000150647 001__ 150647 000150647 005__ 20251017144622.0 000150647 0247_ $$2doi$$a10.1016/j.jallcom.2021.161847 000150647 0248_ $$2sideral$$a128396 000150647 037__ $$aART-2022-128396 000150647 041__ $$aeng 000150647 100__ $$0(orcid)0000-0003-3567-7030$$aPalacios, E.$$uUniversidad de Zaragoza 000150647 245__ $$aLarge magnetocaloric effect in EuGd2O4 and EuDy2O4 000150647 260__ $$c2022 000150647 5060_ $$aAccess copy available to the general public$$fUnrestricted 000150647 5203_ $$aMagnetization, heat capacity and direct measurements of the magnetocaloric effect show that EuGd2O4 and EuDy2O4 have a remarkably large magnetocaloric effect at cryogenic temperatures, owing to their high magnetic density and low ordering temperatures. The Gd derivative orders antiferromagnetically at T-N = 4.6 K, while its magnetocaloric effect largely exceeds that of the reference refrigerant Gadolinium Gallium Garnet (GGG) above 5 K. The Dy derivative undergoes two phase transitions at T-C1 = 3.65 K and T-C2 = 4.7 K, respectively, which are the result of a peculiar magnetic arrangement: the first Dy sublattice is parallel to the crystallographic c-axis, while the Eu sublattice makes a variable angle from 0 degrees to 45 degrees with the direction of the second Dy sublattice that lies in the ab-plane. EuDy2O4 has a lower magnetocaloric effect than EuGd2O4, yet larger than GGG. Both ordering mechanisms are semi-quantitatively explained within the frame of a mean-field simulation, which takes into account the magnetic anisotropy strength of the participating magnetic ions. (C) 2021 The Author(s). Published by Elsevier B.V. 000150647 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E11-20R$$9info:eu-repo/grantAgreement/ES/MICINN/MAT2017-84385-R$$9info:eu-repo/grantAgreement/ES/MICINN/MAT2017-86019-R$$9info:eu-repo/grantAgreement/ES/MICINN/RTI2018-098537-B-C22 000150647 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es 000150647 590__ $$a6.2$$b2022 000150647 591__ $$aMETALLURGY & METALLURGICAL ENGINEERING$$b8 / 79 = 0.101$$c2022$$dQ1$$eT1 000150647 591__ $$aCHEMISTRY, PHYSICAL$$b45 / 161 = 0.28$$c2022$$dQ2$$eT1 000150647 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b91 / 343 = 0.265$$c2022$$dQ2$$eT1 000150647 592__ $$a1.079$$b2022 000150647 593__ $$aMaterials Chemistry$$c2022$$dQ1 000150647 593__ $$aMetals and Alloys$$c2022$$dQ1 000150647 593__ $$aMechanics of Materials$$c2022$$dQ1 000150647 593__ $$aMechanical Engineering$$c2022$$dQ1 000150647 594__ $$a10.9$$b2022 000150647 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000150647 700__ $$aSaez-Puche, R. 000150647 700__ $$aRomero, J. 000150647 700__ $$aDoi, Y. 000150647 700__ $$aHinatsu, Y. 000150647 700__ $$0(orcid)0000-0002-8028-9064$$aEvangelisti, M. 000150647 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada 000150647 773__ $$g890 (2022), 161847 [13 pp]$$pJ. alloys compd.$$tJOURNAL OF ALLOYS AND COMPOUNDS$$x0925-8388 000150647 8564_ $$s2484053$$uhttps://zaguan.unizar.es/record/150647/files/texto_completo.pdf$$yVersión publicada 000150647 8564_ $$s2817748$$uhttps://zaguan.unizar.es/record/150647/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000150647 909CO $$ooai:zaguan.unizar.es:150647$$particulos$$pdriver 000150647 951__ $$a2025-10-17-14:22:13 000150647 980__ $$aARTICLE