000150679 001__ 150679
000150679 005__ 20251017144640.0
000150679 0247_ $$2doi$$a10.1002/est2.70130
000150679 0248_ $$2sideral$$a142588
000150679 037__ $$aART-2025-142588
000150679 041__ $$aeng
000150679 100__ $$aTajik Jamal-Abad, Milad$$uUniversidad de Zaragoza
000150679 245__ $$aNumerical investigation of the effect of the mushy zone parameter and the thermal properties of paraffin-based PCMss on solidification modeling under T-history conditions
000150679 260__ $$c2025
000150679 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150679 5203_ $$aABSTRACTPhase change materials (PCMs) are widely used in various critical applications because of their capacity to store thermal energy and regulate temperature effectively. A review of the literature on PCM solidification and melting simulations reveals that the accuracy of these simulations is highly dependent on the input parameters and underlying assumptions used in the software. Among the key factors influencing precise simulation results are the parameter of mushy zone () and the thermal properties of the material. This study numerically investigated the impact of the  and thermal properties on the solidification behavior of a paraffin in the test tube under T‐history conditions. The analysis was conducted using the commercial CFD software ANSYS Fluent and the enthalpy‐porosity method is applied to simulation the solidification process. To accurately reflect the conditions of the T‐history experiment, radiative heat transfer between surfaces was employed for the boundary conditions, ensuring a realistic representation of the experimental setup. An evaluation of four thermal properties—thermal conductivity, density, latent heat, and specific heat—indicates that while an increase in latent heat, density, and specific heat slows down the rate of solidification, an increase in thermal conductivity has the opposite effect, accelerating the solidification process. The results further emphasize that selecting an appropriate value for  is crucial for achieving accurate solidification simulations. Increasing  from  to  enhanced the prediction accuracy of the solidification time by 10%. Additionally, the mushy zone parameter significantly affects the shape and progression of solidification. As  increases, solidification in the lower layers decreases, concentrating the process more in the layers adjacent to the cold wall.
000150679 540__ $$9info:eu-repo/semantics/embargoedAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000150679 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000150679 700__ $$0(orcid)0000-0001-6665-5331$$aCortés, Cristóbal$$uUniversidad de Zaragoza
000150679 700__ $$aMartínez, Arnold
000150679 700__ $$aCarmona, Mauricio
000150679 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000150679 773__ $$g7, 1 (2025), e70130 [15 pp.]$$pEnergy storage (Hoboken, N.J.)$$tEnergy storage (Hoboken, N.J.)$$x2578-4862
000150679 8564_ $$s1825340$$uhttps://zaguan.unizar.es/record/150679/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2027-01-27
000150679 8564_ $$s1922795$$uhttps://zaguan.unizar.es/record/150679/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2027-01-27
000150679 909CO $$ooai:zaguan.unizar.es:150679$$particulos$$pdriver
000150679 951__ $$a2025-10-17-14:31:44
000150679 980__ $$aARTICLE