000151006 001__ 151006 000151006 005__ 20250221105702.0 000151006 0247_ $$2doi$$a10.1021/acs.jafc.1c02845 000151006 0248_ $$2sideral$$a126071 000151006 037__ $$aART-2021-126071 000151006 041__ $$aeng 000151006 100__ $$aSong, X-C. 000151006 245__ $$aDiscovery and Characterization of Phenolic Compounds in Bearberry (Arctostaphylos uva-ursi) Leaves Using Liquid Chromatography-Ion Mobility-High-Resolution Mass Spectrometry 000151006 260__ $$c2021 000151006 5060_ $$aAccess copy available to the general public$$fUnrestricted 000151006 5203_ $$aThe characterization and quantification of phenolic compounds in bearberry leaves were performed using hyphenated ion mobility spectroscopy (IMS) and a quadrupole time-of-flight mass spectrometer. A higher identification confidence level was obtained by comparing the measured collision cross section ((CCSN2)-C-TW) with predicted values using a machine learning algorithm. A total of 88 compounds were identified, including 14 arbutin derivatives, 33 hydrolyzable tannins, 6 flavanols, 26 flavonols, 9 saccharide derivatives, and glycosidic compounds. Those most reliably reproduced in all samples were quantified against respective standards. Arbutin (47-107 mg/g), 1, 2, 3, 4, 6-pentagalloylglucose (6.6-12.9 mg/g), and quercetin 3-galactoside/quercetin 3-glucoside (2.7-5.7 mg/g) were the most abundant phenolic components in the leaves. Quinic acid and ellagic acid were also detected at relatively high concentrations. The antioxidant activity of the most abundant compounds was evaluated. A critical view of the advantages and limitations of traveling wave IMS and CCS for the discovery of natural products is given. 000151006 536__ $$9info:eu-repo/grantAgreement/ES/AEI/RTI2018-097805-B-I00 000151006 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000151006 590__ $$a5.895$$b2021 000151006 591__ $$aCHEMISTRY, APPLIED$$b14 / 72 = 0.194$$c2021$$dQ1$$eT1 000151006 591__ $$aAGRICULTURE, MULTIDISCIPLINARY$$b6 / 59 = 0.102$$c2021$$dQ1$$eT1 000151006 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b32 / 144 = 0.222$$c2021$$dQ1$$eT1 000151006 592__ $$a1.018$$b2021 000151006 593__ $$aChemistry (miscellaneous)$$c2021$$dQ1 000151006 593__ $$aAgricultural and Biological Sciences (miscellaneous)$$c2021$$dQ1 000151006 594__ $$a8.6$$b2021 000151006 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000151006 700__ $$0(orcid)0000-0003-2638-9221$$aCanellas, E.$$uUniversidad de Zaragoza 000151006 700__ $$aDreolin, N. 000151006 700__ $$0(orcid)0000-0003-2685-5739$$aNerin, C.$$uUniversidad de Zaragoza 000151006 700__ $$aGoshawk, J. 000151006 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica 000151006 773__ $$g69, 37 (2021), 10856-10868$$pJ. agric. food chem.$$tJOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY$$x0021-8561 000151006 8564_ $$s2428601$$uhttps://zaguan.unizar.es/record/151006/files/texto_completo.pdf$$yVersión publicada 000151006 8564_ $$s3289501$$uhttps://zaguan.unizar.es/record/151006/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000151006 909CO $$ooai:zaguan.unizar.es:151006$$particulos$$pdriver 000151006 951__ $$a2025-02-21-09:52:17 000151006 980__ $$aARTICLE