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Abstract

Chemistry, a science that relies significantly with mathematics, uses the exact sciences to simplify
processes, as we will see that it happens with chemical reactions, where through some types of ma-
trices and some of their properties, we may know some of the characteristics of chemical reactions,
which otherwise it would be much more complicated to analyze. The class of matrices in this job are
closely related with P-matrices. We recall that a P-matrix is a square matrix in which all principal
minors are positive. Therefore, we start by presenting some important properties and subclasses of
P-matrices. Later we will include a model for applying these matrices to the chemistry.

In the first part of the work (corresponding to Chapter 1) we will focus on the mathematical con-
cepts that we will be need, as well as the presentation of important subclasses of P-matrices which we
have played a key role in many mathematical models. We will provide characterizations of these sub-
classes that will facilitate the job. Also we will announce some subclasses of P-matrices that play an
important role in computer aided geometric design, and other areas, as in economy with the classical
model of Leontief.

In the second part of the work (corresponding to Chapter 2) we will focus on applying P-matrices
to chemical reactions and we will see the importance of mathematics in other scientific fields, such as
the chemistry. We will see that the Jacobian matrices of chemical reaction systems have more struc-
ture than the arbitrary dynamical systems. Under certain assumptions, we will see a condition in the
structure of the reaction that it will be guarantees that a system of chemical reactions has its Jaco-
bian of a particular class, called Pé_)-matrices. This condition can be easily checked algorithmically,
and it implies the absence of multiple equilibria provided there will be appropiate outflow conditions.
You can establish a weaker condition to the previous mentioned, considering mass reaction systems
reactions. Therefore, under appropriate conditions, we can not have multiple steady equilibria.

In this summary, it is important mentioning some definitions that will help us to understand the
subsequent results. Some important result will be also recalled.

Given a real matrix A = (ajj)1<i<m, 1<j<n, We denote by A(a, ..., o/|Bi, ..., f;) the submatrix of
A that uses rows ..., 0y and columns fy, ..., f;. A minor is the determinant of a square submatrix.
If A(e|y) is a square submatrix of A (ie, || = |y]), then A[a|y] will be the corresponding minor; ie,
Alat|y] = det(A(e|y)). A principal submatrix of A is a submatrix containing the same set of index of
rows and columns. They are of the form A(@|a), and we denote A(@). A principal minor of a matrix
is the determinant of a principal submatrix. A[¢(] is the principal minor of the matrix A(a).

The most important definition in this paper is that definition of P-matrices, which are the square
matrices in which all principal minors are positive; ie, A = (a;j)1<i j<n such that A[a] > 0. The pro-
blem of determining whether a given matrix is a P-matrix is very important, but is generally, NP (no
polynomial); ie, the computational cost of testing whether P-matrix admits no polynomial expression.
An important characterization of P-matrices is that a matriz A is a P-matrix iff for any nonzero vector
y there is some index i such that y;(Ay); > 0.

If —A is a P-matrix, then we say that A is a P(~)-matrix. These matrices are also called NP matrix.
A characterization of the P(~)-matrices is that A is a P(~)-matriz iff for any nonzero vector y there ir
some index i such that y;(Ay); < 0. In other words, a P—)-matrix maps each nonzero vector y out of
any orthants in which it lies.

A class of P-matrices that contains the P-matrices is given by the class of Py-matrices, which
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are all those matrices whose principal minors are non-negative; ie, A = (a;;)1<i,j<n tal que A[ot] > 0.
Similary, A is a Péf)-matrix if —A is a Py-matrix.

Let’s see the definition of Z-matrix. The Z-matrices are square matrices in which all extradiago-
nales (off-diagonal elements) are nonpositive; ie, A = (a; j) 1<i,j<n Such that a;; <0 Vi # j.

Within the P-matrices, an important subclass are the M-matrices, which are those matrices that are
Z-matrices and P-matrices; ie, matrices whose off-diagonal elements are positive and all its principal
minors are positive. So, they are the matrices A = (a;;)1<; j<n such that a;; <0 Vi# jand Ala] >0
for all . Curiously, it is interesting to remark that there are more than 50 equivalent conditions to M-
matrices; some of the most important characterization are the following: A is a Z-matrix and it exist
A~! which satisfies A~! > 0. Another important characterization is that A is a Z-matrix with positive
diagonal and there is a positive diagonal matrix D such that AD is strictly diagonally dominant.

There is a formula that will be very useful and relates the minors of a product of matrices with
minors of the factors and it’s called Cauchy-Binet formula, which is stated follows: Let A, B matrix
n x n. Then:

(AB)[alf]= Y, Alaly]-A[yIB]
ycA{l,...,n}
1=k

Also, it’s important to recall the Perron-Frobenius Theorem for nonnegative matrices. If A is a
square matrix A, y, with eigenvalues A, ..., 4,, p(A) = max;<;<,|A;| is the spectral radius of a square
matrix A = (a;j)1<i,j<n- The Perron-Frobenius Theorem states that if A > 0, then A; = p(A) > 01is an
eigenvalue of A and we can take as associated eigenvector X; > 0.

Continuing with subclasses of P-matrices, it can be mentioned the class of strictly diagonally
dominant, matrices with positive diagonal. A matrix A = (a;j)1<; j<n is called strictly diagonally
dominant by rows, when for all rows, the absolute value of the diagonal element is strictly greater
than the sum of the absolute values of the other elements of its row; that is, if

n
laiil > Y, laijl, Vi={l,..,n}
=L

Similarly it can be defined the strictly diagonally dominant by columns. A is strictly diagonally domi-
nant if it is strictly diagonally dominant by rows or columns. Strictly diagonal dominant matrices by
rows with positive diagonal entries are P-matrices.

Following with subclasses of P-matrices, we can mention other two subclasses. Thus, a matrix A
is totally positive (TP) if all its minors are non-negative. Furthermore, a matrix A is strictly totally
positive (STP) if all its minors are positive. It is easy to check that the nonsingular TP matrices are P-
matrices. The TP matrices have applications in many fields such as Approximation Theory, Statistics,
Combinatorics and Computer Aided Geometric Design.

The P-matrices have a great importance since they are used in many mathematical models. Let’s
mention some classic models where P-matrices play an important role. The Input-Output Model is an
economic model developed by Wassily Leontief (1905-1999), which is known as Leontief model. The
fundamental purpose of the model is to analyze the interdependence of the various economic sectors
in an economy. This model uses M-matrices. Another important application, which has been already
mentioned with TP matrices deals with computer aided geometric design (CAGD). In computer aided
design, the control polygon determines the design of a curve. If we want that the shape properties
of the curve mimic the control polygon we need require that all collocation matrices of the basics
functions are TP.

There are several results relating properties of functions with injectivity. Regarding P-matrices,
there is a result stating that if the Jacobian of a function is a P-matrix (or a P(~)-matrix), this guarantees
injectivity of the function or any rectangular region of R". The result for all of R” also follows from
the geometric fact that P(~)-matrices map vectors out of the orthants in which they lie. Thus, for a
fixed nonzero vector y, every P(~) matrix must rotate y by at least some angle 6 > 0, > 0, where 6, is
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the infimun of the angular distance from y to an orthant to which y does not belong; thus for any unit
vector y and any set of P(~) matrices A(x):

A(x)y
[A(x)y]

This condition on the Jacobian of a function guarantees global injectivity of the function. There exists
another result that weakens the conditions needed for injectivity: If the Jacobian of a function is a
nonsingular Fy-matrix (called a «weak P-matrix»), this guarantees injectivity of the function on any
rectangular region of R”.

Before finishing these definitions of matrices, we see two very important definitions. A square
matrix is sign-nonsingular (SNS) if the sign of its determinant is nonzero and can be determined from
the signs of its entries. It’s easy to check that any matrix 2 x 2 with a single negative, positive or zero
entry is SNS. On the other hand, a 2 x 2 matrix with two positive and two negatives entries is not SNS.

The other important definition is that a (not necessarilly square) matrix S will be termed strongly
sign determined (SSD) if all square submatrices of S are either SNS or singular.

For the last subclass of matrices it is important to define the S_ matrix: given a matrix S, we
define S_ to be the matrix § with all positive entries replaced with zeroes. Now, we can define the last
subclass of matrices. We say that a matrix S is weakly sign determined WSD if every square submatrix
S of § satisfies det(S) det(S_) > 0.

We collect a few easy results on SSD and WSD matrices that are needed for the arguments in this
text. The first trivial result is that if a matrix S is SSD, then so is —S. In particular, given any square
submatrix S(c|y) that is SNS:

sign(det(=S(|7))) = (1) “Isign(det(S(x|7)))

On the other hand, if S(a|y) is singular, then so is —S(¢t|y).

Two immediate consequences of this result are the following: any submatrix of an SSD(WSD)
matrix is SSD (WSD) and swapping rows/columns of a matrix does not alter whether itis SSD (WSD).

Let’s see a result which is a trivial consequence of the definitions ant the properties of determi-
nants. So, let S be any square matrix. Multiply some column or row in S by a scalar constant to get a
new matrix S. Then, if S is SN or singular, so is S.

It’s important to mention a result states that it is possible to augment matrices in certain simple
ways and preserve the SSD property. So, let S be an SSD matrix. Augment S with a single column
(row) which is a scalar multiple of some column (row) of S to get a new matrix Sq,e. Then Sy, 18
SSD.

Let’s mention a result that shows that the set of WSD matrices contains to set of SSD matrices.
However, it is easy to find examples of matrices that are not SNS, but if WSD.

In order to complete this set of results on matrices WSD and SSD, it is important to add two
results that are useful from an algorithmic point of view because they can considerably reduce the
computational effort involved in calculating whether a matrix is SSD, WSD or not. For the first result,
we have § an SSD matrix. Let S, be the matrix § with a row/column containing at most one nonzero
element added. Then S, is SSD. For other important result, we have S a matrix that is not SSD. Let
Saim be the matrix S with some rows/columns containing no more than one nonzero element removed.
Then Sy, is not SSD.

We studied an application of the P-matrices to systems of chemical reactions and chemical reac-
tions derived systems.

For this purpoise, let’s recall some basic definitions that will be used to understand the model.
Thus, a chemical reaction is all thermodynamic process in which one or more substances (called
reactants), for effect of an energy factor, transform, changing its molecular structure and its links with
other substances called products. These substances can be elements or compounds. The symbolic
representation of the chemical reactions are called chemical equations.

sup <y, > <cos6, <1
X
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Let’s call reversible chemical reaction to the chemical reaction in which the reaction products
recombine to generate reagents. Similarly an irreversible chemical reaction is a chemical reaction
that occurs in virtually one-way.

From the concepts defined above, let’s derive the definition of chemical reaction systems. A che-
mical reaction system in which n reactants participate in m reactions has dynamics governed by the
ordinary differential equation:

x = Sv(x)
where:
x=[x1,...,x,]7 is the nonnegative n-vector of reactant concentrations,
v =[vi,..., vy is the m-vector of reaction rates,

and S is the n x m stoichiometric matrix.
The equation defines a dynamical system on R’} .

A stoichiometric matrix S n x m is a matrix where #n is the number of chemical species and m
the number of chemical reactions. A chemical species may be defined as a set of chemically identical
molecular entities.

Returning to the definition of chemical reaction system, the entries in S are constants (generally
integers) with |S;;| describing how many molecules of substrate i are involved in reaction j. The sign
of §;; reflects an arbitrary choice of direction for the reaction, with no implication of reversibility of
irreversibility. We will generally sasume that substrates occur only on one side os a reaction:

s If §;; <0, we will say that substrate i occurs on the «left-hand side» of reaction j.
s If S;; > 0, we will say that substrate i occurs on the «right-hand side» of reaction j.

S describes a linear mapping between the reaction rates and the time derivatives of the concentrations,
and any steady states of the ordinary differential equation must correspond to reaction rates lying in
the kernel of S.

Also, it’s important in the definition of chemical reaction system, the matrix V (x), which is an m x
n matrix defined by Vj;(x) = %’ describes the dependence of the reaction rates on the concentrations.
For later notational convenience we will write V. The Jacobian of the ordinary differential equation is
then SV and corresponds to the product of these matrices.

Let’s see what we mean with no autocatalytic reaction system. We call a reaction system nonau-
tocatalytic (NAC) if the stoichiometric matrix S and the matrix V7 have opposite sign estructures in
the following sense:

SiiVi<0 Vi, j
and
S,’j =0= Vji =0

These assumptions are quite general; they mean that if a substrate is used up (created) in a reaction,
then increasing the concentration of this substrate, while holding all others constant, cannot cause the
reaction rate to decrease (increase). Further, if a substrate does not participate in a reaction, then it
is not allowed to influence the reaction rate. As we allow S;;V;; = 0, even when S;; # 0, irreversible
reactions are implicitly allowed by this definition The assumption that the system is NAC provided
that a reactant occurs only on one side of a reaction. It is possible to violate this condition, for example
with reactions such as A + B = 2A, where perhaps for small concentrations of A net flux is to the right,
while for large concentrations it is to the left. Sometimes, in practice, such reactions actually represent
the amalgamation of several NAC reactions. For example, the above system might actually represent
A+B=C, C=2A, where C is some short-lived intermediate complex. If a reaction can be rewritten
in this way, then it becomes amenable to the presented analysis.

Since we have included some results on mass action systems, we define these systems here. Let
v; be the set of indices of the reactants on the left-hand side of the j th reaction, and p; be the set
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of indices of the reactants on the right-hand side of the jth reaction. Further, let L;; be the number of
molecules of substrate i occurring on the left-hand side of the jth reaction, and R;; be the number of
molecules of substrate i occurring on the right-hand side of the jth reaction. Then for a mass action
system, the reaction rate v; for the jth reaction takes the form:

Vj :ijxl.Lij —k,j foij

EV; i€p;

where k; and k_; are nonnegative constants, known as the forward and backward rate constant for the
jth reaction.
When the reaction is NAC, this can be rewritten in terms of entries in the stoichiometric matrix to

get:
vi=k [Tx " =k T

I€V; i€p;

We can clearly write a single reversible reaction as two irreversible reactions.

Using these definitions, let’s now see the relationship between the P-matrices and chemical reac-
tion system through some important results. Perhaps the most important result of this work is mentio-
ned below. If the stoichiometric matrix S of an NAC reaction system is SSD, then the Jacobian J = SV
is a F, -matrix.

A natural question that arises is whether there could be a weaker condition on the stoichiometric

matrix which would still always ensure a Péf)

tion guaranteeing a Pé_)

Jacobian. The answer is that there is no weaker condi-
Jacobian. So, assume that the stoichiometric matrix S of an NAC system is

not SSD. Then there is some choice of V for which SV is not a P(gf)—matrix.

We could state the above two results together as the following result. Consider an n X m matrix A.
Then A is SSD iff AB is a Py-matrix for every mxn matrix B which satisfies A;;B;; > 0 and A;; = 0 =
Bj,' =0.

Althought the discussion so far has been of P(gf)—matrices, of these results we can deduce that if S
is SSD, for a = {1,...,n}, then there is some ¥ such that S[e|y] and V[y|&] are both nonzero, then J
is in fact nonsingular P(gf). Besides, we can deduce that if for every o, there is some 7y such that S[ct|y]
and V[y|a] are both nonzero, then J is in fact a P(~)-matrix.

Let’s see a particular type of chemical reaction systems called CFSTR. The continuous stirred
tank reactor (CSTR) composed of a tank with an almost perfect agitation, in which there is a conti-
nuous flow of reactant materials and from which comes out continuously reacted material (material
produced). A CFSTR system can be written as

x = q(xin —x) + Sv(x)

where:

S refer to the stoichtiometric matrix of the «true» reactions in a CFSTR (excluding the inflow and
outflow process)

q is a positive scalar representing the flow rate through the reactor

Xin 1S @ nonnegative vector representing the «feed» concentration.

From the definition of CFSTR system, you can draw conclusions about such systems. So, assume
that all the reactions in a CFSTR are NAC. If the stoichiometric matrix S is SSD, then the Jacobian of
the system is a P(~)-matrix.

For CFSTR systems the result of system NAC can be strengthened: If the stoichiometric matrix
of true reactions in a CESTR system is not SSD, and hence the Jacobian can fail to be a P(~)-matrix,
then it can in fact be singular.

Let’s now see another important result. Assume that all the reactions in a CFSTR are NAC, and
that the stoichiometric matrix of true reactions, S, is not SSD. Then there is some choice of entries in V
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for which det(J) has sign (—1)"*! and therefore it can’t be P{~)-matrix. This result is more important
than it may at first seem because we can deduce an important consequence from it.

Learning mass action systems, it is possible to prove stronger results about mass action systems
than arbitrary reaction systems because the matrix V has additional structure beyond its sign structure.
To formulate the results that follow we need to note that any mass action system can be written as a
system of irreversible reactions by considering any reversible reaction as two irreversible reactions.
So, an important result is that consider the stoichiometric matrix S of an NAC mass action reaction
system written as a system of irreversible reactions. If S is WSD, then the Jacobian J := SV is a
Péf)matrix. An immediate consequence of this result, assume that all the reactions in a CFSTR are
NAC mass action reactions. If the stoichiometric matrix S of the system written as a set of irreversible
reactions is WSD, then the Jacobian of the system is a P)-matrix.

There is a result showing that the condition of being WSD is necessary to guarantee that the
Jacobian of a mass action system will be a P(gf)—matrix. So, assume that the stoichiometric matrix S
of an NAC mass action system written as a set of irreversib(le) reactions is not WSD. Then there is

some choice of rate constants k; for which J := SV is not a F; ’-matrix. For mass action systems, the

condition of being WSD is thus necessary to guarantee that the Jacobian will be a Péf)

Another important result is that assuming that the stoichiometric matrix S of the true reactions in
a NAC mass action CFSTR system written as a set of irreversible reactions is not WSD. Then there is
some choice of flow rate ¢, rate constants k;, and concentrations x; for which det(J) has sign (—1)"*!
(i.e., the "wrong"sign). This final result shows that if S is not WSD, then for some choices of rate
constants and flow rate the Jacobian of a CFSTR system will be singular. Thus the property of S being
WSD is both sufficient and necessary to ensure that the Jacobian of an NAC mass action CFSTR
system is always nonsingular. It is also sufficient and necessary to ensure that the Jacobian is always
a P(~)-matrix. From this result, we can conclude that checking whether S is WSD is computationally
equivalent to checking whether all n x n submatrices T of Sy = [S| — 1, satisfy det(T)det(T_) > 0.

Before he had seen that the set of matrices WSD contains the set of matrices SSD. We are now
ready to say that the stoichiometric matrix of a system of chemical reactions is SSD when written as
a system of irreversible chemical reactions, in which case it is also WSD.

Let’s see a result that is very useful in practice that extend from SSD matrices to WSD matrices.
Let S, refer to the stoichiometric matrix of a system of reactions, and S;, refer to the stoichiometric
matrix of the system written as a set of irreversible reactions. Let & be the set of rows in S, containing
a unique nonegative entry, and ¥ be the set of columns in S, containing a single element. Let Sy;,
be the matrix S; with rows from a and columns from ¥ deleted. Then S;, is WSD iff Sy;;,, is WSD.
This final lemma means that for checking whether a non-SSD matrix is actually WSD one can first
remove rows corresponding to reactants which occur only in one (perhaps reversible) reaction from
the stoichiometric matrix before checking the matrix.

Now, let’s see one of the reasons for the importance of the P-matrices in a chemical reaction. We
know that determining wheter or not a chemical reaction supports multiple equilibria is a very difficult
task. The Jacobian criterion (see [8]) allows its to determine whether a Jacobian matrix admits multi-
ple steady equilibria or not. Thus, if the chemical reaction verifies the Jacobian criterion, then has not
multiple equilibria. Therefore, a chemical reaction that fails the Jacobian criterion is a necessary con-
dition for admitting multiple steady equilibria. Given a chemical reaction, it has a large computational
to prove, if the jacobian criterion is satisfied. With a simple inspection one, we can easily see if it ad-
mits multiple steady equilibria in some cases. Thus, if all species of a CFSTR have total molecularity
less than or equal to two, then it passes the Jacobian criterion, and therefore, it does not admit multi-
ple steady equilibria; referring with the total molecularity species, to a number of reactions in which
no flow occurs where reversible reactions are counted only once and each occurrence of the species
has its stoichiometry coefficient. Another trivial case occurs if a CFSTR contains a self-catalyzing
reaction, then it fails the Jacobian criterion, and thus may be multiple steady equilibria. There is also
another way to rule out multiple equilibria. If all of a chemical reaction networks have no negative

-matrix.
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orientation, O,(G;) > 0, then the chemical reaction can not admit multiple steady equilibria. There
exist a method of reducing the Jacobian criterion for chemical reactions, which has a very complica-
ted algorithm. Turning to the P-matrices, another way to answer the question of whether a chemical
reaction admits multiple steady equilibria is: If the reactions in a CFSTR system are NAC, and the
stoichiometric matrix S is SSD, then the system does not admit multiple steady equilibria.

Before finishing the summary, it is important to mention some computational considerations. Alt-
hough it is easy to write down algorithms to check whether a given matrix is SSD or WSD, the actual
computation involves checking a large number of submatrices, and can be lengthy if the reaction net-
work is large. Since large stoichiometric matrices are in general highly sparse, considerable speed-up
can be achieved by using algorithms to identify submatrices which have (identically) zero determi-
nant without actually attempting to compute the determinant. Similarly, intelligent algorithms should
avoid recomputation of the determinants of matrices when they occur as submatrices in larger matri-
ces. Another technique that can speed up the classification of a matrix as SSD or WSD relies on the
fact that it is possible to ignore all substrates occuring in only one reaction. This greatly shortens the
calculations in many real examples.

We now provide the layout of the paper. In section 1.2, we will present some basic notations,
some matrix results and some class of P-matrices that are very important as M-matrices. In section
1.3, we will extend these concepts with characterizations of these types of matrices. In subsection
1.3.1, we will mention some important properties of P-matrices. In subsection 1.3.2, we will analyze
some important subclasses of P-matrices. We will begin with the class of strictly diagonal dominant
matrices with positive diagonal. We will continue with the M-matrices, which contain the intersection
of the previous class with Z-matrices. We will also present the totally positive matrices, which have an
important application in computer aided geometric design as we will discuss in the subsection 1.3.3.
We will also include the classical model of Leontief, which it has an importance in economics, and
a model that relates the P-matrices with the Jacobian matrix and the injectivity of the matrix in sub-
section 1.3.4. In section 1.4, we will define other important types of matrices related with P-matrices,
which are sign-nonsingular matrices, strongly sign determined and weakly sign determined in subsec-
tion 1.4.1, and we will see their most important properties, in subsection 1.4.2. These matrices will
play an important role in the second chapter.

In the second chapter, we will study an application of P-matrices to the chemical reaction systems
and related systems of chemical reaction. We will develop a model presented in [7], taking into ac-
count other related model and given in [6]. In section 2.2 we will se some important notations and in
section 2.3 we will present the definition of chemical reaction system. We will also see the relations-
hip of P-matrices with some types of chemical reactions, such as NAC reaction systems, in section
2.4, the CFSTR systems, in section 2.5, and mass action systems, in section 2.6. We will focus on
showing some very important theorems in chemistry that will help us to relate the associated matri-
ces to a chemical reaction system with the mathematical concepts mentioned in the previous chapter.
In Section 2.7, we will focus on explaining different ways to analyze whether a chemical reaction
supports multiple equilibria or it can be ruled out, and we will see the importance of mathematics in
chemical reactions. In section 2.8, we will give some computational considerations in order to reduce
the computational effort. Finally, in section 2.9, we will see some examples to understand the concepts
and theorems explained throughout the chapter.
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Prologo

La quimica, una ciencia que se apoya de manera importante en las matematicas y recurre a las
ciencias exactas para simplificar procesos, tal y como se verd que sucede con las reacciones quimicas,
donde a través de unos tipos de matrices y algunas de sus propiedades, es posible conocer algunas
de las caracteristicas de las reacciones quimicas, que de otra manera seria mucho mds complicado
de analizar. Las clases de matrices presentadas en este trabajo estdn muy relacionadas con las llama-
das P-matrices. Recordemos que una P-matriz es una matriz cuadrada en la que todos los menores
principales son positivos. Por tanto, comenzaremos este trabajo presentando algunas propiedades y
subclases importantes de P-matrices. Posteriormente incluiremos un modelo de aplicacién de estas
matrices a la quimica.

En la primera parte del trabajo (correspondiente al capitulo 1) nos centraremos en los conceptos
matematicos que se necesitaran, asi como en la presentacién de importantes subclases de P-matrices
que han jugado un papel clave en muchos modelos matematicos. Se proporcionaran caracterizaciones
de estas subclases que nos facilitardn el trabajo. También anunciaremos que algunas subclases de
P-matrices juegan un papel muy importante en el disefio geométrico asistido por ordenador y otros
dmbitos como en la economia con el modelo clasico de Leontief.

En la segunda parte del trabajo (correspondiente al capitulo 2) nos centraremos en aplicar las
P-matrices a las reacciones quimicas y se verd la importancia de las matemadticas en otros campos
cientificos, como es la quimica. Veremos que las matrices jacobianas de los sistemas de reacciones
quimicas tienen mds estructura que las de los sistemas dindmicos arbitrarios. Bajo ciertas hipétesis,
veremos una condicién en la estructura de la reaccién que garantiza que un sistema de reacciones
quimicas tiene su jacobiana de una clase particular, llamadas P(gf)—matrices. Esta condicién puede ser
algoritmicamente facil de comprobar, e implica la ausencia de equilibrios multiples, siempre y cuando
haya condiciones de flujo de salida apropiadas. Se puede establecer una condicién mas débil a la citada
anteriormente, considerando sistemas de reacciones de accién de masas. Por tanto, en condiciones de
salida apropiadas, no se puede tener equilibrios mdltiples.
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Capitulo 1

Las P-matrices y algunas aplicaciones

1.1. Introduccion

Una P-matriz es una matriz cuadrada en la que todos los menores principales son positivos. En
este capitulo primero nos centraremos en presentar los conceptos matemadticos importantes que se
utilizardn a lo largo del trabajo, asi como algunas aplicaciones importantes.

En la seccién 1.2, presentaremos notaciones bdsicas, algunos resultados matriciales y algunos ti-
pos de P-matrices que son muy importantes como las M-matrices. En la secciéon 1.3, ampliaremos
estos conceptos con caracterizaciones de estos tipos de matrices. En la subseccién 1.3.1, mencionare-
mos algunas propiedades importantes de las P-matrices. En la subseccién 1.3.2 analizaremos algunas
subclases importantes de P-matrices. Comenzaremos con la clase de matrices estrictamente diagonal
dominantes con diagonal positiva. Continuaremos con las M-matrices, que contiene a la interseccién
de la anterior con las Z-matrices. También presentaremos las matrices totalmente positivas que ten-
drén una aplicacién importante en el disefio geométrico asistido por ordenador como se comentara en
la subseccion 1.3.3. También incluiremos el modelo cldsico de Leontief, que tiene su importancia en
economia, y un modelo que relaciona las P-matrices con la matriz jacobiana y la inyectividad de dicha
matriz, en la subseccion 1.3.4, definiendo la inyectividad de la matriz. Para terminar este capitulo, en
la seccién 1.4, definiremos otros tipos importantes de matrices relacionadas con las P-matrices, que
son las matrices signo-no singular y las signo fuertemente y débilmente determinadas en la subseccién
1.4.1, y veremos sus propiedades mds importantes, en la subseccion 1.4.2. Estas matrices jugardn un
papel muy importante en el segundo capitulo.

1.2. Algunas notaciones basicas y resultados matriciales

Introducimos algunas notaciones bdsicas y definiciones que se usardn a lo largo del trabajo, ade-
mads de algunos resultados matriciales basicos.

Sea A = (aij)1<i<m, 1<j<n Una matriz real. Se denota A(a,...,04|B1, ..., B;) a la submatriz de A
que usa filas oy, ...,04 y columnas f31, ..., 5;. Un menor es el determinante de una submatriz cuadra-
da. Si A(ct|y) es una submatriz cuadrada de A (es decir , || = |y|), entonces A[a|y] serd su menor
correspondiente; es decir, A[at|y] = det(A(c|y)).

Una submatriz principal de A es una submatriz que contiene el mismo conjunto de indices en
filas y columnas. Son de la forma A(a|@), que se denota como A(¢). Una submatriz principal de la
forma A(1,...,k) se llama submatriz principal directora de orden k. Un menor principal de una
matriz es el determinante de una submatriz principal. A[¢t] es el menor principal correspondiente a
la matriz A(¢t). Un menor principal director de una matriz es el determinante de una submatriz
principal directora.

Una matriz A = (a;j)1<i<m, 1<j<n €S Una matriz no negativa si todas sus entradas son no nega-
tivas; es decir, si a;; > 0. Se denota A > 0. A = (a; j)1§i§m7 1<j<n €S una matriz positiva si todas sus
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entradas son estrictamente positivas; es decir, si a;; > 0. Se denota A > 0.
Veamos ahora las definiciones de Z-matrices, P-matrices y M-matrices:

Definicion 1.2.1. Las Z-matrices son matrices cuadradas en la que todas sus extradiagonales (ele-
mentos fuera de la diagonal) son menores o igual que cero; es decir, A = (a; j) 1<i,j<n tal que a;; <
0 Vi#J.

Pasamos a definir la clase principal de matrices.

Definicion 1.2.2. Llamamos P-matrices a las matrices cuadradas en las que todos los menores prin-
cipales son positivos; es decir, A = (a;j)1<i,j<n tal que Alt] > 0. Si —A es una P-matriz, entonces
diremos que A es una P\7)-matriz. Estas matrices también se llaman NP matrices.

Dentro de las P-matrices, una subclase muy importante la forman las M-matrices.

Definicion 1.2.3. Las M-matrices son precisamente aquellas matrices que son Z-matrices y P-matrices;
es decir, matrices cuyos elementos fuera de la diagonal son no positivos y todos sus menores princi-
pales son positivos. Asi, son las matrices A = (a;j)1<i j<n tal que a;j <0 Vi# jy Ala] > 0. Andilo-
gamente a las P-matrices, se definen las M")-matrices, que son matrices que son Z\™)-matrices y
PO ) matrices.

Una clase que contiene a las P-matrices son las Py-matrices, que son todas aquellas matrices
cuyos menores principales son no negativos; es decir, A = (a;;)1<i, j<» tal que A[ot] > 0. Del mismo
modo, A es una Péf)-matriz si —A es una Py-matriz.

Una férmula que serd muy ttil en este trabajo relaciona los menores de una matriz producto con
los menores de las matrices factores y se llama Férmula de Cauchy-Binet, véase formula (1.13) de

[1]. La recordamos a continuacién:

Teorema 1.2.4 (Férmula de Cauchy-Binet). Sea A, B matrices n X n. Entonces:

(AB)[a|B] =}, Alaly]-AlyIB]
yc{l,...,n}
1=k
Terminamos esta seccién con el importante teorema de Perron-Frobenius para matrices no nega-
tivas, que garantiza la no inyectividad de su valor propio dominante y de su vector propio asociado.
Denotaremos con p(A) = max;<;<p|A;| al radio espectral de una matriz cuadrada A = (a;j)1<i j<n-

Teorema 1.2.5 (Teorema de Perron-Frobenius). Sea A,x, con valores propios Ay,...,A,. Si A >0,
entonces Ay = p(A) > 0 es valor propio de A 'y se puede tomar como vector propio asociado X, > 0.

1.3. P-matrices y clases de matrices relacionadas

1.3.1. Definiciones y propiedades

Recordamos que las P-matrices son aquellas matrices cuadradas en las que todos los menores
principales son positivos. Estas matrices son obviamente no singulares.

El problema de comprobar si una matriz dada es una P-matriz es muy importante, pero es, en
general, NP (no polinédmico); es decir, el coste computacional de comprobar que es P-matriz no
admite expresion polindmica. Destaquemos que las P-matrices juegan un papel muy importante en
Programacién Lineal. De hecho, caracterizan las clases de matrices para que el llamado problema de
complementariedad lineal siempre posea solucion unica. (véase cap 10 de [2]).

Otra caracterizacién importante de las P-matrices es que una matriz A es una P-matriz si para
cualquier vector no nulo y, existe algdn indice i tal que y;(Ay); > 0.

Aplicaciones de las P-matrices a modelos matematicos
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1.3.2. Subclases de las P-matrices

Las P-matrices contienen otras clases importantes de matrices, tales como las matrices definidas
positivas y las M-matrices no singulares. Estas subclases, con otras que presentaremos en esta seccion,
juegan un papel muy importante en muchos modelos mateméticos.

Hemos visto que si —A es una P-matriz, entonces diremos que A es una P)-matriz. En general,
A es una matriz tal que —A pertenece a una clase C, entonces diremos que A pertenece a la clase C(~).
Si A es una P(-)-matriz, significa que cada k x k menor principal de A tiene signo (—1)k,

De ello se deduce inmediatamente que una matriz A es una P(~)-matriz si para cualquier vector no
nulo y, existe algin indice i tal que y;(Ay); < 0. En otras palabras, una P )-matriz lleva cada vector
no nulo y fuera del octante en la que se encuentra (como los octantes comparten limites, el vector y
puede encontrarse en varios octantes a la vez).

Otra clase importante de matrices, que contiene a las P-matrices, son las Fy-matrices que son todas
aquellas matrices cuyos menores principales son no negativos. Del mismo modo, A es una Pé_)-matriz
si —A es una Py-matriz. Como podemos observar, una matriz A es una Py-matriz si para cualquier
vector no nulo y, existe algin indice i tal que y;(Ay); > 0. Andlogamente, una matriz A es una Péf)—
matriz si para cualquier vector no nulo y, existe algin indice i tal que y;(Ay); < 0. Por definicién, las
matrices Py y Péf) pueden ser singulares.

Pasamos a introducir y comentar tres subclases importantes de P-matrices: las matrices estricta-
mente diagonal dominantes con diagonal positiva, las M-matrices y las matrices totalmente positivas

no singulares.

Matriz estrictamente diagonal dominantes con diagonal positiva

Definicién 1.3.1. Una matriz A = (ajj)1<i j<n Se llama estrictamente diagonal dominante por filas,
cuando para todas las filas, el valor absoluto del elemento de la diagonal de esa fila es estrictamente
mayor que la suma de los valores absolutos del resto de elementos de esa fila; es decir, si

n
|a;i| > Z lai j|, Vi={l,..,n}
J=1,j#i

Andlogamente, una matriz A = (a;j)1<i j<n Se llama estrictamente diagonal dominante por colum-
nas, cuando para todas las columnas, el valor absoluto del elemento de la entrada diagonal de esa
columna es estrictamente mayor que la suma de los valores absolutos del resto de elementos de esa
columna. Finalmente, A es estrictamente diagonal dominante si lo es por filas o por columnas.

Veamos que las matrices estrictamente diagonal dominantes tienen determinante positivo.

Teorema 1.3.2. Sea A = (a;j)1<i,j<n cOn aj; > Yj4;|a;j| Vi=1,...,n. Entonces, detA > 0.

Demostracion. Si construimos los discos de Gerschgorin por filas, estdn en el semiplano complejo
con parte real positiva ya que los centros estan en la semirrecta real positiva y los radios son menores

que la distancia de los centros al origen: ReA; >0 i=1,...,n. o
_Si A; € R=A; > 0. En caso contrario, son valores propios 4; y su conjugado A; y se tiene que
Aidi = (Re A;)? + (ImA;)? > 0. Luego detA = T A;j>0. O

Como consecuencia del resultado anterior obtenemos que las matrices estrictamente diagonal do-
minantes por filas son P-matrices.

Corolario 1.3.3. Sea A = (a;j)1<ij<n con ai; > Y, ;i|aij| para todo i = 1,...,n. Entonces, A es P-
matriz.

Autor: Beatriz Marin Irigaray
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M-matrices

Como ya hemos visto en la seccién anterior, las Z-matrices son matrices cuadradas en la que
todas sus extradiagonales son menores o igual que cero y las M-matrices son precisamente aquellas
matrices que son Z-matrices y P-matrices; es decir, matrices cuyos elementos fuera de la diagonal son
no positivos y todos sus menores principales son positivos. Asf las M-matrices son de la forma:

ail  —ap —az o —dp
—a axp —a;3 - —axy
—az —ax a4z o —ay
L — 4 —Adp2 —ap3 - dpp
donde los g;; con i # j son no negativos, y los a;; > 0 paratodoi=1,...,n.

Como curiosidad, es interesante saber que hay mds de 50 condiciones equivalentes para hablar
de M-matrices. (Véase [2]). Algunas de las condiciones equivalentes mds importantes se nombran a
continuacion.

Teorema 1.3.4. Sea A una Z-matriz n X n. Entonces, son equivalentes:
1. A es una M-matriz.
2. Todos los menores principales directores de A son positivos.
3. ReA > 0 para todo valor propio A de A.

4. A es no singular y para cada x # 0, existe una matriz diagonal positiva D tal que X' Dx # 0 y
x'ADx > 0.

5. A es no singular y x # 0. Si y = Ax, entonces para algiin subindice i se tiene x; # 0y x;y; > 0.
6. La suma de todos los menores principales k X k para k = 1,...,n de A son positivos.

7. A es no singular y todos los menores principales de A son no negativos.

8. A es no singular y A+ D es no singular para cualquier matriz diagonal positiva D.

9. Existe una matriz triangular inferior L y una matriz triangular superior U con las diagonales
positivas tal que A = LU.

10. Existe A=y se verifica A=' > 0.
11. A es mondtona; es decib Ax>0=x>0 VxeR

12. A tiene diagonal positiva y existe una matriz diagonal positiva D tal que AD es estrictamente
diagonal dominante.

La definicién més habitual de M-matriz en los libros es la de Z-matriz que verifica la equivalencia
(10) del teorema anterior; es decir, Z-matrices con inversa no negativa. La equivalencia (12) del teore-
ma anterior muestra que las M-matrices contienen a las Z-matrices estrictamente diagonal dominantes
con diagonal positiva, que es una subclase de P-matrices considerada anteriormente. Las M-matrices
presentan importantes aplicaciones en sistemas dindmicos, andlisis numérico, programacion lineal y
en economia.

Aplicaciones de las P-matrices a modelos matematicos
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Matrices totalmente posititvas

A continuacién, vamos a definir dos tipos de matrices que son subclases de las P-matrices.

Definicion 1.3.5.
Una matriz A es totalmente positiva (TP) si todos sus menores son no negativos.

Una matriz A es estrictamente totalmente positiva (STP) si todos sus menores son positivos.

El siguiente resultado muestra que las matrices TP no singulares son P-matrices. (véase corolario
3.9de [1]).

Teorema 1.3.6. Si A es TP no singular. Entonces todos los menores principales son positivos.

Las matrices TP tienen aplicaciones en campos muy diversos como en la Teoria de Aproximacion,
Estadistica, Combinatoria, Disefio geométrico asistido por ordenador. Véase [1], [5], [3].

El siguiente resultado muestra que, en realidad, basta la positividad de un nimero reducido para
garantizar que una matriz es STP.

Teorema 1.3.7. Sea A una matriz cuadrada. A es STP si y solo si todos los menores de A que usan
columnas iniciales y filas consecutivas son positivos y todos los menores de A que usan filas iniciales
y columnas consecutivas son positivos.

Veamos ahora una caracterizacién de las matrices totalmente positivas no singulares. Vease [4].
Teorema 1.3.8. Sea A una matriz cuadrada. Entonces, son equivalentes:
(1) A es TP no singular.

(11) Todos los menores de A que usan columnas iniciales son no negativos, todos los menores que
usan filas iniciales son no negativos y todos los menores principales directores son positivos.

(1) A = LU con L, U triangular inferior y superior respectivamente, no singulares y TP.

1.3.3. Algunos modelos clasicos con P-matrices

Las P-matrices tienen una gran importancia ya que se usa en muchos modelos matematicos. Como
ilustraremos mas adelante, las P-matrices tienen una gran importancia en las reacciones quimicas.
Veamos ahora algunos modelos cldsicos donde juegan un importante papel las P-matrices.

Modelo de Leontief en economia

El Modelo Input-Output es un modelo econémico desarrollado por Wassily Leontief (1905-1999)
por el que obtuvo un Premio Nobel en el afio 1973. A menudo es denominado como modelo de
Leontief. El prop6sito fundamental del modelo es analizar la interdependencia de los distintos sectores
econdmicos en una economia. En la actualidad es uno de los modelos econémicos més empleados en
economia.

Veamos una versién simplificada del modelo. Sea A = (g; j)lgl" j<n» A >0, donde n es el nimero
de productos, a;; es la cantidad de producto necesario para fabricar una unidad de producto j. Sea p
el vector de la produccién bruta. Entonces Ap indica la cantidad de cada producto consumida en el
proceso productivo. La matriz A > 0 se llama matriz de consumo, o también conocida como matriz
input-output. Hay que ver si se puede satisfacer siempre el vector demanda. Asi, dado y > 0, veamos
si J|P tal que p —Ap =y. Observemos que y = (I —A)p. La condicién necesaria y suficiente para que
exista un tnico p > 0 (diagnéstico positivo) es que (I —A) sea no singular y ademas (I —A)~! > 0.
Por el Teorema 1.3.4, esto equivale a que / — A sea una M-matriz.

Autor: Beatriz Marin Irigaray
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Caractericemos ahora la situacién cuando el valor propio dominante A; > 0 y su vector propio
asociado X; > 0 cuyas existencias estan garantizadas por el teorema 1.2.5 ya que A > 0. Para saber si
se puede satisfacer la demanda, nos fijaremos en el valor propio dominante A; de la matriz A. Tenemos
los siguientes casos:

1. Si A; > 1: diagndstico negativo. No se satisface la demanda porque no se verifica la condicién
(I-A)"'>0yaque (/—A)"'X; = (1—2;)"'X; y esto contradice que (I —A)~' > 0.

2. Si A; = 1: diagndstico negativo porque no habra solucién dnica. En este caso tenemos que [ — A
es singular y por tanto no existe inversa.

3. Si A; < 1: diagnéstico positivo. Se satisface la demanda ya que (1 —A) ' =T +A+A>4--- y
se verifica que es no negativo porque todas las matrices A, A2, ... lo son.

Modelizaciéon geométrica

Una aplicacién importante de este tipo de matrices es el disefio geométrico asistido por ordenador
(C.A.G.D.). En disefio asistido por ordenador, un poligono de control determina el disefio de una
curva. Para que las propiedades de forma de la curva imiten las del poligono de control hace falta que
la base del espacio de funciones, tenga todas sus matrices de colocacién TP. De ahi deriva la gran
importancia de estas matrices en este campo. (véase [5])

1.3.4. Matriz jacobiana y P(~)-matrices

Existen varios resultados que relacionan propiedades de las funciones con la inyectividad, véase
[6]. Aunque sabemos que la no singularidad de la matriz jacobiana no implica la inyectividad global
de las funciones polindémicas arbitrarias; existe un teorema conocido de Hadamard que afirma que
la no singularidad de la jacobiana asegura la inyectividad global, siempre que la funcién esté bien
definida; es decir, la imagen inversa de todo conjunto compacto es compacto. Recientemente, se han
establecido condiciones que aseguran cuando una funcién es globalmente inyectiva.

En cuanto a las P-matrices, existe un resultado que dice que si la matriz jacobiana de una funcién
es una P-matriz (0 una P(~)-matriz), esto garantiza la inyectividad de la funcién en cualquier regién
rectangular de R". El resultado se puede ampliar a todo R", que también se deduce del hecho geomé-
trico mencionado en la seccién anterior, que dice que las P(~) matrices lleva cada vector no nulo y
fuera del octante en la que se encuentra. Por lo tanto, para un vector fijo y distinto de cero, cada P(~)
matriz debe girar por lo menos un cierto dngulo 6 > 6, > 0, donde 6, es la infima distancia angular
de y a una octante a los que y no pertenece; por lo que para cualquier vector unitario y, y cualquier
conjunto de P(~) matrices A(x), se tiene:

< A(x)y

¥, > <cosB, <1
A (x)y] g

Esta condicién en la jacobiana garantiza la inyectividad global de la funcién.

También existe otro resultado que debilita la condicién necesaria para la inyectividad: Si la jaco-
biana de una funcién es una Py-matriz no singular (que se denominada una «P-matriz débil»), este
garantiza la inyectivi(da)ld de la funcién en cualquier regién rectangular de R”. Este resultado también

es valido para una F; '-matriz.

1.4. Matrices SNS y signo determinadas

1.4.1. Definiciones y ejemplos

Comenzamos con la definicién principal de este apartado.

Aplicaciones de las P-matrices a modelos matematicos
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Definicion 1.4.1. Una matriz cuadrada es «signo-no singular» (del inglés sign-nonsingular, SNS de
forma abreviada) si el signo de su determinante es distinto de cero y se puede determinar a partir de
los signos de sus entradas.

Vamos a ilustrar este concepto con una matriz 2 X 2 genérica y observaremos que cualquier matriz
2 x 2 con una sola entrada negativa, positiva, o cero es SNS. Por otra parte, una matriz 2 X 2 con dos
entradas positivas y dos entradas negativas no es SNS. Vamos a desarrollar estos casos de matrices.
Sean a,b,c,d > 0y A con detA # 0. Vamos a considerar las siguientes posibilidades de la tnica
entrada negativa, positiva o nula. Asi, tenemos los siguientes casos:

1. La entrada se encuentra en el lugar (1,1):

—a b
a)A—< . d>’ 0#|A|=—ad—bc<0

a b
b)A—<_C —d)’ 0#|A|=—ad—bc<0

0 b
C)A_<c d>’ 0#|Al=—-bc<0
2. Laentrada se encuentra en el lugar (1,2)

a)A:<z jt% 0 |A| =ad+bc>0

mA:(” b), 0#|A| =ad+bc>0
—c —d

ya=(4 0 0#|A|=ad >0

C = c d s =da

3. Laentrada se encuentra en el lugar (2,1):

MA—(i?Z>, 0+ |A| =ad+bc>0

mA=<j j), 0+#|A| =ad+bc >0

a b
c)A—<0 d)’ 0#|A|=ad >0

4. La entrada se encuentra en el lugar (2,2):

a b
a)A—<C —a’)’ 0#|Al=—ad—bc <0

—a —b
b)A—<_C d >, 0#|A|=—ad—bc<0

a b
c)A—<C 0>, 0#]A|=—bc<0

. . . . a b
Vemos también que si no se dan estos casos, la matriz no es SNS: Si A = < ¢ —d > , con las

entradas a, b, ¢, d >y 0 # |A| = —ad + bc. Este determinante ya no tiene determinado el signo. La
matriz A no es SNS.
Pasamos a definir otra clase de matrices que usaremos en el siguiente Capitulo.

Autor: Beatriz Marin Irigaray
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Definicion 1.4.2. Una matriz S (no necesariamente cuadrada) se denomina «signo fuertemente de-
terminada» (del inglés, strongly sign determined, SSD de forma abreviada) si todas las submatrices
cuadradas de S son SNS o singulares.

Dada una matriz S, definimos S_ como la matriz S con todas las entradas positivas reemplazadas
por ceros.

Definicion 1.4.3. Una matriz S es «débilmente signo determinada» (del inglés, weakly sign determi-

ned, WSD de forma abreviada) si para cada submatriz cuadrada S de S se satisface det(S)det(S_) >
0.

La siguiente definicién también ser4 util posteriormente.

Definicion 1.4.4. Una matriz de S determina una «clase cualitativa» de todas las matrices con en-
tradas con el mismo signo de S'y se denota como Q(S).

Una matriz es SNS si el signo del determinante es el mismo para cada matriz de su clase cualita-
tiva. Es util pensar en las Q(S) como una matriz con las entradas consistentes en ceros y las variables
de signo constante, y asi el det(Q(S)) es un polinomio con estas variables. Si det(Q(S)) es distinto
de cero, entonces es una suma de monomios, cada uno de los cuales es positivo o negativo. También
tiene sentido para referirse a Q(S) como la clausura de Q(S) (considerdndolo como un conjunto de
matrices), y det(Q(S)) es el mismo polinomio que det(Q(S)), con variables que ahora pueden tomar
el valor cero.

1.4.2. Propiedades de las matrices SSD Y WSD

Veamos algunos resultados sencillos de matrices SSD Y WSD que son necesarios para algunos
argumentos del trabajo. Comencemos con un primer lema de demostracién inmediata.

Lema 1.4.5. Si una matriz S es SSD, también lo es —S.

En particular, dada cualquier submatriz cuadrada S(a|y) que sea SNS:

sign(det(=S(a[y))) = (=1)*sign(det(S(at[7)))
Por otro lado, si S(a|y) es singular, entonces también lo es —S(ot|7).

Veamos ahora dos lemas que son consecuencias inmediatas que se deducen también de la defini-
cién de SSD.

Lema 1.4.6. Cualquier submatriz de una matriz SSD (WSD) es también SSD (WSD).

Lema 1.4.7. Cualquier intercambio de filas y/o columnas en una matriz SSD (WSD) no altera estas
propiedades, y lo seguirdn siendo.

El resultado que se ve a continuacion es una consecuencia trivial de las definiciones y las propie-
dades de los determinantes.

Lema 1.4.8. Sea S una matriz cuadrada. Tomamos como § la matriz que resulta de multiplicar alguna
columna o fila en S por un escalar constante. Entonces, si S es SNS o singular, S también lo serd.

El siguiente resultado nos dice que se puede ampliar las matrices de ciertas maneras simples de
modo que preserven la propiedad SSD.

Lema 1.4.9. Sea S una matriz SSD. Tomamos como Sq,e la matriz que resulta de ampliar la matriz S
con una sola columna (fila) que es un muiltiplo escalar de alguna columna (fila) de S. Entonces Sy,
es también una matriz SSD.

Aplicaciones de las P-matrices a modelos matematicos



1.4. Matrices SNS y signo determinadas 9

Demostracion. Cualquier submatriz cuadrada de S,,¢ puede ser

1. submatriz de S, en cuyo caso es SNS o singular porque S es SSD.

2. una submatriz cuadrada de S con una columna/fila multiplicada por un escalar, en cuyo caso es
SNS o singular por el Lema anterior.

3. tal que contenga tanto la columna/fila original y su miiltiplo y por lo tanto es singular.

O]

Este resultado no es valido si usamos una matriz WSD, en lugar de una matriz SSD; aunque por
definicién cualquier submatriz de una matriz WSD es WSD, las matrices ampliadas de una matriz
WSD no son necesariamente WSD. Veamos un ejemplo de una matriz que sea WSD, y su matriz
ampliada no sea WSD. Sea asi, A una matriz y B su matriz ampliada, que tienen la forma:

-2 -1 -2 2 -1
o I N I
= Veamos que A es WSD: Sea A y su respectiva A _:
-2 -1 -2 -1
S A
Es claro que el determinante de A_ es nulo. Luego se cumple (detA) - (detA_) > 0, y por tanto

A es WSD.

= Veamos que B no es WSD: Sea B y su respectiva B_:
o I B PR
Tomamos la submatriz S de B y su respectiva S ~
g_[_21 _11] 5—_[—01 _01}
<det§> : (det§_> =(2-1)-(0—1)=—-1<0. Asi S no es WSD y por tanto, B no es WSD.

El siguiente resultado muestra que el conjunto de matrices WSD contiene el conjunto de matrices
SSD.

Lema 1.4.10. Sea S una matriz SNS o una matriz singulary sea S_ la matriz obtenida de S cambiando
todas las entradas positivas por 0. Entonces det(S)det(S_) > 0.

Demostracion. Si S es singular, el resultado es trivial. Asi, suponemos que S es SNS. Consideramos la
familia de matrices S, = (1 — p)S+ pS_ con p € [0, 1] Por la definicién de SNS, si S es SNS, entonces
S, estd en la misma clase cualitativa que S para p € [0, 1). Por la continuidad del determinante, detS_
tiene el mismo signo que detS o es singular. O

En este lema se muestra que toda matriz SSD es WSD. Ambas no son equivalentes, sin embargo,
veamos un ejemplo de una matriz que no es SNS, pero si es WSD. Sea la matriz

s=(5 )

S no es ni SNS ni singular, pero sf satisface la condicién det(S)det(S_) > 0, luego S es WSD.
Los resultados siguientes son ttiles desde el punto de vista algoritmico ya que se puede reducir el
esfuerzo computacional involucrado en calcular si una matriz es SSD, WSD o no.

Autor: Beatriz Marin Irigaray



10 Capitulo 1. Las P-matrices y algunas aplicaciones
Lema 1.4.11. Sea S una matriz SSD. Sea Squ, la matriz de S con una fila/columna que contiene a lo
sumo un elemento distinto de cero. Entonces Sq,q es SSD.
Demostracion. Cualquier submatriz cuadrada de S, es de la forma:

1. una submatriz de S, por lo tanto SNS o singular.

2. un solo elemento y por lo tanto, es trivial que es SNS o singular.

3. una submatriz de S aumentada con una fila/columna adicional que contiene como maximo un
elemento distinto de cero. En este caso, el determinante es cero o es el producto de un elemento
distinto de cero y el determinante de una submatriz de S, que es SNS o singular.

O]

De este resultado se sigue inmediatamente:

Lema 1.4.12. Sea S una matriz que no es SSD. Sea Sy, la matriz S eliminando filas/columnas que
no contiene mds de un elemento distinto de cero. Entonces Sy, no es SSD.

Demostracion. Supongamos que Sy;;, s SSD. Una submatriz cuadrada de S puede ser:

1. monomial: a lo mds con una entrada no nula por fila y colocadas dichas entradas en distintas
columnas.

2. una submatriz de S;,.

3. una submatriz de S;;,, aumentada con filas/columnas que no contengan mas de un elemento
distinto de cero.

En los dos primeros casos, es trivial que la submatriz cuadrada es SNS o singular. El tercer caso
se sigue de la aplicacion reiterada del Lema 1.4.11. En consecuencia, S serd SSD que contradice la
hipétesis y se prueba el resultado. O

El lema 1.4.12 reduce el esfuerzo computacional de la comprobacién de si una matriz es SSD,
porque permite eliminar las filas de S que contiene un solo elemento.

El resultado anterior también se extiende a las matrices WSD, como veremos en el Capitulo 2 en
el lema 2.6.5 porque lo aplicaremos en el caso de las reacciones quimicas. Esto reducira el esfuerzo
computacional implicado en comprobar si una matriz para la que se ha demostrado no ser SSD, es
WSD.

Aplicaciones de las P-matrices a modelos matematicos



Capitulo 2

Aplicacion de las P-matrices a las
reacciones quimicas

2.1. Introduccion

En este segundo capitulo, vamos a estudiar una aplicacién de las P-matrices a los sistemas de
reacciones quimicas y sistemas derivados de las reacciones quimicas. Desarrollamos un modelo pre-
sentado en [7], teniendo en cuenta otro relacionado y dado en [6]. Primero se veran, en la seccién 2.2,
algunas notaciones importantes y en la seccién 2.3, se expondra la definicién de sistema de reaccién
quimica. También veremos la relacién de las P-matrices con algunos tipos de reacciones quimicas,
como son los sistemas de reaccién NAC, en la seccién 2.4, los sistemas CFSTR, en la seccién 2.5,y
los sistemas de accién de masas, en la seccidn 2.6. Nos centraremos en mostrar algunos teoremas muy
importantes en la quimica que nos servirdn para relacionar las matrices asociadas a un sistema de reac-
cién quimica, con los conceptos matematicos mencionados en el Capitulo anterior. En la seccién 2.7,
nos centraremos en explicar diferentes formas de analizar si una reaccién quimica admite equilibrios
multiples o se pueden descartar, y veremos la importancia de las matemaéticas en las reacciones qui-
micas. En la seccién 2.8 se nombrard algunas consideraciones computacionales con el fin de reducir
el esfuerzo computacional. Para terminar el capitulo y el trabajo, en la seccién 2.9, se veran algunos
ejemplos que serviran para entender los conceptos y teoremas explicados a lo largo del capitulo.

2.2. Algunos conceptos basicos de la quimica

Vamos a definir algunos conceptos elementales de quimica que se utilizardn.

Definicion 2.2.1. Una sustancia es un material homogéneo constituido por un solo componente y con
las mismas propiedades intensivas en todos sus puntos.

Algunos ejemplos de sustancias son la sal, azicar, agua. En cambio, si tenemos un sistema forma-
do por sal y agua, estaremos en presencia de dos sustancias y su composicién puede ser variable, al
gusto de cada uno. A cada una de las sustancias que forman los sistemas le llamamos componente.

Definicion 2.2.2. Un reactivo o reactante es, en quimica, toda sustancia que interactiia con otra en
una reaccion quimica y que da lugar a otras sustancias de propiedades, caracteristicas y conforma-
cion distinta, denominadas productos de reaccion o simplemente productos.

Definicion 2.2.3. Una reaccion quimica es todo proceso termodindmico en el cual una o mds sus-
tancias (llamadas reactantes), por efecto de un factor energético, se transforman, cambiando su es-
tructura molecular y sus enlaces, en otras sustancias llamadas productos. Esas sustancias pueden
ser elementos o compuestos. A la representacion simbolica de las reacciones quimicas se les llama
ecuaciones quimicas.

11



12 Capitulo 2. Aplicacién de las P-matrices a las reacciones quimicas

Los productos obtenidos a partir de ciertos tipos de reactivos dependen de las condiciones bajo
las que se da la reaccién quimica. No obstante, tras un estudio cuidadoso se comprueba que, aunque
los productos pueden variar segiin cambien las condiciones, determinadas cantidades permanecen
constantes en cualquier reaccion quimica. Estas cantidades constantes, las magnitudes conservadas,
incluyen el nimero de cada tipo de 4tomo presente, la carga eléctrica y la masa total.

Definicion 2.2.4. La concentracion de los reactivos es la proporcion o relacion que hay de los reac-
tivos de la sustancia quimica.

Definicion 2.2.5. Se define la velocidad de reaccion, como la cantidad de reactivo que se consume, o
la de producto que se forma, por unidad de volumen en la unidad de tiempo.

En las reacciones quimicas simples, s6lo la concentracién de los reactivos afecta la velocidad de
reaccion junto con la temperatura, pero en reacciones quimicas mds complejas la velocidad también
puede depender de la concentracidon de uno o mas productos. La presencia de un catalizador también
afecta la velocidad de reaccién quimica; en este caso puede aumentar su velocidad.

Definicion 2.2.6. Una matriz estequiométrica S n x m es una matriz donde n es el niimero de espe-
cies quimicas y m el niimero de reacciones quimicas. Una especie quimica puede definirse como un
conjunto de entidades moleculares quimicamente idénticas.

Definicion 2.2.7. El sustrato es una especie quimica que se considera, de forma explicita, objeto de
la accion de otros reactivos.

Definicion 2.2.8. Se llama reaccion quimica reversible a la reaccion quimica en la cual los productos
de la reaccion vuelven a combinarse para generar los reactivos.

Este tipo de reaccién quimica se representa con una doble flecha, donde la flecha indica el sentido
de la reaccion. Esta ecuacién representa una reaccion quimica directa (hacia la derecha) que ocurre
simultdneamente con una reaccién quimica inversa (hacia la izquierda):

aA+bB = cC+dD

donde a,byc,d representan el nimero de moles relativos de los reactivos A, B y de los productos C,D
respectivamente y se los llama coeficientes estequiométricos.

Definicion 2.2.9. Una reaccion quimica irreversible es una reaccion quimica que ocurre prdctica-
mente en un solo sentido. En este tipo de reacciones, la velocidad de la reaccion inversa es despre-
ciable respecto de la velocidad de la reaccion directa. Y en algunas reacciones prdcticamente nula.

2.3. Sistemas de reacciones quimicas

Una vez definidos los conceptos de la seccién anterior, veamos la definicién de sistemas de reac-
ciones quimicas.

Definicion 2.3.1. Un sistema de reaccion quimica en la que n reactantes participan en m reacciones
tiene una dindmica determinada por la ecuacion diferencial ordinaria:

x = Sv(x) (2.1)
donde:
xX=[x1,... ,xn]T es un n vector no negativo de las concentraciones de reactivos.
v=1[vi,...,Vvm] es el m vector de las velocidades de reaccion.

v S es la matriz estequiométrica n X m.

Aplicaciones de las P-matrices a modelos matemadticos



2.3. Sistemas de reacciones quimicas 13

La ecuacion define un sistema dindmico en R’} (el octante no negativo en R"). Las entradas en
S son constantes (normalmente, nimeros enteros) donde |S;;| describe cudntas moléculas del sustrato
i estan en la reaccion quimica j. El signo de S;; refleja una eleccion arbitraria de la direccion de la
reaccion quimica, sin que ello implique la reversibilidad o irreversibilidad.

Por lo general, se asume que los sustratos se producen sélo en un lado de la reaccién quimica:

= Si§;; <0, diremos que el sustrato i ocurre en el "lado izquierdo"de la reaccion quimica j.
s Si§;; > 0, diremos que el sustrato i ocurre en el "lado derecho"de la reaccién quimica j.

La ecuacién (2.1) sirve para representar tanto un sistema cerrado de reaccién quimica (donde no
hay entrada o salida de los reactivos) o un sistema abierto de reaccién quimica. Para un sistema abierto,
se permite que algunas de las reacciones quimicas no tengan «lado izquierdo» o «lado derecho». Nos
referiremos a las reacciones quimicas que no implican ninguna entrada o salida como reacciones
«reales».

S describe una aplicacién lineal entre las tasas de reaccién y las derivadas temporales de las con-
centraciones, y cualquier estado de equilibrio de la ecuacidn diferencial debe corresponder a las velo-
cidades de reaccion que estdn en el nicleo. Por lo tanto, un nidcleo no trivial significa que hay estados
de equilibrio que corresponden a las velocidades de reaccién distintas de cero.

Definicién 2.3.2. La matriz V(x), que es m x n, definida por V;;(x) = % describe la dependencia
de las velocidades de reaccion en las concentraciones. Por notacion, escribiremos V, en vez de V (x).
La matriz jacobiana de la ecuacion diferencial (2.1) se denota por SV y corresponde al producto de
dichas matrices.

Veamos como podemos simplificar la clase de reaccién quimica un poco.

Definicion 2.3.3. Llamamos sistema de reaccion no autocatalitica (NAC) si la matriz estequiométri-
ca Sy lamatriz VT tienen estructuras de signos opuestos en el sentido siguiente:

SiiVii<0 Vi, j
y
Sl'j :0:>Vj,' =0

Estas suposiciones son muy generales; significan que si un sustrato se agota (o se crea) en una
reaccién quimica, entonces se incrementa la concentracion de este sustrato, y todos los demds se man-
tienen constantes, y no puede causar que la velocidad de reaccién disminuya (o aumente). Ademas, si
un sustrato no participa en una reacciéon quimica, no puede influir en la velocidad de reacciéon. Como
permitimos que S;;V;; = 0, incluso cuando S;; # 0, entonces las reacciones irreversibles se permiten
de forma implicita en esta definicién.

Nosotros supondremos que el sistema NAC es vélido para los sistemas de accién de masas siem-
pre que un reactivo se produzca sélo en un lado de la reaccidon quimica. A veces no es necesario tener
en cuenta esta condicion; por ejemplo, en reacciones quimicas del tipo A + B = 2A donde quizds un
pequeiio flujo de la concentracién de A pasa hacia la derecha, mientras que para grandes concentra-
ciones pasa a la izquierda. En la préctica, este tipo de reacciones quimicas normalmente representan
la fusién de varias reacciones NAC. Por ejemplo, el sistema anterior en realidad podria representar
A+B=C,C=2A, donde C es un intermedio complejo de corta duracién. Si una reaccién quimica
se puede reescribir de esta manera, entonces es susceptible al anélisis que presentamos.

La suposicion de que una reacciéon quimica es NAC significa que cada sustrato interactia con las
reacciones quimicas en las que participa de la siguiente manera:

= Si se genera en la reaccion quimica, entonces se inhibe la reaccién quimica.

= Si se utiliza en la reaccién quimica, entonces se activa la reaccidon quimica.

Autor: Beatriz Marin Irigaray



14 Capitulo 2. Aplicacién de las P-matrices a las reacciones quimicas

La mayoria de los resultados de este trabajo son independientes de las formas funcionales elegidas
para la dindmica de reaccién quimica, ademads de lo descrito anteriormente sobre la suposicion de que
las reacciones quimicas son NAC. Sin embargo, algunos de los resultados que motivaron son los de
Craciun y Feinberg, véase [6] sobre la posibilidad de equilibrios multiples en sistemas de accion de
masas, y las técnicas que presentan para deducir la ausencia de equilibrios miiltiples de la estructura
de la red de reaccién quimica, véase [8].

Puesto que hemos incluido los sistemas de accién de masas en algunos resultados, vamos a defi-
nirlo.

Definicion 2.3.4. Sea I'; el conjunto de indices de los reactivos en el lado izquierdo de la reaccion
quimica j-ésima, y sea p; el conjunto de indices de los reactivos en el lado derecho de la reaccion
quimica j-ésima. Ademds, sea L;; el niimero de moléculas del sustrato i que se producen en el lado
izquierdo de la reaccion quimica j-ésima, y sea R;; el niimero de moléculas del sustrato i que se
producen en el lado derecho de la reaccion quimica j-ésima. Entonces, para un sistema de accion de
masas, la velocidad de reaccion v; para la reaccion quimica j-ésima viene dada por:

Vj = kj HXI-LU —k,j foi'/

iEF_,' iepj

donde k; y k_ j son constantes no negativas, conocidas como las constantes de velocidad hacia delante
y hacia atrds para la reaccion quimica j-ésima.

Cuando la reaccién es NAC, esta férmula puede ser reescrita en términos de entradas de la matriz

estequiométrica como:
_ —Sij Sij
vi=ki [Tx" =k [~
iel’ j icp j
Asi, podemos escribir una sola reaccién quimica reversible como dos reacciones quimicas irreversi-
bles.

2.4. P)-matrices y los sistemas de reaccion NAC

En este apartado vamos a estudiar la relacién entre las P(~)-matrices y los sistemas de reaccién
quimica dados por la ecuacién diferencial (2.1).

Veremos un resultado con unas condiciones suficientes para la matriz estequiométrica S, que ase-
gura que la matriz jacobiana serd una Péf)—matriz, condicién de interés en las aplicaciones quimicas.
Esta condicién suficiente puede ser también una condicién necesaria.

Recordamos primero que una matriz de S determina una «clase cualitativa» de todas las matrices
con entradas con el mismo signo de Sy se denota como Q(S). Una matriz es SNS si el signo del
determinante es el mismo para cada matriz de su clase cualitativa. Es ttil pensar en las Q(S) como una
matriz con las entradas consistentes en ceros y las variables de signo constante, y asi el det(Q(S)) es un
polinomio con estas variables. Si det(Q(S)) es distinto de cero, entonces es una suma de monomios,
cada uno de los cuales es positivo o negativo. También tiene sentido para referirse a Q(S) como la
clausura de Q(S) (considerandolo como un conjunto de matrices), y det(Q(S)) es el mismo polinomio
que det(Q(S)), con variables que ahora pueden tomar el valor cero. En esta terminologia, un sistema
de reaccion es NAC si V € Q(—ST).

Para las demostraciones que siguen en este apartado, es conveniente establecer las convenciones
de notacién siguientes.

= Con la matriz S nos referiremos a una matriz estequiométrica.

= Como estamos interesados en las matrices NAC, los sistemas de reaccién quimica de esta sec-
cién, dada una matriz de S, es util usar V para referirnos a la clausura de toda la clase Q(—S7).

Aplicaciones de las P-matrices a modelos matemadticos
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» Del mismo modo, con V[y|a] nos referiremos al det(Q(—S(t|y))).
= Si nos referimos a una «eleccién de V» seran unas matrices particulares en Q(—S7).

= Los objetos definidos como productos tendrén el significado apropiado, por ejemplo, un objeto
de la forma S[ot|y]V[y|e] es de nuevo un polinomio.

Ahora podemos presentar nuestro primer teorema importante de este capitulo.

Teorema 2.4.1. Si la matriz estequiométrica S de un sistema de reaccion NAC es SSD, entonces la
Jjacobiana J := SV es una F -matriz.

Demostracion. Veamos que SV es una P -matriz. Recordamos que una matriz A es F, -matriz si —A
tiene todos sus menores principales no negativos.

Sea J[¢] el menor principal de J que corresponde a la submatriz con filas y columnas a C {1,...,n}.
Por la férmula de Cauchy-Binet, vedse (1.2.4), tenemos

Ja = (V)= ) SlalnVvivel (2.2)
ycA{l,...,m}
7=l
Como el sistema de reaccién es NAC (S y V7 estructuras de signos opuestas) y S es SSD (detS # 0 y
se puede determinar por los signos de las entradas). Por ser S una matris SSD, para cada 7, puede ser
que J[a|y] = 0 o bien que S(a,y) es SNS.
Si S(o,7y) es SNS, como Sy V7 tienen estructuras de signos opuestos, deducimos por (1.4.5) que

sign(V[yla]) = (—1)*Isign(S[a|7])

Asi, J[a] es el sumatorio de términos 2.2, cada uno de los cuales es o bien 0 (S[a,y] = 0) o bien de
signo (—1)l,

|o |o

sign(S[ax[7]) - sign(V[ylet]) = signS[a|y]- (=1)'""- signS[aly] = (—1)

Por tanto, 6 J[ot] = 0 o tiene signo sign(J[a]) = (—1)/%! ya que todos los coeficientes tienen el mismo
signo. En consecuencia, SV es una F, -matriz. O

Una pregunta natural que surge es si existe algin tipo de condicién més débil en la matriz este-
quiométrica que asegure la existencia de la jacobiana Péf)

negativa.

. El siguiente resultado da una respuesta

Teorema 2.4.2. Supongamos que la matriz estequiométrica S de un sistema NAC no es SSD. Entonces,
(=)

existe alguna matriz V para la cual la matriz SV no es una Fy *-matriz.

Demostracion. Como S no es SSD , hay conjuntos o C {1,...,n}, w C {1,...,n} con |on| = W]
tal que S(0|y) no es ni SNS ni singular. Tenemos de nuevo por la formula de Cauchy-Binet, véase
(1.2.4)

Jowl= Y, Sloo|nVIyieo)

')/C{l,“.,m}
[71=lool

Como S(0|y) no es SNS y por ser un sistema NAC, S'y V7 tienen estructuras de signos opuestas.
V[10|ot] contiene términos positivos y negativos. V[y|ap] tiene un término ¢ tal que S[cp|]t tiene
signo «equivocado» (—1)!%/*1 (con objeto de que SV pudiera ser Péf)—matriz.

Pero ¢ es solo un término del determinante de una submatriz de V'; es decir, un producto de las entradas
de V. Cambiamos todas las entradas de V que no figura en ¢ por 0. Como los determinantes son

polinomios homogéneos en las entradas de una matriz, y puesto que no hay ninguna entrada con
exponente superior a 1, todos los términos de J[ap| diferentes de S[ap|y] son nulos. Asi J[ap] =

S[ot| 0] que tiene signo (—1)I%/+1, Por lo tanto, J := SV no es una P(g_>-matriz.

Autor: Beatriz Marin Irigaray
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Por continuidad, como el conjunto de matrices que no son P(g_)—matrices son un conjunto abierto,

ampliando el resultado, el argumento sigue siendo valido si las entradas en V que no figura en ¢ son
suficientemente pequefias, aunque no sean cero. O

Podemos unir los dos resultados anteriores, como el siguiente corolario.

Corolario 2.4.3. Sea A una matriz n X m. Entonces A es SSD si AB es una Py-matriz para cada matriz
B m x n que satisface A;jjBj; >0y A;; = 0= B;; =0.

Demostracion. La demostracion es inmediata a partir de los dos resultados anteriores. O

Aunque hasta ahora nos hemos centrado en Pé_)—matrices, de estos resultados y de sus demostra-

ciones se puede deducir dos proposiciones, que se enunciaran sin demostracion:

Proposicion 2.4.4. Sea S matriz SSD tal que para cada oo = {1,...,n}, hay algiin vy tal que S[a|y] y

V[y|a] son ambos determinantes distintos de cero, entonces J es una Péf)—matriz no singular.

Proposicion 2.4.5. Para cada o, existe algiin y tal que S[a|y] y V[y|a] que son ambos distinto de
cero, entonces J es una P) matriz,

Estas dos proposiciones enunciadas surgen a menudo en la prictica debido a que hay procesos de
entrada y salida que contribuyen a los términos en la diagonal de SV

Corolario 2.4.6. Si una matriz estequiométrica S no es SSD, entonces hay algiin submatriz cuadrada
S(aly) tal que det(Q(S(ex|y))) y por tanto V[y|a] tienen un elemento positivo y uno negativo.

2.5. P(-)-matrices y los sistemas CFSTR

Veamos ahora un tipo particular de sistemas de reacciones quimicas llamados CFSTR.

Definicion 2.5.1. El reactor de tanque agitado continuo (CSTR) consta de un tanque con una agita-
cion casi perfecta, en el que hay un flujo continuo de materiales reaccionantes y desde el cual sale
continuamente el material que ha reaccionado (material producido). El proposito de lograr una buena
agitacion es lograr que en el interior del tanque se produzca una buena mezcla de los materiales, con
el fin de asegurar que todo el volumen del recipiente se utilice para llevar cabo la reaccion quimica,
Y que no existan o queden espacios muertos. Un sistema CFSTR se puede escribir como

X = q(xin —x) + Sv(x)

donde:

S se refiere a la matriz estequiométrica de las «verdaderas» reacciones en un CFSTR (excluyendo los
procesos de entrada y de salida)

q es un escalar positivo que representa la tasa de flujo a través del reactor
Xin €S un vector no negativo que representa la concentracion de «alimentacion».

Volviendo a los lemas de la seccién anterior, en el flujo continuo de reactores agitados (CFSTRs)
como se presenta en [6] tiene propiedades que aseguran que para la tasa de flujo distinto de cero,
cualquier matriz jacobiana es una P{~)-matriz.

A partir de la definicién de sistema CFSTR, se puede sacar conclusiones sobre este tipo de siste-
mas. Veamos el siguiente resultado.

Teorema 2.5.2. Supongamos que todas las reacciones quimicas en un sistema CFSTR son NAC. Si la
matriz estequiométrica S es SSD, entonces la jacobiana del sistema es una P()-matriz.

Aplicaciones de las P-matrices a modelos matematicos
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Demostracion. La matriz total estequiométrica Sy de un sistema CFSTR se puede escribir en bloques
de la forma:
Sf = [S| - In]

donde S es la matriz de las reacciones quimicas verdaderas e I, es la matriz unidad n X n.
Vv
qly

J=8;Vy=—ql, +SV

Andlogamente, definimos V¢ como:

La matriz jacobiana del sistema es

Como las reacciones son NAC y S es SSD, por el Teorema 2.4.1, SV es una Pé_)

Por una caracterizacion de P-matrices, una matriz A es una Péf)—matriz si para cualquier vector no
nulo y existe algin indice i tal que y;(Ay); > 0, y del mismo modo se trata de una P-matriz si para
cualquier vector no nulo y existe algin indice i tal que y;(Ay); > 0. Asi la suma de cualquier Pé_)-
matriz mas una matriz diagonal negativa es una P(~)-matriz. Por tanto, J es una P~)-matriz. U

-matriz.

Para los sistemas CFSTR, el resultado presentado en el Teorema 2.4.2 se puede fortalecer en el
siguiente sentido: Si la matriz estequiométrica de las reacciones quimicas verdaderas en un sistema
CESTR no es SSD, y por lo tanto la matriz jacobiana puede dejar de ser una P{~)-matriz, entonces la
matriz puede ser singular.

Teorema 2.5.3. Supongamos que todas las reacciones quimicas en un sistema CFSTR son NAC, y
que la matriz estequiométrica de las reacciones quimicas verdaderas, S, no es SSD. Entonces, existe
alguna matriz V para la cual el det(J) tiene signo (—1)"*! (y, por tanto, no puede ser P\~)-matriz).

Demostracion. El resultado es valido cuando haya un término de signo «erréneo» en la expansion del
determinante, y este término domine a todos los demds términos.

Como en la demostracién del Teorema 2.4.2, cuando S no es SSD, esto implica la existencia de
conjuntos o, C {1,...,n},% C {1,...,m} con |on| = || tal que V[yp|0] contiene un término 7 tales
que S[oy| 1)t tiene signo (—1)I%l+1,

Sea Sy y Vy definidas como en la demostracion del Teorema 2.5.2:

\%
Sf:[S‘—In]; Vf: I:q[:|, JESfo:—qI+SV
n

Laestructura de Sy y Vy significa que hay un término en det(S V) de la forma (—g)"~1%/S[ap| %]z, que
es de signo (—1)""1. Como el determinante de cualquier submatriz de V es un polinomio homogéneo
en las entradas de V¢, y no hay ninguna entrada de V que pueda aparecer mas de una vez en cualquier
término, suponiendo que todas las entradas de V distintas de las que se producen en ¢ sea cero garantiza
que

det(S;Vy) = (—q)"1%IS[a| Y]t + términos de orden superior en q.

Eligiendo cualquier valor fijado para las entradas en ¢, entonces para q suficientemente pequeiio, el
término de orden mds bajo (—¢)"1%!S[ag| ]t es el término dominante en esta expresién, y por lo
tanto, det(S;Vy) tiene signo (—1)"*1. Como en la demostracién del Teorema 2.4.2, por continuidad,
el resultado es cierto para entradas pequefas y no nulas de Vy. 0

Este dltimo teorema es mds importante de lo que puede parecer a primera vista porque de él se
puede deducir una consecuencia muy importante.
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Teorema 2.5.4. Para un sistema CFSTR que tiene matriz jacobiana no singular (para todas las en-
tradas de V') es equivalente a la inyectividad del sistema.

El teorema anterior implica que al comprobar si un sistema es necesariamente inyectivo, en lugar
de comprobar si S es SSD, se puede comprobar si todas las submatrices n x n de Sy son SNS o singular.
Aunque a primera vista, la segunda parece mas facil, los dos problemas son equivalentes porque el
célculo de los factores determinantes de todas las submatrices n X n de Sy requiere el calculo de los
factores determinantes de los submatrices cuadradas de S.

2.6. P-)-matrices y sistemas de accion de masas.

En esta seccién presentamos algunos resultados sobre los sistemas de accién de masas. Es posible
demostrar resultados mas sélidos acerca de los sistemas de accién de masas que de los sistemas de
reaccion quimica arbitrarios porque la matriz V tiene una estructura adicional més alld de su estructura
de signo. Nuestra preocupacién ahora es la cuestién de cudndo un sistema de reacciones quimicas,
como resultado de su estructura combinada con la suposicién de la dindmica de la accién de masas,
genera una matriz jacobiana Péf) (0, en el caso de los sistemas CESTR, una P'~)-matriz jacobiana).

Si un sustrato nunca se produce en ambos lados de cualquier reaccién quimica, entonces la forma
de accién de masas garantiza que todas las reacciones quimicas son NAC, por lo que si la matriz
estequiométrica S es SSD, esto asegurard que la matriz jacobiana es Pé_). Mostramos, sin embargo,
que en el caso de los sistemas de accidén de masas es posible debilitar la condicién de que S debe ser
SSD y atn asi obtener una matriz jacobiana Pé_) .

Se puede demostrar facilmente que los sistemas de accién de masas son inyectivos si sus matrices
jacobianas son no singulares para todos los valores positivos de las constantes de velocidad y las
concentraciones, véase [6]. Sin embargo, por ahora, nosotros somos incapaces de hacer afirmaciones
sobre la inyectividad de reacciones autocataliticas utilizando nuestras técnicas debido a que la matriz
estequiométrica «pierde informacién» acerca de las reacciones quimicas que tienen el mismo sustrato
en ambos lados de la ecuacién -que codifica s6lo la produccién neta o la pérdida de un sustrato en una
reaccioén quimica, en lugar de las cantidades absolutas de cada lado de una reaccién quimica.

Para formular los resultados a seguir necesitamos tener en cuenta que cualquier sistema de accién
de masas se puede escribir como un sistema de reacciones quimicas irreversibles considerando cual-
quier reaccién quimica reversible como dos reacciones quimicas irreversibles. Por el Lema 1.4.9 del
capitulo anterior, reescribir el sistema de esta manera no afecta a si la matriz estequiométrica es SSD.

Los resultados de esa seccién muestran que la eleccion de la forma de ordenar el conjunto de sus-
tratos o reacciones quimicas no afecta si la matriz estequiométrica es WSD o no. Sin embargo, como
veremos mas adelante, para la eleccién al representar una reaccion reversible como dos irreversibles
puede afectar si la matriz estequiométrica es WSD o no.

Ahora podemos reformular el Teorema 2.4.1 para sistemas de accién de masas.

Teorema 2.6.1. Consideramos la matriz estequiométrica S de un sistema de reaccion de accion de
masas NAC escrito como un sistema de reacciones quimicas irreversibles. Si S es WSD, entonces la
(=)

matriz jacobiana J := SV es una Fy ’-matriz.

Demostracion. La velocidad de reaccidn para la i-ésima reaccion es de la forma

_sji
vi=k[]x;

Jjeli

donde k; es la constante de velocidad para la reaccién quimica i-ésima y I'; es el conjunto de indices
de los reactivos en el lado izquierdo de la i-ésima reaccion.

Aplicaciones de las P-matrices a modelos matemadticos
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Las entradas de V son de la forma

i <Si
v k,’ij It :T'ﬂvj si jel;

Vij = ox. = jeli J
J

0 si ]¢Fl

Definimos S_ como la matriz S con todas las entradas positivas reemplazadas por ceros. Ademds, sea
D, la matriz diagonal positiva n X n con entradas % en la diagonal (definida cuando x; > 0 para todo
/). Y sea D, la matriz diagonal positiva m x m con entradas v; en la diagonal. Con esta notacién, la
matriz V puede ser escrita como

V=-D,S"D,

(estd definida solo cuando todos los x; > 0).

Consideramos un menor arbitrario de V, V]yla] con o C {1,...,n} y yC{l,...,n},y || = |7].
Aplicando la férmula de Cauchy-Binet, véase (1.2.4), y el hecho de que s6lo los menores principales
de una matriz diagonal son distintos de cero:

V[rle] = (=1)“D,[1]S" [Ya]D.[a]

Asi, un menor de la matriz jacobiana toma la forma

flaj=(sV)la] =, ¥ Slervirie] = (-0 ¥ SleiriDs’ (vialDidal =
e Y el

= 1\l
SZ[y\aJ:s_[am( DDi[a] Y, SlalyS_[alylDy [

Como Dy y D, son matrices diagonales positivas, D,[ct] y D,[y] son positivas. Asi, J[a] tiene signo
(—=1)l%l o es cero, si S[a|y] y S_[ax|7] tienen el mismo signo (o uno de ellos es cero).

Por lo visto anteriormente, si S es WSD, entonces la matriz jacobiana de un sistema de accién de
masas es una P(g_>—matriz en el interior del octante positivo. Sin embargo, el conjunto de P(g_)—matrices
es cerrado, y como la matriz jacobiana depende con continudad de los valores de x;, la matriz debe ser

P 0
El siguiente corolario es inmediato.

Corolario 2.6.2. Supongamos que todas las reacciones quimicas de un sistema CFSTR son reacciones
de accion de masas NAC. Si la matriz estequiométrica S del sistema escrito como un conjunto de
reacciones quimicas irreversibles es WSD, entonces la matriz jacobiana del sistema es una P
matriz.

Demostracion. La demostracion es andloga a la del Teorema 2.5.2: una Péf)—matriz m4s una matriz
diagonal negativa es una P(~)-matriz. O

Hay una especie de inverso del Teorema 2.6.1 que demuestra que la condicién de ser WSD es
necesaria para garantizar que la matriz jacobiana de un sistema de accién de masas serd una Pé_)—

matriz.

Teorema 2.6.3. Supongamos que la matriz estequiométrica S de un sistema de accion de masas

NAC escrito como un conjunto de reacciones quimicas irreversibles no es WSD. Entonces existe una

eleccion de las constantes de velocidad k; para las cuales J := SV no es una Pé_)-matriz.
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Demostracion. Si S no es WSD, entonces S[a|w]|S_[co| ] < O para algin o C {1,...,n}, 1 C
{1,...,m} con |a| = | |- Tenemos asi

Jloo] = (=1)'*Dyfao] Y. Slow|MIS_[ow] D[V
yc{1,....,m}
|71=l o]
Como D,[y] = [1;eyv;, eligiendo k; = 0 para todo j ¢ ¥ y k; # O para todo j € Y, implica que
D,[y] =0 para y € Y. Asi, con estas eleccién

Jlow] = (=1)*'D[a0]S[cw|10]S _ [et0| 10] Dy [20]

que tiene signo (—1)I%I/*1 en el interior del octante positivo. Por continuidad, J[oy] sigue teniendo
signo (—1)/%l*1 en alguna regién del ortante positivo cuando &, j ¢ 1, es pequefio, pero distinto de
cero. O

Para los sistemas de accion de masas, la condicién de ser WSD la matriz estequiométrica es por
lo tanto necesaria para garantizar que la matriz jacobiana serd una Po(f)—matriz. De hecho, en el caso
de los sistemas de accién de masas CFSTR es andlogo al resultado general del Teorema 2.5.3: la

propiedad de S de ser WSD es necesaria para garantizar que la matriz jacobiana sea no Py-matriz.

Teorema 2.6.4. Supongamos que la matriz estequiométrica S de las verdaderas reacciones quimicas
en un sistema CFSTR de accion de masas NAC escrito como un conjunto de reacciones quimicas
irreversibles no es WSD. Entonces para alguna velocidad de flujo q, con constantes de velocidad k;,
y concentraciones x; para el que det(J) tiene signo (—1)"*! (es decir; signo «equivocado»).

Idea de la demostracion. La demostracion es un poco mds dificil que la prueba equivalente para los
sistemas generales, pero de nuevo, el resultado se sigue siempre y cuando haya un término de signo
erréneo en la expansion del determinante, y este término puede dominar a todos los términos de la
expansién. Como S no es WSD, S[op|10]S_[o|10] < 0 para algiin conjunto ap C {1,...,m}, p C
{1,...,m} con || = |y0|. La matriz jacobiana es J = SV — ¢l, y el determinante de la jacobiana es
det(J) = det(SV — ¢I). Ampliando esto, tenemos

n

det(J) =det(SV —gl) = Y (-1)/¢/ Y, SV[a]
Jj=0 ac{l,...,n}
|oj=n—j

n

= Y4 ) (—1)"7Dda] ), SlaliS_[alyD[Y]

dem 2.6.3

j=0 oc{l,...,n} yc{l,...,m}
|ot|=n—j [Y=lel
=(-1'Yqd Y Dol Y Slays_[alyD.[y
-]:0 aC{LJl} YC{1~7m}
lot|=n—j 17=la|

Ajustando todos los k; ¢ Y igual a 0, obtenemos

det(J =SV —gl) = (=1)"¢" ™D,[p] Y. D[a]S[ew]S_[et] ]
el
a|=[%

+ términos de orden superior en ¢

Sabemos que S[0|0]S_[0%|70] < 0. Como Dy[a] = [Ticq x; ' valores de i, para i € o y aumen-
tando los valores de x; para i ¢ & podemos hacer D,[a] mucho grande que D,[o] para cualquier
o # O en la suma anterior, lo que garantiza que el término

D, [10]Dx[a0]S[o0|10]S _[0] 0]
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es el término dominante del coeficiente de ¢" /"l y por lo tanto este coeficiente tiene signo (=1,

(Nota: al aumentar los valores de x; ¢ o afecta, pero nunca disminuye, el tamafio de Dy[c]D,[W)).
Una vez visto que los coeficientes de ¢"~ ! tienen signo (—1)"*!, podemos elegir q suficientemente
pequefio, con lo que el término de orden ¢"~ %! sea el término dominante en det(SV —gl). Asi, para
q pequefio, pequefios valores de x; € ap (y todos los demds x; suficientemente grandes), el mayor
ki € Y (y todos los demds k; suficientemente pequefios) podemos asegurar que det(SV — ¢l) tiene
signo (—1)"*1, O

Con este resultado, vemos que si S no es WSD, entonces para alguna constante de velocidad y
velocidad de flujo, la matriz jacobiana de un sistema CFSTR serd singular. Por lo tanto la propiedad
de S de ser WSD es a la vez una condicién suficiente y necesaria para asegurar que la jacobiana de
un sistema CFSTR de accién de masas NAC es siempre no singular. También es condicién suficiente
y necesaria para asegurar que la matriz jacobiana es siempre una P(~)-matriz y por lo tanto que el
sistema es inyectivo. Por tanto, estos hechos implican la no singularidad de la matriz jacobiana de un
sistema CFSTR de acciéon de masas NAC es equivalente a la inyectividad para estos sistemas. Este
teorema se superpone con el Teorema 3.3 en [6]: Ambos teoremas se basan en el hecho de que para los
polinomios que definen los determinantes en sistemas positivos CFSTR de los coeficientes numéricos,
es necesario garantizar la positividad del polinomio.

Hay otras relaciones estrechas con los teoremas de aqui y los de [6]. En el Teorema 3.1 de [0] se
demuestra directamente que los sistemas de accion de masas son inyectivos si sus matrices jacobianaa
son no singulares para todos los valores positivos de las constantes de velocidad y las concentraciones.
Como acabamos de ver, llegamos a la misma conclusién para los sistemas NAC a través de una ruta
diferente: hemos demostrado que la condicién de que la matriz S es WSD es equivalente tanto a la
inyectividad y a la no singularidad de la matriz jacobiana en los sistemas CFSTR, en el Teorema 2.5.4
y por lo tanto que estos dos son a si mismos equivalentes.

Una diferencia aparente entre estos resultados y los de [6] se encuentra en el hecho de que, en
el Teorema 3.2 de [6], sélo se necesitan los factores determinantes de submatrices de la matriz n X n
estequiométrica completas, mientras que cuando hay que mirar la la condicién de WSD tenemos que
comprobar todas las submatrices cuadradas de la matriz estequiométrica. Sin embargo, esta diferencia
es solo aparente, y la observacion que hicimos acerca de los sistemas generales se aplica de nuevo aqui:
comprobar que S es WSD es computacionalmente equivalente a comprobar que todas las submatrices
T nxndeS;=[S| —1,] satisfacen det(T ) det(T_) > 0.

En el capitulo 1, véase Lema 1.4.10 hemos visto que el conjunto de matrices WSD contiene el
conjunto de matrices SSD. Ahora ya estamos en condiciones de decir que la matriz estequiométrica de
un sistema de reacciones quimicas es SSD cuando se escribe como un sistema de reacciones quimicas
irreversibles, en cuyo caso es también WSD.

El siguiente lema es muy ttil en la prictica, y extiende el Lema 1.4.12 (vélido para matrices SSD)
a la clase de matrices WSD.

Lema 2.6.5. Sea S, referida a la matriz estequiométrica de un sistema de reacciones quimicas, y Siy
referida a la matriz estequiométrica del sistema escrito como un conjunto de reacciones quimicas
irreversibles. Sea a el conjunto de filas de S, que contienen un solo elemento distinto de cero 'y 7y el
conjunto de columnas de S, que contienen un solo elemento distinto de cero. Sea Sy, la matriz de S;,
con filas o y columnas 7y eliminadas. Entonces S; es WSD si y solo si Syin, es WSD.

Demostracion.

<) Trivial por ser Sy, una submatriz de S,

=) Supongamos que S, no es WSD, y consideramos una submatriz cuadrada 7' de S, que no cumple
det(7)det(T_) > 0. Cualquier elemento de T que no sea de Sy, debe estar en las filas/columnas de
T que contiene un solo elemento distinto de cero, ya que si se encuentran en las filas que contienen
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un dnico elemento positivo y un tnico elemento negativo, dos columnas de 7 serdn mdltiplos la una
de la otra y, por tanto, 7' serd singular. Ademads, los elementos distintos de cero de 7' que no sean de
Saim deben ser negativos, ya que sino 7 contendria una fila de ceros y por lo tanto serfa singular.
La dnica manera de que det(7') sea distinto de cero es si se toma la forma del producto de estos
elementos negativos con el determinante de una submatriz T de Saim- Andlogamente, det(7_) debe
tener la forma del producto de estos elementos negativos con el determinante de 7_. Asi det(7") det(7 )
es un maltiplo positivo de det(7)det(T ), lo que implica que det(T)det(T ) < 0. Asi Sy no es
WSD. O

Este lema dice que la comprobacion de si una matriz no es SSD es en realidad WSD una lata eli-
minar primero las filas correspondientes a los reactivos que se producen sélo en una reaccién quimica
(tal vez reversible) de la matriz estequiométrica antes de comprobar los sistemas de reaccidén quimica.

2.7. Equilibrios multiples

En esta seccién, veremos un motivo de la importancia de las P-matrices en una reacciéon quimica.
Sabemos que determinar si una reaccién quimica admite equilibrios miltiples o no, es una tarea muy
dificil. El criterio de la jacobiana, véase [8], permite determinar si una matriz admite equilibrios mdl-
tiples o no. Asi, si la reaccién quimica pasa el criterio de la jacobiana, no tiene equilibrios mdltiples.
Por tanto, que una reaccién quimica falle el criterio de la jacobiana es una condicion necesaria para
admitir equilibrios miiltiples. Dada una reaccién quimica, es muy costoso demostrar quimicamente si
admite el criterio de la jacobiana o no. Con una simple inspeccién se puede saber facilmente si admite
equilibrios multiples en algunos casos. Asi, si todas las especies de un CFSTR tiene molecularidad
total igual o menor que dos, entonces pasa el criterio de la jacobiana, y por tanto, no admite equilibrios
multiples; refiriéndose con molecularidad total de una especie a la cantidad de reacciones sin flujo en
las que aparece, donde las reacciones reversibles se cuenta sélo una vez y cada aparicion de la especie
se cuenta con su coeficiente de estequiometria.

Otro caso trivial es una reaccién autocatalitica en un sistema CFSTR, ya que siempre falla el
criterio de la jacobiana, y por tanto, puede haber equilibrios multiples.

También hay otra forma de descartar equilibrios multiples, que se verd mas adelante con un ejem-
plo. Si todas las redes de una reaccion quimica tienen orientacion no negativa, O,(G;) > 0, entonces
la reaccién quimica no admite equilibrios multiples.

Existe un método de reduccién del criterio de la jacobiana para las reacciones quimicas, que
tiene un algoritmo muy complicado. Lo ilustraremos en la seccién 2.9 con una reaccidén quimica, sin
profundizar tedricamente.

Volviendo al tema de las P-matrices, otra forma para responder a la pregunta de si una reaccién
quimica admite equilibrios multiples es la siguiente:

Teorema 2.7.1. Si las reacciones quimicas en un sistema CFSTR son NAC, y la matriz estequiomé-
trica S es SSD, entonces el sistema no admite equilibrios miiltiples.

2.8. Consideraciones computacionales.

Aunque es ficil escribir el algoritmos para comprobar si una matriz dada es SSD o WSD, el
calculo real requiere la comprobacién de un gran nimero de submatrices, y puede ser largo si la
reaccién quimica es grande. Como las grandes matrices estequiométricas son, en general, altamente
dispersas, se puede lograr una velocidad considerable mediante el uso de algoritmos para identificar
submatrices que tienen determinante cero sin intentar calcular el determinante. Del mismo modo, los
algoritmos inteligentes deben evitar el recélculo de los determinantes de matrices cuando se producen
como submatrices en matrices mas grandes.

Aplicaciones de las P-matrices a modelos matemadticos
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Otra técnica que puede acelerar la clasificacién de una matriz como SSD o WSD se basa en el
hecho de que es posible ignorar todos los sustratos que se producen en una sola reaccién quimica,
como se muestra en los lemas 2.4.1, 2.4.2 y 2.6.5. Esto disminuye el esfuerzo computacional en
muchos ejemplos. Considerar el ejemplo:

A+B=P, B+C=0, C=2A

que tiene matriz estequiométrica, en formas reversibles e irreversibles,

-1 0 2 -1 1 0 0 2 =2
-1 -1 0 -1 1 -1 1 0 O
S=10 -1 -1}, S=] 0 0 -1 1 -1 1
1 0 0 1 -1 0 0 O O
0 1 O o o0 1 -1 0 O

Como Py Q sélo se producen en una sola reaccién quimica, al comprobar si el sistema es SSD y
WSD, respectivamente, basta con comprobar las matrices reducidas

o [-1 0 2 o [-11 0 0 2 -2
Ss=| -1 -1 0|, S=|-11-11 0 0
0 —1 -1 0 0 -1 1 —1 1

lo que reduce considerablemente el esfuerzo computacional.

2.9. Ejemplos

Presentamos algunos ejemplos para ilustrar la teorfa explicada en las secciones anteriores.

2.9.1. Ejemplos de [6]

El hecho de que una matriz estequiométrica S sea SSD es mas comun de lo que podria parecer a
primera vista.
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’ Sistemas de reacciones quimicas | SSD WSD

@) A+B=P no SSD | no WSD
B+C=0

C=2A
(ii) A+B=P SSD WSD
B+C=0
C+D=R

D=2A
(iii) A+B=P no SSD | no WSD
B+C=0
C+D=R
D+E=S

E=2A
@iv) A+B=P SSD WSD
B+C=0

C=A
V) A+B=F no SSD | no WSD
A+C=G
C+D=8B
C+E=D
(vi) A+B=C SSD WSD
X=2A+D
2A+D=Y
D=C+W

B+D=7

Tabla 2.1: Comportamiento de algunos sistemas de reaccién quimica que se presentaron en [6].

En todos los casos, se ve una relacion entre la capacidad de equilibrios multiples con si la matriz
estequiométrica es SSD o no, como se ha explicado en la seccion 2.7. Asi, si la matriz es SSD,
entonces no admite equilibrios multiples. Este resultado también se puede ver quimicamente, pero
veremos que es mds costoso. En los sistemas (ii), (iv) y (vi) de la Tabla 2.9.1 se puede comprobar que
los equilibrios mdltiples se descartan.

Veamos el tema de los equilibrios miltiples quimicamente en el primer caso:

= Sea el sistema de reaccién quimica (i):
A+B=P B+C=0Q, C=2A

Veamos como se puede simplificar el criterio de la jacobiana en las reacciones quimicas. Las
especies que tienen molecularidad igual a 1 se quitan; por tanto, las especies P, Q se eliminan
de nuestras redes. Ademads, como solo la especie A tiene una molecularidad total superior a dos,
cada red que consideramos debe contener A + B — 0 y una de las reacciones reversibles C = 2A
(porque no tenemos que tener en cuenta los dos sentidos de una reaccién reversible en la red).
Sin embargo, dicha red 2-cuadrado tendria una especie B que aparece en un solo complejo. Por
lo tanto, tenemos que tener en cuenta las dos 3-cuadrado redes, que son:

A+B—0, B+C—0, C—=2A
A+B—0, B+C—=0, C<+2A

Aplicaciones de las P-matrices a modelos matematicos
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Hay que calcular la orientacion de las redes, véase seccion 2.7. Consideramos
Gi=A+B—0, B+C—0, C—2A
G, =A+B—0, B+C—0, C<+2A

1 10 1 10
Asi, Or(Gy) = sign(det(MG) -det(RG;)) =sign[det| O 1 1 |-det| O 1 1 =
0 0 1 -2 0 1
1 10 11 0
Ahora, Or(G,) =sign(det(MG,)-det(RGy)) =sign [ det | O 1 1 | -det 11 =
2 00 2 0 -1

La segunda red tiene orientacion positiva, pero la primera red tiene orientacién negativa. Como
todas las redes de la reaccién quimica tienen orientacién no negativa, entonces el criterio de la
jacobiana falla. Asi, no se puede descartar la existencia de equilibrios multiples.

= Sea el sistema de reaccién quimica (iv):
A+B=P B+C=0Q, C=A

Veamos cémo se puede simplificar el criterio de la jacobiana en las reacciones quimicas. Las
especies que tienen molecularidad igual a 1 se quitan; por tanto, las especies P, Q se eliminan de
nuestras redes. Cada red debe tener una de las reacciones reversibles C = A (porque no tenemos
que tener en cuenta los dos sentidos de una reaccidn reversible en la red). Por tanto,

A+B—0, B+C—=0, C—A
A+B—0, B+C—=0, C<+A

Como todas las especies tienen molecularidad igual a 2, pasa el criterio de la jacobiana y por
tanto, se pueden descartar los equilibrios multiples.

Vamos a ver que, efectivamente, las matrices de estos sistemas de reacciones quimicas son de
las clases mencionadas en la tabla 2.9.1. En efecto, recordamos que una matriz es SSD si todas las
submatrices cuadradas de S son SNS o singulares. Y una matriz es SNS si el signo de su determinante
es distinto de cero y se puede determinar a partir de los signos de sus entradas. Asimismo, recordamos
que una matriz es WSD si para cada submatriz cuadrada S de S se satisface det(S)det(S_) > 0, donde
S _eslamatriz S con todas las entradas positivas reemplazadas por ceros. Asi, veremos la importancia
de nuestro enfoque.

= Sea el sistema de reaccién quimica (i):
A+B=P B+C=0Q0, C=2A

Por la subseccioén de consideraciones computacionales 2.8, basta comprobar las matrices redu-

cidas:
-1 0 2 -11 0 0 2 =2
Ss=-1 -1 01, Sp=|-11-11 0 0
0o -1 -1 0 0 -1 1 —1 1
e Veamos que S, no es una matriz SSD:
-1 0 2
det| =1 =1 0 | =(=1)-(=1)-(=1)4+2-(=1)-(=1)=—=14+2#£0.
0o -1 -1

No se puede determinar por el signo de las entradas de la matriz (ya que hay una resta
«verdadera» de términos), luego no es SNS. En consecuencia S, no es SSD, y por tanto,
la matriz ampliada S;, tampoco es SSD.
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e Veamos que S, no es WSD. Tomamos como submatriz ella misma, que ya hemos visto
que el detS, = 1.
-1 0 O -1 0 O
SeaS, =| -1 —1 0 |, detS, =| -1 -1 0 |=-1
0 -1 -1 0 -1 -1

Asi, (detgr) . (detgr_) = —1, luego §r no es WSD, y por tanto §l~r tampoco tomando

como submatriz S,.

= Sea el sistema de reaccién quimica (iv):
A+B=P, B+C=0, (C=A

Por la subseccién de consideraciones computacionales 2.8, basta comprobar las matrices redu-

cidas:
-1 0 1 -11 0 0 1 -1
S=-1 -1 01, Sy=|-11-11 0 0
0 -1 -1 0O 0 -1 1 -1 1
e Veamos que S, es una matriz SSD:
-1 0 1
det| =1 -1 0 | =(-1)-(=1)-(=1)+1-(=1)-(=1)=—=14+1=0.
0 -1 -1

Asf S, es una matriz singular. Las demds submatrices cuadradas de orden 2 son o sin-
gulares o SNS por el desarrollo de las matrices 2 X 2 visto en la subseccién 1.4.1. En
consecuencia S, es SSD.

e Veamos que §r~ es WSD, aunque ya lo sabemos al ser matriz SSD. Todas las submatrices
de orden 2 de S, son:

< [-1 0 < [-11]7 < [o0o 1] = [-1 0
N N S I A

= -1 1 ~ 0 1 = -1 -1 = -1 0
R A R I e A A Y
S| estd repetida, y solo la ponemos una vez. Es facil ver que (detfi-) = 1 paratodoi =

1,...,8.
Ahora tomamos las correspondientes .S;_

p -1 0 < -10] = 0 0] < -1 0
O N e E RO R S Y

~ -1 0 ~ 0 O ~ -1 -1 ~ -1 0
e RN R I A e S Iy
Se ve que (detS; )= 1parai=1,4,5,7,8y (detS; )=0parai=2,3,6.

Asi, (det§,~> . (deti_) = parai =2, 3, 6, y también se tiene que (detgi . deti_) =1
parai=1,4,5,7,8.

Ademas, (detgr) =0, se tiene que (det§r> . (det@_) =0.

Por tanto, S, es WSD.

Para los demds sistemas de reacciones se calcula de manera andloga. Calcularemos solo las
matrices reducidas y daremos las propiedades de las matrices por vistas.

Aplicaciones de las P-matrices a modelos matematicos
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= Sea el sistema de reaccién quimica (ii):
A+B=P B+C=Q, C+D=R, D=2A

Por la subseccion de consideraciones computacionales 2.8, basta comprobar las matrices redu-

cidas:
-1 0 0 2 -1 1 0 0 O 0 2 =2
5 _ -1 -1 O 0 - -1 1 -1 1 O 0 0 0
e 0O -1 -1 0 ’ e O 0 -1 1 -1 1 0 0
0 0 1 -1 O 0 0 01 -1 -1 1

= Sea el sistema de reaccién quimica (iii):
A+B=P B+C=Q, C+D=R, D+E=S, E=2A

Por la subseccioén de consideraciones computacionales 2.8, basta comprobar las matrices redu-

cidas:
10 0 0 2 110 0 0 0 0 0 2 -2
1 -1 0 0 0 11 110 0 0 0 0 0
S=l 0 -1 -1 0 0], S=|0 0-11-1 1 00 0 0
0 0 -1 -1 0 00 0 0 1 -1 -11 0 0
0O 0 0 -1 -1 00 0 0 0 0 —1 1 -1 1

= Sea el sistema de reaccidon quimica (v):
A+B=F, A+C=G, C+D=B, C+E=D

Por la subseccion de consideraciones computacionales 2.8, basta comprobar las matrices redu-

cidas:
-1 -1 0 0 11 -11 0 0 0 0
-1 0 1 0 11 0 0 1 -1 0 0
S=10 -1 -1 -1, S=|0 0 -1 1 -1 1 -1 1
0 0 -1 1 0 0 0 0 -1 1 1 -1
0 0 0 -1 0 0 00 0 0 -1 1

= Sea el sistema de reaccion quimica (vi):
A+B=C, X=2A+D, 2A+D=Y, D=C+W, B+D=2Z

Por la subseccién de consideraciones computacionales 2.8, basta comprobar las matrices redu-

cidas:
-1 2 -2 0 0 -1 1 2 -2 =2 2 0 0 0 O
T -1 0 O 0 -1 T -1 1 0 O 0O 0 O 0o -1 1
T 1 0 O 1 0 ’ ” 1 -1 0 O O 0 1 -1 0 O
o 1 -1 -1 -1 0 o 1 -1 -11 -1 1 -—-11

En todos los ejemplos en los que los sistemas son WSD, los sistemas son también SSD, y por el
corolario 2.7.1 los equilibrios miltiplos se descartan, siendo el sistema CFRTS.
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2.9.2. Sistemas que son WSD pero no SSD.

Aunque los ejemplos tomados de [6] y presentados en la Tabla 2.9.1 son todos o bien ambos SSD
y WSD o ni SSD ni WSD, es posible construir ejemplos de sistemas que son WSD pero no SSD.
Consideramos el sistema de reaccidon quimica

A+B=C, 2A+B=D
que tiene matriz estequiométrica en forma reversibles e irreversibles:
-1 =2 -1 1 -2 2
S RS
0 1 o o0 1 -1

_Se puede comprobar facilmente que S, no es SSD, y por tanto Sir tampoco es SSD. Por otro lado,
Sir es WSD.

= Veamos que S, no es una matriz SSD: Tomamos la submatriz cuadrada de S, dada por:

~ —1 -2
A

det(S1) = (—1)-(=1)—(=2)-(=1) # 0 y no se puede determinar por el signo de las entradas.

5 >0 >0
Luego S7 no es SNS, y por tanto S, no es SSD.

= Como §r no es SSD, en consecuencia §,~, no es SSD, ya que §,~r es una matriz ampliada, pero
con filas y columnas con una entrada # 0 de S, y se puede tomar la misma submatriz para la

comprobacion.

= Veamos que §,-r es una matriz WSD: Sea §l~, y tomamos §,-r_

-1 1 =2 2 -1 0 -2 0
~ -1 1 -1 1 ~ -1 0 -1 0
Se=117 1 0 o | 5T 0o -1 0o o
0 0 1 -1 0 0 0 -1
B j i :f f 1 -2 2 -1 -2 2
det(S;) = det . -1 0 o =det| 1 -1 1 4+det| -1 -1 1 =0
0 1 -1 0 1 -1

0O o0 1 -1
Por tanto det(S;,) - det(S;,_) = 0.
Anédlogamente se comprueba para el resto de submatrices de orden 2 y de orden 3 y por tanto

S es WSD.

Si estas reacciones quimicas se meten en un sistema CFSTR, los equilibrios multiples se pueden
descartar, siempre y cuando la dindmica sea la dindmica de la accién de masas por el corolario 2.7.1,
pero no se pueden descartar en general.

Aplicaciones de las P-matrices a modelos matemadticos
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2.9.3. Sistema de reaccion quimica como un sistema reversible e irreversible.

En este caso, es esencial considerar un sistema como un conjunto de reacciones quimicas irrever-
sibles para comprobar si una matriz estequiométrica es WSD o no, considerando el siguiente sistema
de reaccién quimica:

2A=B+C, A=B

que tiene matriz estequiométrica, en formas reversibles e irreversibles,

o [-2 -1 2 2 -1 1
Ss=| 1 1|, Sy=]1 -1 1 -1
1o I =1 0 0

En este caso, §, es WSD, pero §,-r no lo es.

= Veamos que §, es WSD: Tomamos todas las submatrices cuadradas 2 x 2 de S, e
~ -2 -1 ~ -2 -1 ~ 1 1
=[] e[ s

Tomamos ahora sus respectivas §,-_:
~ -2 -1 ~ -2 -1 ~ 00
ol o] ose [ ] s [0

Es claro que los determinantes de §,-_ son todos nulos. Luego S, es WSD porque cumple
(det§,~) : (deti_) >0 Vi=1,2,3.

= Veamos que S;» no es WSD: Por el lema 2.6.5, tenemos que o = 3, luego eliminamos en Siy la
fila 3 y queda la matriz S, que por el lema 2.6.5 es lo mismo calcular si la matriz es WSD en
esta nueva matriz, y el cdlculo computacional es menor.

2 2 -1 1
S_[l -1 1 —1]

Tomamos la submatriz § ysusS_
5 2 -1 5 0 -1
I A
detS-detS =(2—1)-(0—1)=—1<0. Asi Sno es WSD y por el lema 2.6.5, S;, no es WSD.

Examinando S, podia dar lugar a la conclusion errénea de que los equilibrios multiples pueden
descartarse en el caso de sistemas de accién de masas.

Este ejemplo también ilustra la importancia de la reversibilidad en el caso de accién de masas.
Consideramos el sistema anterior con una reacciéon quimica ya irreversible:

2A=B+C, B—A
Este tiene matriz estequiométrica, en forma irreversible
-2 2 1
Sir = 1 -1 -1
1 -1 0
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que es WSD (se hace andlogamente a los ejemplos anteriores). Por el corolario 2.7.1, para accién de
masas, la dindmica de este sistema no admite equilibrios multiples cuando se mete en un CFSTR.
Sorprende, quizds, que si la reaccién quimica B — A se reemplaza por A — B,

2 2 -1
Se=| 1 -1 1 [,
1 -1 0

el sistema ya no seria WSD, tomando la submatriz S'y su S_ de la forma:
2 -1 0 -1
S IR

detS-detS =(2—1)-(—1)=—1<0, luego efectivamente no es WSD, y la conclusién de equilibrios
miltiples anterior ya no se mantiene.

2.9.4. Reacciones autocataliticas.

Consideramos las reacciones quimicas en [0] de la forma
miA+myB = (m; +my)A
para m; y mjy enteros positivos. Redestribuyendo como
mA+mB=C, C=(m+m)A

y asumiendo dindmicas NAC da lugar a matrices estequiométricas, en formas reversibles e irreversi-
bles,

—m;  (my+ma) —my my  (my+mp) —(m+my)
S,= 1| —my 0 , Sp=| —my my 0 0
1 —1 1 —1 —1 1

Quitando las posibilidades triviales que m; = 0 o my = 0, S, no es nunca SSD y §;, no es nunca WSD
(se hace andlogamente a los casos anteriores). Asi equilibrios multiples no se pueden descartar en
general para los sistemas de accién de masas. Sin embargo, para la dindmica de la accidén de masas
enloscasosmy =1omy=1ym; =10mp =2, se sabe que no pueden existir equilibrios multiples
[6], lo que demuestra que la singularidad de la matriz jacobiana no es suficiente para garantizar los
equilibrios multiples.

De hecho, es facil demostrar que cuando un reactante se produce en ambos lados de una reaccién
quimica con diferentes estequiometrias, y reescribiendo el sistema como dos reacciones NAC con
un complejo intermedio, el sistema no puede ser ni SSD ni WSD. Considere el sistema de reaccién
quimica

nA+---=C, C=mA+---,

lo que podria ser el resultado de una reescritura. Supongamos por definicién, que m > n. Entonces la
matriz estequiométrica irreversible S;, tiene una submatriz 2 x 2 de la forma

=[]

que claramente no es SNS, ni singular, y tampoco satisface la condicién det(7)det(7_) > 0, luego
tampoco es WSD.

Aplicaciones de las P-matrices a modelos matematicos
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