000150670 001__ 150670
000150670 005__ 20251017144640.0
000150670 0247_ $$2doi$$a10.3390/machines13010061
000150670 0248_ $$2sideral$$a142709
000150670 037__ $$aART-2025-142709
000150670 041__ $$aeng
000150670 100__ $$0(orcid)0000-0003-0473-9104$$aHaro-Larrode, Marta$$uUniversidad de Zaragoza
000150670 245__ $$aDesign Guidelines for Fractional Order Cascade Control in DC Motors: A Computational Analysis on Pairing Speed and Current Loop Orders Using Oustaloup’s Recursive Method
000150670 260__ $$c2025
000150670 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150670 5203_ $$aNested, or cascade speed and torque control has been widely used for DC motors over recent decades. Simultaneously, fractional-order control schemes have emerged, offering additional degrees of control. However, adopting fractional-order controllers, particularly in cascade schemes, does not inherently guarantee better performance. Poorly paired fractional exponents for inner and outer PI controllers can worsen the DC motor’s behavior and controllability. Finding appropriate combinations of fractional exponents is therefore crucial to minimize experimental costs and achieve better dynamic response compared to integer-order cascade control. Additionally, mitigating adverse couplings between speed and current loops remains an underexplored area in fractional-order control design. This paper develops a computational model for fractional-order cascade control of DC motor speed (external) and current (internal) loops to derive appropriate combinations of internal and external fractional orders. Key metrics such as overshoot, rise time, and peak current values during speed and torque changes are analyzed, along with coupled variables like speed drop during torque steps and peak torque during speed steps. The proposed maps guide the selection of effective combinations, enabling readers to deduce robust or adaptive designs depending on specific performance needs. The methodology employs Oustaloup’s recursive approximation to model fractional-order elements, with MATLAB–SIMULINK simulations validating the proposed criteria.
000150670 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000150670 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000150670 700__ $$aGómez-Jarreta, Álvaro
000150670 7102_ $$15009$$2535$$aUniversidad de Zaragoza$$bDpto. Ingeniería Eléctrica$$cÁrea Ingeniería Eléctrica
000150670 773__ $$g13, 1 (2025), 61 [28 pp.]$$pMachines (Basel)$$tMachines$$x2075-1702
000150670 8564_ $$s11742480$$uhttps://zaguan.unizar.es/record/150670/files/texto_completo.pdf$$yVersión publicada
000150670 8564_ $$s2621929$$uhttps://zaguan.unizar.es/record/150670/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000150670 909CO $$ooai:zaguan.unizar.es:150670$$particulos$$pdriver
000150670 951__ $$a2025-10-17-14:31:22
000150670 980__ $$aARTICLE