000151006 001__ 151006
000151006 005__ 20250221105702.0
000151006 0247_ $$2doi$$a10.1021/acs.jafc.1c02845
000151006 0248_ $$2sideral$$a126071
000151006 037__ $$aART-2021-126071
000151006 041__ $$aeng
000151006 100__ $$aSong, X-C.
000151006 245__ $$aDiscovery and Characterization of Phenolic Compounds in Bearberry (Arctostaphylos uva-ursi) Leaves Using Liquid Chromatography-Ion Mobility-High-Resolution Mass Spectrometry
000151006 260__ $$c2021
000151006 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151006 5203_ $$aThe characterization and quantification of phenolic compounds in bearberry leaves were performed using hyphenated ion mobility spectroscopy (IMS) and a quadrupole time-of-flight mass spectrometer. A higher identification confidence level was obtained by comparing the measured collision cross section ((CCSN2)-C-TW) with predicted values using a machine learning algorithm. A total of 88 compounds were identified, including 14 arbutin derivatives, 33 hydrolyzable tannins, 6 flavanols, 26 flavonols, 9 saccharide derivatives, and glycosidic compounds. Those most reliably reproduced in all samples were quantified against respective standards. Arbutin (47-107 mg/g), 1, 2, 3, 4, 6-pentagalloylglucose (6.6-12.9 mg/g), and quercetin 3-galactoside/quercetin 3-glucoside (2.7-5.7 mg/g) were the most abundant phenolic components in the leaves. Quinic acid and ellagic acid were also detected at relatively high concentrations. The antioxidant activity of the most abundant compounds was evaluated. A critical view of the advantages and limitations of traveling wave IMS and CCS for the discovery of natural products is given.
000151006 536__ $$9info:eu-repo/grantAgreement/ES/AEI/RTI2018-097805-B-I00
000151006 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000151006 590__ $$a5.895$$b2021
000151006 591__ $$aCHEMISTRY, APPLIED$$b14 / 72 = 0.194$$c2021$$dQ1$$eT1
000151006 591__ $$aAGRICULTURE, MULTIDISCIPLINARY$$b6 / 59 = 0.102$$c2021$$dQ1$$eT1
000151006 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b32 / 144 = 0.222$$c2021$$dQ1$$eT1
000151006 592__ $$a1.018$$b2021
000151006 593__ $$aChemistry (miscellaneous)$$c2021$$dQ1
000151006 593__ $$aAgricultural and Biological Sciences (miscellaneous)$$c2021$$dQ1
000151006 594__ $$a8.6$$b2021
000151006 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151006 700__ $$0(orcid)0000-0003-2638-9221$$aCanellas, E.$$uUniversidad de Zaragoza
000151006 700__ $$aDreolin, N.
000151006 700__ $$0(orcid)0000-0003-2685-5739$$aNerin, C.$$uUniversidad de Zaragoza
000151006 700__ $$aGoshawk, J.
000151006 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000151006 773__ $$g69, 37 (2021), 10856-10868$$pJ. agric. food chem.$$tJOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY$$x0021-8561
000151006 8564_ $$s2428601$$uhttps://zaguan.unizar.es/record/151006/files/texto_completo.pdf$$yVersión publicada
000151006 8564_ $$s3289501$$uhttps://zaguan.unizar.es/record/151006/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151006 909CO $$ooai:zaguan.unizar.es:151006$$particulos$$pdriver
000151006 951__ $$a2025-02-21-09:52:17
000151006 980__ $$aARTICLE