000151033 001__ 151033
000151033 005__ 20250221105702.0
000151033 0247_ $$2doi$$a10.1007/s42452-022-05049-1
000151033 0248_ $$2sideral$$a128732
000151033 037__ $$aART-2022-128732
000151033 041__ $$aeng
000151033 100__ $$0(orcid)0000-0003-2212-447X$$aAmaveda, H.$$uUniversidad de Zaragoza
000151033 245__ $$aInfluence of ceramic particles additions on the properties of Ca3Co4O9
000151033 260__ $$c2022
000151033 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151033 5203_ $$aCa3Co4O9 + x wt% B4C, AlN, TiC, TiB2, or TiN (x = 0.0, 0.25, 0.50, and 0.75) samples were prepared by the conventional solid-state route. In all samples, only the Ca3Co4O9 phase was identified by powder XRD. Nevertheless, microstructural studies have shown that most of the additives have reacted with air and Ca3Co4O9 phase on their surfaces, producing new phases. Moreover, it seemed that grain sizes were, at least, slightly reduced. On the other hand, while nearly no modification of the Seebeck coefficient has been observed, independently of the added compound and proportion, electrical resistivity decreased in all cases, when compared to the pristine sample. Consequently, the power factor of samples with additions was higher than the one determined for the pure sample. Linear thermal expansion also decreased with these additives, pointing out to the formation of relatively strong grain boundaries which can improve the carrier mobility and decrease the thermal expansion. The lowest thermal expansion value has been measured in 0.25 wt% B4C samples, being only around 20% higher than that of Al2O3, which can help to reduce the differential thermal expansion in thermoelectric modules working at high temperatures; these results may be very interesting for applications prospects. Article highlights: Addition of different ceramic additives to Ca3Co4O9 phase increases electrical conductivity, and power factor.All additive ceramics react with oxygen and the Ca3Co4O9 phase modifying the properties of pristine compound.The decrease of thermal expansion coefficient will allow reducing the differential thermal expansion in modules.
000151033 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T54-20R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2017-82183-C3-1-R
000151033 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000151033 592__ $$a0.424$$b2022
000151033 593__ $$aChemical Engineering (miscellaneous)$$c2022$$dQ2
000151033 593__ $$aEarth and Planetary Sciences (miscellaneous)$$c2022$$dQ2
000151033 593__ $$aPhysics and Astronomy (miscellaneous)$$c2022$$dQ2
000151033 593__ $$aEnvironmental Science (miscellaneous)$$c2022$$dQ2
000151033 593__ $$aEngineering (miscellaneous)$$c2022$$dQ2
000151033 593__ $$aMaterials Science (miscellaneous)$$c2022$$dQ3
000151033 594__ $$a5.3$$b2022
000151033 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151033 700__ $$0(orcid)0000-0003-4747-7327$$aMora, M.$$uUniversidad de Zaragoza
000151033 700__ $$aDura, O. J.
000151033 700__ $$aTorres, M. A.
000151033 700__ $$0(orcid)0000-0002-0794-3998$$aMadre, M. A.$$uUniversidad de Zaragoza
000151033 700__ $$aMarinel, S.
000151033 700__ $$aSotelo, A.
000151033 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000151033 773__ $$g4 (2022), 159 [8 pp.]$$tSN Applied Sciences$$x2523-3963
000151033 8564_ $$s2249205$$uhttps://zaguan.unizar.es/record/151033/files/texto_completo.pdf$$yVersión publicada
000151033 8564_ $$s2362372$$uhttps://zaguan.unizar.es/record/151033/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151033 909CO $$ooai:zaguan.unizar.es:151033$$particulos$$pdriver
000151033 951__ $$a2025-02-21-09:52:56
000151033 980__ $$aARTICLE