(i)/(1+alphaGxqz(i))*dq(i);
G1(i )*qZ(l)/(lJralphaG*QZ( )) s
QL(i,1)=1;

end
% For any reason, M matriz is generated faster whether it is defined as the
% product of two matriz
for i=1:2xN;
for j=1:2xN;
if rem(gammax(real(q(i))—real(q(j)))*g*a/2,pi)==0
Mi(i,j)=—1/(4xsqrt(pi))*alphaGxaxgxexp(—(q(i)—q(j)) "2*x(axg) "2/16)*deltax
NumGauss;
else
Mi(i,j)=-1/(4xsqrt(pi))=*alphaGxraxgrexp(—(q(i)—q(j)) "2*x(axg) "2/16)xdeltaxexp(—1i
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sgammax (q (1)—q(j))*axg*x(NumGauss—1)/2)*sin (NumGauss*gammax (q(1)—q(]))*axg
| /2)/sin (g (a(1)-a(3) v /2)

end
end
MEM1+G
for i=1:2xN

M(i,i)=M(i,i)—1;
end

%

%Solve field B

% B=M\F;
%

%
S1=0;
for i=1:N4+N5b
S1=S1+dq (N—(N44N5) /2+1 ) /qz (N—(N4+N5) /241 ) xabs (G1 (N—(N44+N5) /241 ) *B(N—(N44+N5) /241 ) )
~9.
end
S1=S1x4xpi/real(qp)/abs(alphaG) "3

%

%

1f (k)=lambda;

B(N14N2/2+N22/2)

B(2+N-N1-N2/2+N22/2+1)

Rl=abs(—2xpi*(B(N1+N2/24+N22 /2)4+B(N14+N2/2+N22/2+1)) /2+«sqrt (—1) /(alphaG "3xqp) ) "2
Tl=abs(1—2+pi*(B(2xN-N1-N2/2—N22/2)4B(2+«N-N1-N2/2—N22/2—1) ) xsqrt(—1) /2/(alphaG "3xqp) ) "2
R(k)=R1;

plot (real(q) ,real(B) ,real(q) ,imag(B),real(q) ,imag(F))

%

% Writing files
for i=1:2xN
fprintf(Bq, %\t %\t %\t %\t %\n’, 1f(k), q(i), real(B(i)), imag(B(i)), imag(F(i))

)
end
fprintf(Bq, ’'\n’);
fprintf(output, %\t %\t %\t %\t %\n’, 1f(k), real(qp)/g, R(k), T1, S1);

%
end
plot (1f |R)
disp (’Simulation._is_over!’);
% Closing files
fclose (output);
fclose (Bq);
%
end
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