000150700 001__ 150700
000150700 005__ 20251017144641.0
000150700 0247_ $$2doi$$a10.3390/opt6010005
000150700 0248_ $$2sideral$$a142616
000150700 037__ $$aART-2025-142616
000150700 041__ $$aeng
000150700 100__ $$0(orcid)0000-0002-9068-7728$$aÁvila, Francisco J.$$uUniversidad de Zaragoza
000150700 245__ $$aAberrometric, Geometrical, and Biomechanical Characterization of Sound-Induced Vibrational Modes of the Living Human Cornea
000150700 260__ $$c2025
000150700 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150700 5203_ $$aRepeatable and reliable assessment of corneal biomechanics with spatial resolution remains a challenge. Vibrational Optical Computerized Tomography (V-OCT), based on sound-wave elastography, has made it possible to investigate the natural resonant modes of the cornea and obtain the elastic moduli non-invasively. This pilot study presents a characterization of four corneal vibrational modes from aberrometric, geometrical, and biomechanical approaches in the living human cornea of five healthy volunteers by combining a corneal sound-wave generator, dual Placido–Scheimpflug corneal imaging, and the Ocular Response Analyzer (ORA) devices. Sound-induced corneal wavefront aberration maps were reconstructed as a function of sound frequency and isolated from the natural state. While maps of low-order aberrations (LOA) revealed symmetric geometrical patterns, those corresponding to high-order aberrations (HOA) showed complex non-symmetric patterns. Corneal geometry was evaluated by reconstructing corneal elevation maps through biconical fitting, and the elastic and viscous components were calculated by applying the standard linear solid model to the ORA measurements. The results showed that sound-wave modulation can increase high-order corneal aberrations significantly. Two frequencies rendered the corneal shape more prolate (50 Hz) and oblate (150 Hz) with respect to the baseline, respectively. Finally, both the elastic and viscous properties are sensitive to sound-induced vibrational modes, which can also modulate the corneal stress-strain response. The cornea exhibits natural resonant modes influenced by its optical, structural, and biomechanical properties.
000150700 536__ $$9info:eu-repo/grantAgreement/ES/UZ/UZ2021-CIE-01
000150700 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000150700 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000150700 700__ $$aBarco, Óscar del
000150700 700__ $$0(orcid)0000-0002-7516-3029$$aMarcellán, Maria Concepción$$uUniversidad de Zaragoza
000150700 700__ $$0(orcid)0000-0002-3979-4528$$aRemón, Laura$$uUniversidad de Zaragoza
000150700 7102_ $$12002$$2647$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Óptica
000150700 773__ $$g6, 1 (2025), 5 [13 pp.]$$pOptics (Basel)$$tOptics (Basel)$$x2673-3269
000150700 8564_ $$s3587086$$uhttps://zaguan.unizar.es/record/150700/files/texto_completo.pdf$$yVersión publicada
000150700 8564_ $$s2559928$$uhttps://zaguan.unizar.es/record/150700/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000150700 909CO $$ooai:zaguan.unizar.es:150700$$particulos$$pdriver
000150700 951__ $$a2025-10-17-14:32:00
000150700 980__ $$aARTICLE