000150626 001__ 150626
000150626 005__ 20251017144551.0
000150626 0247_ $$2doi$$a10.1016/j.cattod.2019.06.022
000150626 0248_ $$2sideral$$a116217
000150626 037__ $$aART-2020-116217
000150626 041__ $$aeng
000150626 100__ $$0(orcid)0000-0002-8762-6203$$aBueno-Alejo, Carlos J.
000150626 245__ $$aLED-driven continuous flow carbon dioxide hydrogenation on a nickel-based catalyst
000150626 260__ $$c2020
000150626 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150626 5203_ $$aMethane can be obtained from the direct hydrogenation of CO2 via the Sabatier reaction. This reaction is usually performed at high temperatures and/or pressures but it has been recently reported that in the presence of certain nanostructured catalysts, CO2 methanation can proceed at lower temperatures in solar photo-assisted processes. In this study, an inexpensive and commercially available nickel-based catalyst (Ni/Al2O3·SiO2) has been selected to perform the continuous CO2 hydrogenation in a fixed bed photocatalytic reactor using high-radiance/low consumption light emitting diodes (LEDs). These illumination conditions allowed us to attain the reaction temperatures required without the need of additional heating sources. Different LED excitation wavelengths and irradiances were evaluated. Under selected irradiation conditions (460 nm wavelength) not only the photothermal but also the photo-catalytic conversion of CO2 into CH4 takes place, with high selectivity. Conversion levels above 70% with production rates of ca. 35 mmol CH4 g−1 h-1 were obtained, outperforming the results obtained by conventional heating methods or with other irradiation wavelengths.
000150626 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2016-79419-R
000150626 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000150626 590__ $$a6.766$$b2020
000150626 591__ $$aCHEMISTRY, APPLIED$$b10 / 74 = 0.135$$c2020$$dQ1$$eT1
000150626 591__ $$aENGINEERING, CHEMICAL$$b19 / 143 = 0.133$$c2020$$dQ1$$eT1
000150626 591__ $$aCHEMISTRY, PHYSICAL$$b36 / 162 = 0.222$$c2020$$dQ1$$eT1
000150626 592__ $$a1.397$$b2020
000150626 593__ $$aChemistry (miscellaneous)$$c2020$$dQ1
000150626 593__ $$aCatalysis$$c2020$$dQ1
000150626 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000150626 700__ $$aArca-Ramos, Adriana
000150626 700__ $$0(orcid)0000-0002-4546-4111$$aHueso, José L
000150626 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria, Jesús$$uUniversidad de Zaragoza
000150626 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000150626 773__ $$g355 (2020), 678-684$$pCatal. today$$tCatalysis Today$$x0920-5861
000150626 8564_ $$s4558226$$uhttps://zaguan.unizar.es/record/150626/files/texto_completo.pdf$$yPostprint
000150626 8564_ $$s1308862$$uhttps://zaguan.unizar.es/record/150626/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000150626 909CO $$ooai:zaguan.unizar.es:150626$$particulos$$pdriver
000150626 951__ $$a2025-10-17-14:11:58
000150626 980__ $$aARTICLE