Novel discretization strategies for the 2D non-Newtonian resistance term in geophysical shallow flows

Martínez-Aranda, S. (Universidad de Zaragoza) ; Murillo, J. (Universidad de Zaragoza) ; Morales-Hernández, M. (Universidad de Zaragoza) ; García-Navarro, P. (Universidad de Zaragoza)
Novel discretization strategies for the 2D non-Newtonian resistance term in geophysical shallow flows
Resumen: In the context of two-dimensional models for complex geophysical surface flows such as debris flows, muddy slurries, oil spills over land, hyperconcentrated floods, lava flows, etc, depth-averaged rheological models relate the shear stress state within the fluid column to the depth-averaged local flow features. Despite it is the most influencing term on the mobility of complex shallow flows, the numerical treatment of the resistance contribution to the flow momentum is still a challenging topic, especially when dealing with 2D large-scale applications. In this work, two novel strategies for the explicit upwind discretization of generalized non-Newtonian resistance terms in two-dimensional numerical models are proposed, called integral and differential approaches. These new strategies are applicable to generalized rheological formulations in any type of mesh topology. Results from benchmark tests running in orthogonal, triangle structured and triangle unstructured meshes demonstrate that both approaches represent an improvement for the explicit upwind integration of the 2D resistance force compared with previous procedures. It is shown that the alignment of the flow with the mesh main-axis, which has been previously attributed to faults of 2D FV numerical methods and insufficient mesh refinements, is directly related to the loss of the rotational invariance of the integrated resistance force. This is caused by the erroneous procedure for including the 2D resistance term into the local flux balance at the cell edges. Furthermore, a novel implicit centered method for the integration of the 2D resistance force has also been derived for the quadratic frictional non-linear resistance formulation. Despite the implicit procedure fails to converge to steady uniform flow states, the differential explicit upwind and the implicit centered methods show similar level of accuracy, robustness and computational efficiency for transient 2D frictional visco-plastic flows.
Idioma: Inglés
DOI: 10.1016/j.enggeo.2022.106625
Año: 2022
Publicado en: Engineering Geology 302 (2022), 106625 [27 pp.]
ISSN: 0013-7952

Factor impacto JCR: 7.4 (2022)
Categ. JCR: GEOSCIENCES, MULTIDISCIPLINARY rank: 12 / 202 = 0.059 (2022) - Q1 - T1
Categ. JCR: ENGINEERING, GEOLOGICAL rank: 1 / 41 = 0.024 (2022) - Q1 - T1

Factor impacto CITESCORE: 12.0 - Earth and Planetary Sciences (Q1)

Factor impacto SCIMAGO: 2.342 - Geotechnical Engineering and Engineering Geology (Q1) - Geology (Q1)

Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Mecánica de Fluidos (Dpto. Ciencia Tecnol.Mater.Fl.)
Área (Departamento): Área Técnica. Lab. y Talleres (Dpto. Didácticas Específicas)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2025-02-21-09:53:09)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Mecánica de Fluidos



 Registro creado el 2025-02-21, última modificación el 2025-02-21


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)