000150638 001__ 150638
000150638 005__ 20251017144557.0
000150638 0247_ $$2doi$$a10.1103/PhysRevB.111.014425
000150638 0248_ $$2sideral$$a142786
000150638 037__ $$aART-2025-142786
000150638 041__ $$aeng
000150638 100__ $$0(orcid)0009-0007-8481-0981$$aHerráiz-López, Víctor$$uUniversidad de Zaragoza
000150638 245__ $$aFirst- and second-order quantum phase transitions in the long-range unfrustrated antiferromagnetic Ising chain
000150638 260__ $$c2025
000150638 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150638 5203_ $$aWe study the ground-state phase diagram of an unfrustrated antiferromagnetic Ising chain with longitudinal and transverse fields in the full range of interactions: from all-to-all to nearest-neighbors. First, we solve the model analytically in the strong long-range regime, confirming in the process that a mean-field treatment is exact for this model. We compute the order parameter and the correlations and show that the model exhibits a tricritical point where the phase transition changes from first to second order. This is in contrast with the nearest-neighbor limit where the phase transition is known to be second order. To understand how the order of the phase transition changes from one limit to the other, we tackle the analytically intractable interaction ranges numerically, using a variational quantum Monte Carlo method with a neural-network-based ansatz, the visual transformer. We show how the first-order phase transition shrinks with decreasing interaction range and establish approximate boundaries in the interaction range for which the first-order phase transition is present. Finally, we establish that the key ingredient to stabilize a first-order phase transition and a tricritical point is the presence of ferromagnetic interactions between spins of the same sublattice on top of antiferromagnetic interactions between spins of different sublattices. Tunable-range unfrustrated antiferromagnetic interactions are just one way to implement such staggered interactions.
000150638 536__ $$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131447B-C21$$9info:eu-repo/grantAgreement/ES/MCIU/FPU20-07231$$9info:eu-repo/grantAgreement/ES/DGA/E09-17R-Q-MAD$$9info:eu-repo/grantAgreement/ES/AEI/CEX2023-001286-S
000150638 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000150638 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000150638 700__ $$aRoca-Jerat, Sebastián
000150638 700__ $$aGallego, Manuel$$uUniversidad de Zaragoza
000150638 700__ $$0(orcid)0000-0001-8782-1335$$aFerrández, Ramón$$uUniversidad de Zaragoza
000150638 700__ $$0(orcid)0000-0003-0971-1098$$aCarrete, Jesús
000150638 700__ $$0(orcid)0000-0003-4478-1948$$aZueco, David
000150638 700__ $$0(orcid)0000-0003-2995-6615$$aRomán-Roche, Juan$$uUniversidad de Zaragoza
000150638 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000150638 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000150638 7102_ $$11009$$2617$$aUniversidad de Zaragoza$$bDpto. Patología Animal$$cÁrea Medicina y Cirugía Animal
000150638 773__ $$g111, 1 (2025), 014425 [14 pp.]$$pPhys. Rev. B$$tPhysical Review B$$x2469-9950
000150638 8564_ $$s929345$$uhttps://zaguan.unizar.es/record/150638/files/texto_completo.pdf$$yPostprint
000150638 8564_ $$s2735454$$uhttps://zaguan.unizar.es/record/150638/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000150638 909CO $$ooai:zaguan.unizar.es:150638$$particulos$$pdriver
000150638 951__ $$a2025-10-17-14:13:38
000150638 980__ $$aARTICLE