000150668 001__ 150668
000150668 005__ 20251017144640.0
000150668 0247_ $$2doi$$a10.3390/math13020303
000150668 0248_ $$2sideral$$a142706
000150668 037__ $$aART-2025-142706
000150668 041__ $$aeng
000150668 100__ $$0(orcid)0000-0003-2156-9856$$aDelgado, Jorge$$uUniversidad de Zaragoza
000150668 245__ $$aAccurate Computations with Generalized Pascal k-Eliminated Functional Matrices
000150668 260__ $$c2025
000150668 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150668 5203_ $$aThis paper presents an accurate method to obtain the bidiagonal decomposition of some generalized Pascal matrices, including Pascal k-eliminated functional matrices and Pascal symmetric functional matrices. Sufficient conditions to assure that these matrices are either totally positive or inverse of totally positive matrices are provided. In these cases, the presented method can be used to compute their eigenvalues, singular values and inverses with high relative accuracy. Numerical examples illustrate the high accuracy of our approach.
000150668 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E41-23R$$9info:eu-repo/grantAgreement/ES/MCIU/PID2022-138569NB-I00$$9info:eu-repo/grantAgreement/ES/MCIU/RED2022-134176-T
000150668 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000150668 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000150668 700__ $$0(orcid)0000-0002-4794-5875$$aOrera, Héctor$$uUniversidad de Zaragoza
000150668 700__ $$0(orcid)0000-0002-1340-0666$$aPeña, Juan Manuel$$uUniversidad de Zaragoza
000150668 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000150668 773__ $$g13, 2 (2025), 303 [14 pp.]$$pMathematics (Basel)$$tMathematics$$x2227-7390
000150668 8564_ $$s1068927$$uhttps://zaguan.unizar.es/record/150668/files/texto_completo.pdf$$yVersión publicada
000150668 8564_ $$s2481753$$uhttps://zaguan.unizar.es/record/150668/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000150668 909CO $$ooai:zaguan.unizar.es:150668$$particulos$$pdriver
000150668 951__ $$a2025-10-17-14:31:21
000150668 980__ $$aARTICLE