000150971 001__ 150971
000150971 005__ 20251017144609.0
000150971 0247_ $$2doi$$a10.1016/j.jcp.2021.110316
000150971 0248_ $$2sideral$$a123950
000150971 037__ $$aART-2021-123950
000150971 041__ $$aeng
000150971 100__ $$0(orcid)0000-0002-3312-5710$$aCalvo, M.$$uUniversidad de Zaragoza
000150971 245__ $$aA note on the stability of time–accurate and highly–stable explicit operators for stiff differential equations
000150971 260__ $$c2021
000150971 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150971 5203_ $$aA family of Time-Accurate and highly-Stable Explicit (TASE) operators for the numerical solution of stiff IVPs that includes those proposed by Bassenne et al. (2021) [1] is proposed. In this family the TASE operator of order k depends on k free parameters in contrast with Bassenne''s family in which it depends only on one parameter to be chosen for stability and accuracy requirements. A complete study of A–stability properties is carried out for explicit RK schemes supplemented with TASE operators with order k=4. For orders 2, 3 and 4, particular schemes that are nearly strongly A–stable and therefore suitable for stiff problems are given. Some numerical experiments showing the behaviour of the methods are presented.
000150971 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-109045GB-C31
000150971 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000150971 590__ $$a4.645$$b2021
000150971 591__ $$aPHYSICS, MATHEMATICAL$$b3 / 56 = 0.054$$c2021$$dQ1$$eT1
000150971 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b40 / 112 = 0.357$$c2021$$dQ2$$eT2
000150971 592__ $$a2.069$$b2021
000150971 593__ $$aApplied Mathematics$$c2021$$dQ1
000150971 593__ $$aComputational Mathematics$$c2021$$dQ1
000150971 593__ $$aPhysics and Astronomy (miscellaneous)$$c2021$$dQ1
000150971 593__ $$aNumerical Analysis$$c2021$$dQ1
000150971 593__ $$aModeling and Simulation$$c2021$$dQ1
000150971 594__ $$a7.1$$b2021
000150971 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000150971 700__ $$0(orcid)0000-0001-6120-4427$$aMontijano, J.I.$$uUniversidad de Zaragoza
000150971 700__ $$0(orcid)0000-0002-4238-3228$$aRández, L.$$uUniversidad de Zaragoza
000150971 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000150971 773__ $$g436 (2021), 110316 [13 pp.]$$pJ. comput. phys.$$tJournal of Computational Physics$$x0021-9991
000150971 8564_ $$s537590$$uhttps://zaguan.unizar.es/record/150971/files/texto_completo.pdf$$yVersión publicada
000150971 8564_ $$s1683941$$uhttps://zaguan.unizar.es/record/150971/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000150971 909CO $$ooai:zaguan.unizar.es:150971$$particulos$$pdriver
000150971 951__ $$a2025-10-17-14:16:50
000150971 980__ $$aARTICLE