000150998 001__ 150998
000150998 005__ 20251017144615.0
000150998 0247_ $$2doi$$a10.1021/acsami.1c13417
000150998 0248_ $$2sideral$$a126055
000150998 037__ $$aART-2021-126055
000150998 041__ $$aeng
000150998 100__ $$aPellico, J
000150998 245__ $$aHAP-Multitag, a PET and Positive MRI Contrast Nanotracer for the Longitudinal Characterization of Vascular Calcifications in Atherosclerosis
000150998 260__ $$c2021
000150998 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150998 5203_ $$aVascular microcalcifications are associated with atherosclerosis plaque instability and, therefore, to increased mortality. Because of this key role, several imaging probes have been developed for their in vivo identification. Among them, [F-18]FNa is the gold standard, showing a large uptake in the whole skeleton by positron emission tomography. Here, we push the field toward the combined anatomical and functional early characterization of atherosclerosis. For this, we have developed hydroxyapatite (HAP)-multitag, a bisphosphonatefunctionalized Ga-68 core-doped magnetic nanoparticle showing high affinity toward most common calcium salts present in microcalcifications, particularly HAP. We characterized this interaction in vitro and in vivo, showing a massive uptake in the atherosclerotic lesion identified by positron emission tomography (PET) and positive contrast magnetic resonance imaging (MRI). In addition, this accumulation was found to be dependent on the calcification progression, with a maximum uptake in the microcalcification stage. These results confirmed the ability of HAP-multitag to identify vascular calcifications by PET/(T-1)MRI during the vulnerable stages of the plaque progression.
000150998 536__ $$9info:eu-repo/grantAgreement/ES/AEI/AEI PID2019-104059RB-I00$$9info:eu-repo/grantAgreement/ES/MCIU/RED2018-102469-T$$9info:eu-repo/grantAgreement/ES/MEIC/SAF2016-79593-P$$9info:eu-repo/grantAgreement/ES/MICINN/MDM-2017-0720$$9info:eu-repo/grantAgreement/ES/MINECO/RYC-2014-15512
000150998 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000150998 590__ $$a10.383$$b2021
000150998 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b23 / 108 = 0.213$$c2021$$dQ1$$eT1
000150998 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b49 / 344 = 0.142$$c2021$$dQ1$$eT1
000150998 592__ $$a2.143$$b2021
000150998 593__ $$aMedicine (miscellaneous)$$c2021$$dQ1
000150998 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ1
000150998 594__ $$a14.4$$b2021
000150998 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000150998 700__ $$aFernandez-Barahona, I
000150998 700__ $$aRuiz-Cabello, J
000150998 700__ $$0(orcid)0000-0003-2366-3598$$aGutierrez, L$$uUniversidad de Zaragoza
000150998 700__ $$aMunoz-Hernando, M
000150998 700__ $$aSanchez-Guisado, MJ
000150998 700__ $$aAiestaran-Zelaia, I
000150998 700__ $$aMartinez-Parra, L
000150998 700__ $$aRodriguez, I
000150998 700__ $$aBentzon, J
000150998 700__ $$aHerranz, F
000150998 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000150998 773__ $$g13, 38 (2021), 45279-45290$$pACS appl. mater. interfaces$$tACS applied materials & interfaces$$x1944-8244
000150998 8564_ $$s10302607$$uhttps://zaguan.unizar.es/record/150998/files/texto_completo.pdf$$yVersión publicada
000150998 8564_ $$s3178283$$uhttps://zaguan.unizar.es/record/150998/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000150998 909CO $$ooai:zaguan.unizar.es:150998$$particulos$$pdriver
000150998 951__ $$a2025-10-17-14:18:47
000150998 980__ $$aARTICLE