
Integrating radiological and clinical 
data for clinically significant 
prostate cancer detection with 
machine learning techniques
Luis Mariano Esteban1,2, Ángel Borque-Fernando3,4,5, Maria Etelvina Escorihuela1, 
Javier Esteban-Escaño6, Jose María Abascal7, Pol Servian8 & Juan Morote9,10,11

In prostate cancer (PCa), risk calculators have been proposed, relying on clinical parameters and 
magnetic resonance imaging (MRI) enable early prediction of clinically significant cancer (CsPCa). 
The prostate imaging–reporting and data system (PI-RADS) is combined with clinical variables 
predominantly based on logistic regression models. This study explores modeling using regularization 
techniques such as ridge regression, LASSO, elastic net, classification tree, tree ensemble models 
like random forest or XGBoost, and neural networks to predict CsPCa in a dataset of 4799 patients 
in Catalonia (Spain). An 80–20% split was employed for training and validation. We used predictor 
variables such as age, prostate-specific antigen (PSA), prostate volume, PSA density (PSAD), digital 
rectal exam (DRE) findings, family history of PCa, a previous negative biopsy, and PI-RADS categories. 
When considering a sensitivity of 0.9, in the validation set, the XGBoost model outperforms others 
with a specificity of 0.640, followed closely by random forest (0.638), neural network (0.634), and 
logistic regression (0.620). In terms of clinical utility, for a 10% missclassification of CsPCa, XGBoost 
can avoid 41.77% of unnecessary biopsies, followed closely by random forest (41.67%) and neural 
networks (41.46%), while logistic regression has a lower rate of 40.62%. Using SHAP values for model 
explainability, PI-RADS emerges as the most influential risk factor, particularly for individuals with 
PI-RADS 4 and 5. Additionally, a positive digital rectal examination (DRE) or family history of prostate 
cancer proves highly influential for certain individuals, while a previous negative biopsy serves as a 
protective factor for others.
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Artificial intelligence (AI), particularly within the domain of machine learning (ML), has demonstrated notable 
advancements in the fields of medicine and biomedical research1. Through the utilization of mathematical 
methodologies, AI facilitates the processes of decision-making, reasoning, and adaptation in intricate scenarios2.

In 2020, prostate cancer (PCa) ranked as the second most frequently diagnosed cancer and the fifth leading 
cause of cancer-related mortality among men globally3. In 2014, the ISUP Gleason Grading Conference 
introduced grade groups (1–5) to enhance patient stratification4. ISUP grade 1 (Gleason 6) indicates indolent 
PCa (iPCa), often suitable for active surveillance, while ISUP > 1 (Gleason ≥ 7) identifies clinically significant 
PCa (csPCa), requiring treatment. The European Association of Urology (EAU) recommends a risk-stratified 
approach to prostate cancer (PCa) screening, emphasizing the use of Prostate-Specific Antigen (PSA) testing 
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as a primary tool in early detection. The goal is to identify clinically significant prostate cancer (csPCa) while 
minimizing the risks of overdiagnosis and overtreatment, common issues associated with PSA-based screening5. 
The EAU guidelines suggest that the use of PSA should be integrated with other diagnostic measures, such as 
digital rectal exams (DRE) and increasingly, magnetic resonance imaging (MRI), to improve the detection of 
csPCa6.

In the Prostate MRI imaging Study (PROMIS)7, MP-MRI demonstrated significantly higher sensitivity (93%) 
compared to transrectal ultrasound-guided biopsy (TRUS, 48%) for detecting clinically significant prostate 
cancer (csPCa) while reducing unnecessary biopsies by 27%. Using MP-MRI as a triage test prior to biopsy 
improved diagnostic accuracy and reduced overdiagnosis of clinically insignificant cancer. PI-RADS v2.1 is 
widely adopted for evaluating suspicious lesions, with thresholds (≥ 3) indicating biopsy necessity based on a 
semiquantitative risk scoring system. Negative predictive value ranges between 96 and 98% for PI-RADS 1 and 
2 lesions, confirming its utility in reducing unnecessary biopsies. Despite significant improvements, challenges 
remain in inter-reader variability and overdiagnosis of indolent prostate cancer, particularly in PI-RADS 3 
lesions. Radiomics, when integrated with PI-RADS, shows promise in enhancing predictive accuracy for csPCa 
by leveraging AI-driven image feature analysis8.

Contemporary AI predominantly relies on ML techniques, adept at discerning patterns in vast datasets 
and constructing reasoning systems for patient risk assessment and improved decision-making9. Data mining 
methods and adaptive ML algorithms consistently surpass traditional statistical approaches in facilitating 
more precise patient-level predictions and modeling disease prognosis and risk. ML-based techniques offer 
the advantage of automating hypothesis formulation and evaluation, while also assigning parameter weights 
to predictors based on their correlation with outcome predictions10. However, the considerable potential of 
AI in cancer research must be cautiously considered in light of the challenges concerning transparency and 
reproducibility that need to be addressed11.

MRI-based predictive models personalize the probability of CsPCa and enhance the selection of candidates 
for prostate biopsy. Risk calculators (RCs) are available for this purpose, although many are solely based on 
logistic regression models12. The design of web applications has facilitated the widespread adoption of their 
usage. The Rotterdam (ROT) MRI-RC was developed adapting the ROT-RC to data from five centers from 
Gernany and Netherland in biopsy-naïve men and those with previous negative prostate biopsy, in 961 men 
with serum PSA > 3.0 ng/ml and/or abnormal digital rectal exam (DRE) findings13. Recently, the Barcelona 
(BCN) MRI-RC was developed among 1,486 men using data with the same characteristics14. Both demonstrated 
robust external validation in a cohort comprising 946 men, as indicated by area under the ROC curve values 
of 0.856 and 0.844 for BCN-RC and ROT-RC, respectively. Furthermore, they exhibit notable clinical utility, 
selecting a cutoff point corresponding to a 10% misclassification rate of CsPCa, resulting in a reduction of biopsy 
procedures by 35 and 36% for BCN-RC and ROT-RC, respectively15.

Recent advancements in integrating magnetic resonance imaging (MRI) features with artificial intelligence 
(AI) models have shown promise in enhancing the detection and characterization of clinically significant 
prostate cancer (csPCa). However, there is a need for clearer delineation of methodologies and incorporation 
of complementary clinical parameters, such as prostate-specific antigen (PSA) density, to improve model 
robustness and clinical applicability.

MRI-based imaging features, such as those derived from the prostate imaging-reporting and data system (PI-
RADS) scoring and radiomic analyses, have become pivotal in AI-driven csPCa detection models. Handcrafted 
radiomics extract predefined quantitative features from T2-weighted, ADC, and DWI sequences, while deep 
learning methods automate the extraction of complex, high-dimensional features.

The primary objective of this study is to analyze the predictive capability of various machine learning models 
in forecasting clinically significant prostate cancer by combining the PI-RADS score with clinical variables. 
Specifically, emphasis is placed on assessing the clinical utility of the models and their explicability, with attention 
directed towards the role of each variable in the prediction process.

Materials and methods
Data recruitment
A retrospective analysis was carried out involving 5005 men with serum PSA levels of ≥ 3.0 ng/ml and/or an 
abnormal DRE. These men were recruited from 10 centers of the Catalan CsPCa early detection program between 
2018 and 2022. All included men underwent prebiopsy mpMRI and targeted and/or systematic biopsies. Men 
who received 5-alpha reductase inhibitors (5-ARI) and had a history of previous PCa, atypical small acinar 
proliferation, or high-grade prostatic intraepithelial neoplasia with atypia were excluded from the study. After 
applying the exclusion criteria, we found 4799 participants. The project received ethical approval from the VHH 
ethical committee (PR/AG-317/2017). Written informed consent was obtained from all subjects involved in the 
study. This study was carried out following the ethical guidelines of the Declaration of Helsinki 1964 (version 
2000) and the legislation involving humans.

The objective of the study was to anticipate CsPCa), which was defined as an International Society of Urologic 
Pathology grade group of ≥ 24. To achieve this objective, the study gathered patient data, encompassing multiple 
variables such as Age, PSA values, prostate volume, PSA density, digital rectal examination (DRE) findings, 
family history of prostate cancer, history of previous negative biopsies, and PI-RADS scores. PSAD (ng/mL2) 
was calculated from the pre-biopsy serum PSA and the prostate volume reported in the pre-biopsy MRI.

Statistical analysis
A descriptive analysis of the data was conducted to compare patients with and without CsPCa. Continuous 
variables were summarized using the median and interquartile range (IQR), while categorical variables were 
summarized using absolute and relative frequencies for each category. To assess differences between the groups 
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with CsPCa and non-CsPCa conditions, the Mann-Whitney test or Chi-square test was employed for continuous 
and categorical data, respectively. Additionally, a description of the variables under study was conducted for each 
center.

Machine learning models
To predict CsPCa, various machine learning models were developed, including logistic regression, Ridge 
regression, LASSO, elastic net, classification tree, random forest, XGBoost and neural network. The original 
database was randomly divided into training (70%) and validation (30%) datasets to develop and evaluate these 
models. Care was taken to ensure that both groups had a similar proportion of CsPCa cases.

Logistic regression
The construction of the logistic regression model involved a stepwise selection process, employing a backward/
forward method. This iterative process involved removing variables based on an improvement in the Akaike 
index, while also considering the inclusion of variables that were removed from the model if their inclusion 
improved the index at any step.

Ridge regression, LASSO and elastic net
Ridge regression, LASSO (least absolute shrinkage and selection operator), and elastic net are regularization 
techniques employed to prevent multicollinearity and reduce dimensionality16.

Ridge Regression introduces a penalty term to the objective function, multiplying the squares of the 
coefficients multiplied by a regularization parameter (λ), facilitates a shrinkage effect on the coefficients towards 
zero without exacting them to zero. LASSO, instead of the sum of squared coefficients, employs the sum of the 
absolute values of coefficients multiplied by the regularization parameter. LASSO exhibits a distinct characteristic 
of effecting variable selection by zeroing out certain coefficients. Elastic Net amalgamates the penalties from 
ridge regression and LASSO, integrating both L1 (LASSO) and L2 (ridge regression) penalties into the linear 
regression objective function, each governed by distinct regularization parameters. The optimization of λ was 
performed using AUC as the objective parameter.

Classification tree
Classification trees are recursive partition models that minimize the impurity of the classes defined by the 
partition17. They provide a simple classification system that is easy to implement, but they often lack high 
discrimination ability. In this study, we used the Gini index as the loss function and set the minimum number of 
observations required for a split to 50 in a node. Additionally, we set the minimum number of observations in 
any terminal node to 17 and limited the maximum depth of any node in the final tree to 30.

Random forest
Random forests consist of an ensemble of classification trees, where each tree is trained using a unique bootstrap 
sample and a different combination of variables18. This approach render a bagging classifier that ensures diversity 
among the trees, resulting in a more robust model. For our analysis, we utilized a sample size of 2426, which 
corresponds to approximately 60% of the total data, to build each tree. The splitting rule employed was Gini, and 
we considered 10 random split points. The error rate was evaluated for the CsPCa cases (1), non-PCa cases (0), 
and all data, using the out-of-bag (OOB) error estimation. The data not used for building each tree was used to 
estimate prediction error, and an average prediction error was estimated. To optimize the terminal node size of 
the forest and the number of variables used to train each tree, we employed a tuning optimization parameter.

Extreme gradient boosting
Extreme Gradient Boosting (XGBoost) belongs to the ensemble learning family and sequentially builds a series 
of weak learners (decision trees) to create a strong predictive model19. XGBoost incorporates regularization 
techniques, handles missing values, and employs parallel and distributed computing to accelerate training. It is 
widely used in various domains due to its performance, flexibility, and feature importance analysis.

Neural networks
Neural networks provide a wide range of non-linear prediction models. For this analysis, we employed a classical 
perceptron with a single hidden layer. The neural network was trained with different architectures, using different 
random initial weights and training parameters. We experimented with learning rates of 0.05 and 0.1, and used 
the hyperbolic tangent (tanh) and logistic activation functions.

	
tanh (x) = ex − e−x

ex + e−x
; logistic (x) = 1

1 + e−x

Model interpretability
Furthermore, for the purpose of studying the explainability of machine learning models, we conducted an analysis 
of variable importance using SHAP (SHapley Additive exPlanations) values. Shapley values were computed to 
determine the significance of each variable in individual predictions, while summary plots collectively provide 
insights into the importance of variables across the entire cohort’s predictions. These values are derived through 
the application of game theory, which examines all feasible combinations of features and their effects on 
prediction outcomes. The computation of the Shapley value involves systematically perturbing input features 
and observing how alterations to these features correlate with the resultant model predictions. Subsequently, the 
Shapley value for a specific feature is determined as the average marginal contribution it makes to the overall 
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model score. This methodology offers a rigorous means to discern the individual influence of features on model 
predictions, providing valuable insights into their respective contributions to the model’s output20.

Model validation
For validation purposes, the models underwent evaluation in terms of discrimination and clinical utility. 
Discrimination was evaluated using the receiver operating characteristic (ROC) curve. Choosing a specific 
cutoff point for the CsPCa probability, individuals will be classified as CsPCa or non-CsPCa based on whether 
the probability assigned by the model is above or below the established threshold. Since our model is not perfect, 
we will correctly classify some patients as CsPCa (true positives, TP) or non-CsPCa (true negatives, TN) at 
times, but there will also be misclassified cases, including both non-CsPCa (false negatives, FN) and CsPCa 
(false positives, FP) instances.The ROC curve illustrates pairs of Sensitivity (True positive rate (TP / (TP + FN)), 
y-axis) versus 1-Specificity (False positive rate (FN / (TN + FP)), X-axis across different CsPCa probability cut-
off values. The area under the ROC curve (AUC) summarizes the predictive model’s discrimination ability. AUC 
measures the likelihood that the model assigns a higher probability of CsPCa to an actual CsPCa case compared 
to a non-CsPCa case. It ranges from 0 to 1, where 0.5 signifies randomness, 0.7 is considered acceptable, 0.8 
suggests strong performance, 0.9 indicates excellent performance, and 1 signifies perfect discrimination. The 
AUC’s 95% confidence intervals were computed using DeLong estimation, also AUC comparison was based on 
DeLong test21. Moreover, specificities were investigated and compared for various sensitivity thresholds (0.8, 
0.85, 0.9, 0.95) using a proportion test.

Furthermore, the practical applicability of the developed machine learning models was assessed by evaluating 
their clinical utility. This evaluation involved treating the prediction models as dichotomous classification 
models, utilizing a specific cutoff point to differentiate between positive (CsPCa) and negative (non-CsPCa) 
individuals above or below the threshold. To assess this issue, the clinical utility curve22 was employed. This curve 
deployed the threshold probability on the X-axis to identify patients as CsPCa cases, while the Y-axis indicates 
the percentage of two distinct measures. The first measure represents the percentage of CsPCa cases incorrectly 
classified below the chosen cutoff point, while the second measure indicates the number of patients falling below 
the cutoff point. Analyzing this curve for different cutoff points enables determination of the percentage of 
misclassified CsPCa and patients with very low risk of CsPCa who could avoid unnecessary biopsies. These 
parameters hold significant importance in clinical practice.

Software
The statistical analyses were executed using the R programming language version 4.2.2 (The R Foundation for 
Statistical Computing, Vienna, Austria). Several libraries were employed, such as regplot, rpart, randomForestSRC, 
xgboost, SHAPforxgboost, nnet NeuralNetTools shapviz and kernelshap23. Validation procedures utilized the 
pROC R library, along with the CUC R code function.

Results
Descriptive characteristics
The cohort of the study comprises data from 10 different centers, we found variability within the database. Table 1 
shows the characteristics of study variables in each centre. CsPCa ranges from 35 to 65% render heterogeneity in 
our database. Also, we found differences in predictor variables.

To perform our comparative machine leaning analysis, data was split in training and validation cohort. Table 2 
provides an overview of the patients characteristics. We observed similar behaviour between development and 
validation cohorts. With the exception of familiar antecedents of prostate cancer in training dataset, all variables 
show significant differences between CsPCa and non-CsPCa groups.

Multivariate prediction models
In order to predict CsPCa, we employed both conventional and machine learning approaches for classification 
problems. The conventional approach involved utilizing the stepwise logistic regression model. Additionally, 
we utilized regularization techniques in ridge regression, LASSO and elastic net models, and machine learning 
algorithms such as, classification trees, random forest, XGBoost and artificial neural networks. Models were built 
using training data, and their discrimination, calibration, and clinical utility were estimated using validation 
data.

Logistic regression
Table 3 displays the variables that were found to be statistically significant in the multivariate analysis. Regarding 
the PI-RADS variable, PI-RADS 1 was used as the reference category. In comparison to this category, PI-RADS 
2 is not significant, while categories 3, 4, and 5 are significant, demonstrating a higher risk of clinically significant 
prostate cancer (CsPCa) than category 1.

To illustrate the weight of the variables in the prediction model we provide a nomogram in (Fig. 1). The 
nomogram shows the weight of variables in the predicted probability of CsPCa. For each individual, a score 
is assigned to each variable on the upper axis. By summing up these scores, a total score is obtained, which 
provides us with the probability of CsPCa on the lower axis. Considering the variability of points assigned on the 
nomogram, the variables that show the most predictive ability were the score assigned by PSA, prostate volume 
and the PI-RADS score categories.

Ridge regression, LASSO and elastic net
Table  4 shows the coefficientes of the models corresponding to the best parameter λ, that were 0.02244428, 
0.0007699442 and 0.0005743105 for Ridge regression, LASSO and Elastic net respectively. In the case of the 
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elastic net model the best combination of L2 and L1 regularization was reached for 0.4 parameter. The results 
suggests that PSA can be removed from the linear model.

Classification tree
Figure 2 displays the classification tree. The PI-RADS was the variable that best discriminates, categories 1, 2 
and 3 correspond to non-CsPCa. On the second level, for PI-RADS 4 and 5 categories, PSAD > 0.1319 classified 
patients as CsPCa. On the third level, for PSAD < 0.1319, a PI-RADS 5 category identify patients as CsPCa. In 
the case of a a PI-RADS 4 category, a DRE tagged as non suspicious corresponds to non-CsPCa, by contrast, 
a DRE tagged as suspiciouos classfied patients as CsPCa or non-CsPCa depending on a PSAD value above or 
below 0.1014 respectively.

Additionally, to explore the relation between variables and the outcome we used the SHAP values. These 
values are a tool for understanding the relative significance of features within a predictive model. By assessing 
the influence of each feature on the model’s predictions, SHAP values offer a graphical overview of each variable’s 
impact in PCa prediction. We evaluate SHAP values for the 960 validation data, and subsequently the summary 
plot show the influence of the variables for each indidual in the CsPCa prediction.

Variable

Development cohort n = 3839 Validation cohort n = 960

CsPCa n = 1607 (41.9%) Non-CsPCa n = 2232 (58.1%) p-value CsPCa n = 394 (41.1%) Non-CsPCa n = 566 (58.9%) p-value

Age 71 (65,76) 66 (60,71) < 0.001 70 (65,77) 66 (61,72) < 0.001

PSA 8.0 (5.6,13.5) 6.3 (4.7,9.0) < 0.001 8.7 (5.7 14.9) 6.2 (4.5,9.0) < 0.001

PV 45 (34, 62) 62 (44,85) < 0.001 47 (35,65) 64 (46,86) < 0.001

PSAD 0.18 (0.12,0.32) 0.10 (0.07,0.16) < 0.001 0.19 (0.12,0.33) 0.10 (0.07,0.15) < 0.001

DRE (suspicious) 699 (43.5%) 368 (16.5%) < 0.001 186 (47.2%) 99 (17.5%) < 0.001

FH (yes) 125 (7.8%) 148 (6.6%) 0.172 36 (9.1%) 32 (5.7%) 0.038

PNB (yes) 392 (24.4%) 768 (34.4%) < 0.001 87 (22.1%) 205 (36.2%) < 0.001

PI-RADS < 0.001 < 0.001

1 51(3.2%) 393 (17.6%) 9 (2.3%) 96 (17.0%)

2 21 (1.3%) 117 (5.2%) 2 (0.5%) 28 (4.9%)

3 163 (10.1%) 801 (35.9%) 36 (9.1%) 207 (36.6%)

4 746 (46.4%) 782 (35.0%) 190 (48.2%) 207 (36.6%)

5 626 (39.0%) 139 (6.3%) 157 (39.9%) 28 (4.9%) < 0.001

Table 2.  Patient characteristics. CsPCa clinically significant prostate cancer, PSA prostate specific antigen, PV 
prostate volume, PSAD PSA density, DRE digital rectal exam findings, FH family history of PCa. PNB previous 
negative biopsy.

 

Variable

Center

1 2 3 4 5 6 7 8 9 10

N 70 74 25 178 280 588 1116 243 196 2030

CsPCa 27 (39%) 31 (42%) 14 (56%) 62 (35%) 128 (46%) 213 (36%) 541 (48%) 87 (36%) 127 (65%) 772 (38%)

Age 68 (63,73) 66 (59,73) 67 (58,72) 69 (64,73) 69 (62,74) 67 (61,72) 67 (62,73) 67 (63,74) 66 (61,73) 69 (62,74)

PSA 6.3 (5.0,9.1) 7.6 (5.7,10.8) 9.0 (7.0,10.6) 7.7 (5.6,12.0) 9.9 (6.3,20.9) 7.6 (5.8,10.2) 7.5 (5.6,12.0) 6.2 (4.8,8.4) 6.8 (4.8,9.6) 6.1 
(4.4,9.8)

PV 61 (44,80) 55 (38,73) 50 (39,62) 54 (37,80) 55 (41,76) 60 (42,84) 52 (38,74) 58 (42,72) 45 (32,64) 54 (40,76)

PSAD 0.13 (0.08,0.17) 0.15 
(0.10,0.26)

0.18 
(0.11,0.25)

0.14 
(0.09,0.24)

0.19 
(0.11,0.38)

0.13 
(0.09,0.20)

0.14 
(0.09,0.25)

0.11 
(0.08,0.16) 0.15 (0.10,0.21 0.12 

(0.07,0.19)

DRE 9 (13%) 15 (20%) 9 (36%) 75 (42%) 52 (19%) 195 (33%) 413 (37%) 45 (19%) 37 (19%) 502 (25%)

FH 14 (20%) 13 (18%) 1 (4%) 9 (5%) 16 (6%) 51 (9%) 38 (3%) 4 (2%) 33 (17%) 162 (8%)

PNB 65 (93%) 20 (27%) 8 (32%) 79 (44%) 154 (55%) 236 (40%) 222 (20%) 102 (42%) 58 (30%) 508 (25%)

PI-RADS

 1 0 (0%) 9 (12%) 0 (0%) 53 (30%) 16 (6%) 4 (1%) 242 (22%) 0 (0%) 0 (0%) 225 (11%)

 2 0 (0%) 5 (7%) 0 (0%) 5 (3%) 2 (1%) 18 (3%) 63 (6%) 0 (0%) 1 (1%) 74 (4%)

 3 2 (3%) 10 (14%) 1 (4%) 22 (12%) 59 (21%) 154 (26%) 221 (20%) 40 (16%) 31 (16%) 667 (33%)

 4 50 (71%) 38 (51%) 13 (52%) 57 (32%) 121 (43%) 310 (53%) 397 (35%) 170 (70%) 11 (56%) 659 (32%)

 5 18 (26%) 12 (16%) 11 (44%) 41 (23%) 82 (29%) 102 (17%) 193 (17%) 33 (14%) 53 (27%) 405 (20%)

Table 1.  Characteristics of study variables by center. CsPCa clinically significant prostate cancer, PSA prostate 
specific antigen, PV prostate volume, PSAD PSA density, DRE digital rectal exam findings. FH family history of 
PCa, PNB previous negative biopsy.
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In Fig. 3 we shown that the three variables that exerted the most influence on CsPCa prediction were the 
PI-RADS, PSAD and DRE.

Random forest
We added a total of 300 trees to the ensemble, as this number was found to be reasonable based on the reduction 
in prediction error depicted in (Fig. 4). The results of the hyperparameter optimization are depicted in (Fig. 5). 
The best-performing model was achieved with a minimum size of 8 for the terminal node and training each tree 
with 7 variables.

Figure 6 illustrates the variable importance in the random forest, highlighting the most significant variables. 
It is noteworthy that in a more robust model like the random forest, the importance of the PI-RADS probability 
becomes increasingly prominent to predict CsPCa.

Extreme Gradiente boosting
Regarding parameters used, best model was attained using 800 trees, a learning rate of 0.2, a max depth of four 
levels in the trees, and a subsample of 80% of training data and 80% of predictor variables. Also, early stopping 
was set to 80 and we used L2 regularization.

Figure 7 shows the estimated SHAP summary values for the validation data. The chart shows the importance 
of each variable for each individual as a point on the graph. Darker values represent higher influence. It can 

Fig. 1.  Nomogram for the multivariate logistic regression model.

 

Variable OR (95% C.I.) p-value

Age (years) 1.059 (1.048,1.071) < 0.001

rcs(PSA, 5) PSA 1.579 (1.355,1.850) < 0.001

rcs(PSA, 5) PSA’ 2.150 × 10− 7 (1.662 × 10− 11,2.425 × 10− 3) 0.001

rcs(PSA, 5) PSA’’ 3.449 × 1015 (7.171 × 104,2.148 × 1026) 0.004

rcs(PSA, 5) PSA’’’ 1.111 × 10− 10 (7.608 × 10− 19,1.464 × 10− 2) 0.016

PV 0.974 (0.971, 0.977) < 0.001

DRE (suspicious) 2.599 (2.133,3.170) < 0.001

FH (yes) 1.673 (1.227,2.278) 0.001

PNB (yes) 0.696 (0.579,0.835) < 0.001

PI-RADS 2:1 1.279 (0.690,2.301) 0.421

PI-RADS 3:1 1.839 (1.288,2.662) < 0.001

PI-RADS 4:1 6.755 (4.882,9.520) < 0.001

PI-RADS 5:1 18.758 (12.994,27.515) < 0.001

Table 3.  Multivariate logistic regression model. rcs restricted cubic spline, PSA prostate specific antigen, PV 
prostate volume, PSAD PSA density, DRE digital rectal exam findings, FH family history of PCa, PNB previous 
negative biopsy.
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be observed that for a group of individuals, the variable PI-RADS is the most influential as a risk factor, 
corresponding to individuals with PI-RADS 4 and 5. It can also be noted that for other individuals, having a 
positive DRE or family history of PCa are highly influential. Conversely, having a previous negative biopsy is also 
very influential in other individuals, but as a protective factor.

Neural networks
The best model was attained using an architecture as 8-8-1, indicating 8 input nodes, 8 nodes in the hidden layer, 
and 1 output node. A total of 81 weights were estimated, and the hyperbolic tangent activation function was 
used. The optimization function employed was cross-entropy, which measures the disparity between predictions 
and the actual occurrence of CsPCa. The architecture of the network is visually represented in Fig.  8, with 
positive weights depicted as black lines and negative weights shown as grey lines. The thickness of each line 
corresponds to the relative magnitude of the weight it represents.

Figure 9 illustrates the variable importance plot for the multilayer perceptron, utilizing the SHAP values. The 
variables that exerted the greatest influence were very similar to the XGBoost model, PI-RADS, DRE, a previous 
negative biopsy and a family history of PCa.

Validation of developed models
To evaluate the validity of the models, we utilized a separate set of validation data comprising 960 patients, a 20% 
of the total dataset. This approach allowed us to assess the performance of the machine learning models on data 
that were not used during the model development phase.

Regarding the probabilities provided by the models, we presented their distribution in a comparative boxplot 
in (Fig. 10). All models exhibited good discrimination ability, with the outcomes of Ridge regression, LASSO, 
and Elastic Net normalized for comparability.

Regarding the discrimination ability, in Table 5 can be seen that all models exhibit good discrimination with 
AUC values above 0.8. The highest AUC is achieved by the XGBoost and the neural network that show equivalence 
between both (p = 0.981) with an AUC of 0.872 (0.849, 0.895), which shows no statistically significant difference 
compared to logistic regression (0.870 (0.848, 0.893), p = 0.925 and p = 0.930) and the random forest models 
(0.860 (0.836–0.884), p = 0.485 and p = 0.490). However, both models demonstrates superiority over the Ridge 
regression (0.854 (0.831, 0.879), p = 0.007 and p = 0.002), LASSO (0.857 (0.834, 0.881), p = 0.017 and p = 0.007), 
Elastic net (0.857 (0.834,0.881), p = 0.018 and p = 0.008) and classification tree models (0.807 (0.780,0.835), 
p < 0.001 and p < 0.001). The ROC curves are displayed in (Fig. 11).

Although we observed similar behavior in terms of AUC values, it is crucial for the predictive models to be 
effective in detecting CsPCa cases, especially at high sensitivity values. Table 6 summarizes the specificities for 
high sensitivity values. When considering a sensitivity value of 0.9, the XGBoost model performs the best with 
a specificity of 0.640. It is followed by the random forest (0.638, p = 0.999), neural network (0.634, p = 0.901) and 
logistic regression (0.620, p = 0.538).

In order to effectively prioritize the identification of CsPCa cases, our study emphasizes logistic regression, 
random forest, XGBoost and one hidden layer perceptron as the most optimal models. However, a crucial 
question remains: to what extent can these models help reduce the number of unnecessary biopsies? This 
important aspect can be examined by analyzing the clinical utility curves presented in (Fig. 12a,b). The X-axis 
represents the potential threshold CsPCa probability points used to classify individuals as CsPCa or non-CsPCa. 
On the Y-axis, we present the percentage of CsPCa cases misclassified below the selected cut-off point (indicated 
by a solid line) and the percentage of biopsies that could be avoided (depicted with a dotted line).

By analyzing the clinical utility curve, we can determine the number of biopsies that could be avoided by 
detecting a certain percentage of CsPCa cases. Table 7 presents the porcentage or biopsies avoided for a wrongly 
CsPCa classification rate. For example, when there is a 10% misclassification rate of CsPCa cases, the XGBoost is 
able to avoid 41.77% of unnecessary biopsies. The random forest and neural networks closely follows with rates 
of 41.67% (p = 0.999) and 41.46% (p = 0.931) respectively, while the logistic regresssion model have a lower rate 
of 40.62% (p = 0.641), but with no statistical significant differences between models.

Variable Ridge regression LASSO Elastic net

Intercept −6.175741229 −7.39505896 −5.923857

Age 0.054093253 0.06274349 0.004972360

PSA 0.005507262 0.00000000 0.000006632693

PSAD 0.971476782 2.16508376 0.9623193

PV −0.015923642 −0.01723216 −0.01447082

DRE 0.779058970 0.83286862 0.7345436

FH 0.350414930 0.44284927 0.1688009

PNB −0.246643897 −0.27203604 −0.1583635

PIRADS 0.737006746 0.87783219 0.7411823

Table 4.  Ridge regression, LASSO and elastic net coefficients. PSA prostate specific antigen, PV prostate 
volume, PSAD PSA density, DRE digital rectal exam findings, FH family history of PCa, PNB previous negative 
biopsy.
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Discussion
Machine learning techniques have exhibited superior predictive capabilities in various medical domains24. 
Determining the optimal point at which these models become most compelling necessitates a balance between 
model fit and applicability25. One of the traditional disadvantages attributed to such models is their black-box 
nature. However, this issue has undergone significant transformation in recent years, with various tools being 
developed to analyze the importance of variables in prediction26.

Hiremath et al.27 utilized deep learning to combine PI-RADS scores and clinical variables for csPCa detection 
on biparametric MRI, achieving an area under the curve (AUC) of 0.810. Similarly, Wang et al.28 introduced 
a dual-path convolutional neural network (CNN) that reported sensitivities of 0.6374 and 0.8978 at 0.1 and 1 
false positives per patient, respectively. These studies demonstrate the potential of deep learning to optimize the 
diagnostic performance of MRI by integrating imaging features with contextual clinical data.

Fig. 2.  Classification tree. Class 1: CsPCa, class 0: non-CsPCa. PI-RADS a:1,b:2, c:3, d:4, e:5, DRE a: 
suspicious.
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Combining MRI features with clinical parameters can significantly enhance the predictive accuracy of 
AI models. Peng et al.29 trained machine learning models, including logistic regression, decision trees, and 
random forests, that incorporated multiparametric MRI-derived texture analyses, dynamic contrast-enhanced 
MRI, and clinical parameters such as PSA density. The random forest model achieved the highest performance 
with an AUC of 0.925. Despite promising results, their study was limited by a small sample size (194 patients), 
underscoring the need for larger datasets.

Donisi et al.30 extended this approach by combining radiomic features and clinical variables, employing 
decision trees, random forests, gradient boosting trees, AdaBoost, Naïve Bayes, and k-nearest neighbors. 
The gradient boosting tree model achieved the best AUC of 0.774 for distinguishing csPCa from clinically 
insignificant prostate lesions. While these approaches highlight the added value of integrating clinical data, they 
lack comprehensive evaluation of their clinical utility and real-world applicability.

A predictive model integrating PSAD, PI-RADS score, and age achieved an AUC of 0.938, outperforming 
individual components (e.g., PI-RADS alone had an AUC of 0.875). This model showed significant clinical 
utility in decision curve analysis, especially for reducing unnecessary biopsies. External validation confirmed its 
robustness with high sensitivity and specificity31,32.

Studies compared semi-quantitative (e.g., PI-RADS scores) and quantitative MRI parameters (e.g., ADC, 
T2WI, Ktrans, Kep) with PSAD. PI-RADS combined with PSAD consistently improved diagnostic performance 
for csPCa. Logistic regression models incorporating these parameters demonstrated high predictive power, with 
ROC curve analysis ranking PSAD among the top contributors32,33.

Machine learning methods integrating PSAD and MRI features, such as random forests and support vector 
machines, have shown promise in improving diagnostic accuracy. For example, models including PSAD and 
mpMRI features achieved AUC values up to 0.925, validating their utility in external datasets31,32. Combining 
PSAD with MRI metrics refines risk stratification, reducing unnecessary biopsies and focusing interventions on 

Fig. 3.  Variable importance through SHAP analysis in classification tree.
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patients with higher probabilities of csPCa. A significant challenge lies in standardizing MRI acquisition protocols, 
PSAD thresholds, and ensuring external validation to generalize findings across diverse populations32,33.

Previously, we had developed a logistic regression model for predicting CsPCa using mpMRI PIR-RADS 
report14, which has been implemented into a freely accessible application ​h​t​t​p​s​:​​​/​​/​m​r​i​p​c​a​p​r​e​d​i​c​t​i​o​​​n​.​s​h​i​n​​y​a​p​p​​s​​.​​i​
o​/​M​R​​I​P​C​a​P​​r​e​d​i​c​t​i​o​n​/. Furthermore, it has been externally validated, demonstrating good performance in the 
Catalonia region. The developed model could serve as a valuable tool for decision-making regarding treatment, 
particularly concerning whether a patient should undergo diagnostic biopsy to determine the Gleason score34.

In this study, we aimed to analyze predictive enhancement through the utilization of machine learning 
algorithms. To achieve this, we employed regularization techniques, tree ensemble methods, and neural 
networks. Regarding discrimination capacity assessed by the AUC, findings demonstrated remarkable similarity 
among logistic regression (0.870), XGBoost (0.872), and neural network (0.872) models. Although the AUC is 
the most commonly used parameter for validating a predictive model, in a binary classification problem, it is 
essential to choose a cutoff point to classify individuals. In this regard, a cutoff point is represented by a single 
pair (Sensitivity, Specificity) on the ROC curve. Therefore, the most critical aspect for the clinical use of a model 
lies in selecting a criterion to determine this cutoff point. Misclassifying a case of CsPCa is a significant loss 
because it corresponds to prostate cancer with an unfavorable prognosis. The criterion must thus be stringent; in 
this case, it could be set with a false positive rate of 10%, or equivalently, with a sensitivity of 90%. Consequently, 

Fig. 4.  Minimization of error depending on the number of trees added to the model. The error rate was 
evaluated for the non-CsPCa cases (0), CsPCa cases (1), and all data, using the out-of-bag (OOB) error 
estimation.
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our interest lies in the model that achieves the highest specificity for a sensitivity of 90%. The models exhibiting 
the best performance in this scenario are random forest (0.638), XGBoost (0.640), and neural networks (0.634).

Additionally, it is essential to ascertain the clinical utility of the models. In a screening scenario combining 
clinical variables and mpMRI reporting, it is crucial to determine the proportion of patients who can be classified 
as low risk and thus avoid undergoing biopsies. Although prostate cancer (PCa) screening reduces the incidence 
of advanced disease and mortality, trade-offs include overdiagnosis and resultant overtreatment35. Nordström 
et al. have reported diagnostic outcomes from repeated prostate cancer screening utilizing magnetic resonance 
imaging for men with elevated serum PSA levels, lesion-targeted prostate biopsies, and risk-stratified screening 
intervals36. Key findings indicate a notable proportion of diagnosed men had potentially CsPCa, low detection 
rates of low-grade (grade group 1) cancer, and a minimal occurrence of suspicious lesions for cancer on repeated 
MRI scans. Hence, as Bratt suggests, the aim is to create a risk-stratified model for prostate cancer screening that 
can effectively decrease prostate cancer mortality while maintaining acceptable levels of costs and minimizing 
harms associated with diagnostic resource allocation, overdiagnosis, and overtreatment37.

Fig. 5.  Minimization of error depending on the nodesize (minumum size of terminal node) and mtry (number 
of variables to possibly split at each node).
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In this aspect, we believe our work is particularly innovative. While previous machine learning models for 
predicting clinically significant prostate cancer (CsPCa) exist, they often report results in terms of discrimination 
or accuracy alone. Demonstrating clinical utility is essential for the routine clinical application of a prostate 
cancer model. High prediction loss percentages cannot be accepted, as clinically significant cancer may be 
the one with the worst prognosis. In this regard, a loss greater than 10%, or a sensitivity below 90%, seems 
unacceptable. These high sensitivity values may correspond to low specificity or involve very few patients 
below the cutoff, meaning the model lacks clinical utility, as it would lead to biopsies for almost the entire 
population. Estimating the percentage of biopsies avoided with a lower classified CsPCa rate is crucial. Our 
analysis shows that for a diagnostic loss of 10% in CsPCa, machine learning models exhibit significant clinical 
utility, reducing biopsy rates by 41.7, 41.8, and 41.7% for random forest, XGBoost, and neural network models, 
respectively. Additionally, the logistic regression model also reduces biopsy rates notably by 40.6%. When 
compared to a simpler protocol, where all patients with PI-RADS greater than or equal to 3 undergo biopsy, the 
validation database would result in 14% of patients undergoing biopsy. Therefore, a reduction in biopsy rates of 
approximately 26–27% is observed, depending on the model applied.

Finally, we analyzed the importance of variables in the models both globally and through individualized 
analysis using Shapley values. The widespread use of logistic regression models for binary prediction in prostate 
cancer is evident due to their ability to generate odds ratios and visualize variable roles in nomograms38. Machine 
learning models have also developed methods to visualize variable importance in prediction, although the role 
of each variable in prediction was not visualized until the proposal of using Shapley values.

The computation of Shapley values originates from game theory and serves as a method for allocating payments 
in cooperative games by analyzing the coalitions that can be formed among players and the contribution of each 
player when added to the coalition39. This concept has been applied to analyze the contribution of a variable 
to a prediction model by considering its addition to another set of predictor variables. The estimation can be 

Fig. 6.  Variable importance through SHAP analysis in random forest model.
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performed for each individual and subsequently visualized collectively for all cases. To illustrate its performance 
we shown in (Fig. 13) three different cases for the neural network model.

The first case pertains to a low-risk patient that was non CsPCa, with the neural network predicting a 
probability of 0.102 for prostate cancer. This patient is a 71-year-old individual with a PI-RADS score of 2, a 
PSA level of 3.9 ng/mL, a prostate volume of 40 mL, undergoing initial biopsy, devoid of familial history, and 
exhibiting no suspicious findings upon DRE. For this patient, the model elucidates that the most influential 
factor in predicting non-CsPCa is the PI-RADS score 2 in the report, which significantly outweighs other factors 
(−0.255) as a protective factor. Additionally, low values of PSAD, DRE, or serum PSA level contribute to this 

Fig. 8.  Neural network architecture with input (I), hidden (H), and output (O) layers. (B) is the result obtained 
after applying the activation function.

 

Fig. 7.  SHAP summary plot for XGBoost model.
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prediction, albeit to a lesser extent, while factors considered as risk indicators demonstrate minimal importance. 
The second case involves a 67-year-old patient with a PI-RADS score of 3, a PSA level of 21 ng/mL, and a prostate 
volume of 207 mL, having had a previous negative biopsy, no familial history, and exhibiting non-suspicious 
findings on DRE, ultimately resulting in a non-CsPCa diagnosis. Analysis using SHAP reveals that the most 
critical factor for prediction is prostate volume, followed by an intermediate PI-RADS score of 3, while the 
remaining variables demonstrate limited significance. The third case involves a high-risk patient, a 56-year-old 
individual with a PSA level of 7.3 ng/mL, a prostate volume of 20 mL, no familial history or previous negative 
biopsies, exhibiting a suspicious lesion on DRE and a PI-RADS score of 5, resulting in CsPCa. SHAP analysis in 
this case indicates that the PI-RADS score of 5 is the most decisive factor for high-risk categorization, followed 
by PSAD, with DRE results having a lesser impact.

Fig. 10.  Probabilities distributions. LR logistic regression, RR ridge regression, Enet elastic net, CTree 
classification tree, RF random forest, XGBoost extreme gradient boosting, Nnet neural network.

 

Fig. 9.  SHAP values in the neural network.
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These values illustrate how a neural network can assess the impact of variables on prediction for each 
individual. They also demonstrate how all cases can be collectively evaluated, as depicted in Fig. 9, where all 
individuals are presented together. This allows for a comprehensive analysis of the variables’ collective influence 
on prediction.

There are still challenges to overcome in order to apply MRI models in prostate cancer prediction, one of them 
is the variability among radiologist. Studies have shown that radiologists can have varying levels of agreement 
when assigning PI-RADS scores, particularly for intermediate scores (PI-RADS 3), which are more difficult to 
interpret40. This variability arises due to differences in experience, training, and interpretation of subtle MRI 
findings. It has been found that intra- and inter-observer variability is especially evident when interpreting 
prostate lesions in complex anatomical regions or when distinguishing between benign and malignant findings 
in low-grade lesions. Inconsistent PI-RADS scoring can lead to differences in patient management, particularly 
in decisions regarding biopsy. A high PI-RADS score might prompt a biopsy in one instance, while a lower score 
could lead to watchful waiting in another. These discrepancies can result in missed diagnoses or unnecessary 
biopsies, both of which have significant clinical and financial implications41.

AI models, particularly deep learning algorithms, have shown promise in addressing the subjectivity and 
variability associated with PI-RADS scoring42. By training on large datasets of annotated prostate MRI scans, 
AI models can assist in providing more consistent and reproducible scores43. These models can standardize the 
interpretation of prostate MRI findings, reducing the variability between radiologists and increasing diagnostic 
accuracy40. AI-driven approaches can improve diagnostic performance by focusing on the most clinically 
relevant features of MRI images that might be missed by human interpreters. For instance, convolutional 
neural networks (CNNs) have demonstrated the ability to learn complex patterns in imaging data, which may 
be difficult for radiologists to interpret without the assistance of computational tools. AI models can also flag 
areas of uncertainty, prompting radiologists to reconsider specific aspects of the image. Rather than replacing 
radiologists, AI tools are intended to serve as decision support systems, enhancing human expertise. In this 
context, AI can act as a second opinion, providing a consistent reference point and reducing the cognitive load 
on radiologists, especially in high-pressure or time-constrained environments.

Unfortunately, in many low- and middle-income countries (LMICs), there is a significant shortage of 
radiologists and trained medical professionals who can interpret complex imaging like prostate MRIs. AI-
based tools can help fill this gap by offering support to radiologists, especially in remote or underserved areas44. 
The high cost of medical equipment, including MRI machines, and the lack of financial resources to train and 
employ skilled radiologists in LMICs can hinder effective prostate cancer diagnosis45. Implementing AI tools 
in LMICs involves overcoming several barriers, including limited access to the necessary infrastructure, such 
as high-performance computing and reliable internet connections46. Additionally, healthcare systems in these 
countries may lack the digital infrastructure to support AI integration into clinical workflows. Another challenge 
is the need for local adaptation of AI models to ensure that they are culturally relevant and trained on datasets 
representative of the local population. AI tools could play a crucial role in enhancing the skills of local healthcare 
providers. For example, AI could be integrated into training programs to help radiologists and clinicians better 
understand complex diagnostic criteria like PI-RADS. This would help raise the overall quality of prostate cancer 
care in LMICs. AI solutions have the potential for rapid scaling across a wide range of healthcare settings in 
LMICs. Once trained, AI models can be deployed on a large scale without the need for extensive infrastructure 
or human resources, which is a significant advantage in regions with limited healthcare personnel47. AI tools can 
also contribute to large-scale screening programs aimed at early prostate cancer detection, improving outcomes 
in populations that might otherwise have limited access to regular screening. With the use of mobile health 
technologies, AI could be used to screen images remotely, thereby overcoming geographical barriers.

Our study exhibits several limitations. Firstly, the heterogeneity of the data is notable, as we drew information 
from 10 distinct centers, each characterized by unique features. While random effects could have been employed 
in mixed linear models to account for these differences, our primary focus remained on the application of 
machine learning algorithms and their subsequent analysis, rather than incorporating a more refined predictive 
approach that integrates random effects specific to each center. Secondly, the retrospective nature of our analysis 
poses a limitation. A prospective analysis typically offers greater uniformity in the measurement of variables. 
Thirdly, the hyperparameter tuning process was automated to optimize the parameters of machine learning 

LR RR LASSO Elastic net CT RF XGBoost NN

0.870 (0.848–0.893)
0.854 
(0.831–
0.879)

0.857 
(0.834–
0.881)

0.857 (0.834–0.881)
0.807 

(0.780–
0.835)

0.860 
(0.836–
0.884)

0.872 (0.849–0.894)
0.872 

(0.849–
0.894)

LR 0.359 0.438 0.444 < 0.001 0.042 0.925 0.930

RR 0.011 0.008 0.010 0.760 0.007 0.002

LASSO 0.185 0.007 0.869 0.017 0.007

Elastic net 0.006 0.876 0.018 0.008

CT < 0.001 < 0.001 < 0.001

RF 0.485 0.490

XGBoost 0.981

Table 5.  Area under the ROC curve for the developed models on validation data. LR logistic regression, RR 
ridge regression, CT classification tree, RF random forest, XGBoost extreme gradient boosting.
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models. However, there is potential for improvement through the implementation of a more exhaustive tuning 
process. Thirdly, to select the cutoff point, we considered a diagnostic CsPCA loss of 5 or 10%, regardless of 
the patients’ PI-RADS categories. This may require refinement, as the prevalence of CsPCA varies significantly 
across PI-RADS categories48.

Conclusions
This study evaluated machine learning models for predicting CsPCa using clinical and MRI data. The XGBoost 
model, with a 10% false negative rate, reduced biopsy rates by 41.8%. Key factors included PI-RADS categories 
4 and 5, suspicious DRE findings, family history, and a negative prior biopsy. The models demonstrated strong 
predictive power and clear explainability, moving beyond the “black box” approach.

Fig. 11.  ROC curves of machine learning models. LR logistic regression, RR ridge regression, Enet elastic net, 
CTree classification tree, RF random forest, XGBoost extreme gradient boosting, Nnet neural network.
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Fig. 12.  (a) Clinical utility curves. Upper panel: logistic regression (left), random forest (right), lower panel: 
XGBoost (left), neural network (right). (b) Clinical utility curves. Upper panel: classification tree (left), ridge 
regression (right), lower panel: LASSO (left), elastic net (right).

 

Model 0.80 0.85 0.90 0.95

Logistic regression 0.779 (0.742,0.812) 0.724 (0.685,0.760) 0.620 (0.579,0.660) 0.507 (0.465,0.549)

Ridge regression 0.731 (0.693,0.767) 0.671 (0.631,0.710) 0.592 (0.550,0.632) 0.405 (0.364,0.446)

LASSO 0.751 (0.713,0.785) 0.689 (0.649,0.727) 0.613 (0.571,0.653) 0.392 (0.352,0.434)

Elastic net 0.749 (0.711,0.784) 0.691 (0.651,0.728) 0.611 (0.569,0.651) 0.387 (0.347,0.428)

Classification tree 0.717 (0.678,0.753) 0.635 (0.594,0.675) 0.490 (0.448,0.532) 0.245 (0.211,0.283)

Random forest 0.758 (0.720,0.792) 0.701 (0.661,0.738) 0.638 (0.596,0.677) 0.449 (0.407,0.491)

XGBoost 0.784 (0.748,0.817) 0.717 (0.678,0.754) 0.640 (0.598,0.679) 0.452 (0.411,0.494)

Neural network 0.793 (0.757,0.825) 0.740 (0.702,0.775) 0.634 (0.593,0.674) 0.486 (0.444,0.528)

Table 6.  Specificities for sensitivities values provided in each column on validation data. The bold values 
reflect the best model for the sensitivity value presented in each of the columns.
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Figure 12.  (continued)

Missing CsPCa (%) LR (%) RR (%) LASSO (%) Elastic net (%) CTree (%) RF (%) XGBoost (%) Nnet (%)

5 31.9 25.8 25.1 24.7 Napp 28.4 28.7 30.6

10 40.6 39 40.1 40.1 33.0 41.7 41.8 41.7

Table 7.  Avoided biopsies for a rate of CsPCa wrongly classified (false negative rate). Napp not applicable, LR 
logistic regression, RR ridge regression, CTree classification tree, RF random forest, XGBoost extreme gradient 
boosting, Nnet neural network.
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Data availability
The data presented in this study are available on request from the corresponding author.
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