000151050 001__ 151050
000151050 005__ 20250221105703.0
000151050 0247_ $$2doi$$a10.1016/j.ijpharm.2022.121742
000151050 0248_ $$2sideral$$a128748
000151050 037__ $$aART-2022-128748
000151050 041__ $$aeng
000151050 100__ $$0(orcid)0000-0001-7620-3355$$aEscuer, J.
000151050 245__ $$aMathematical modelling of endovascular drug delivery: Balloons versus stents; 35427751
000151050 260__ $$c2022
000151050 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151050 5203_ $$aThe most common treatment for obstructive coronary artery disease (CAD) is the implantation of a permanent drug-eluting stent (DES). Not only has this permanency been associated with delayed healing of the artery, but it also poses challenges when treating subsequent re-narrowing due to in-stent restenosis (ISR). Drug-coated balloons (DCBs) provide a potential solution to each of these issues. While their use has been primarily limited to treating ISR, in recent years, DCBs have emerged as an attractive potential alternative to DESs for the treatment of certain de novo lesions. However, there remain a number of concerns related to the safety and efficacy of these devices. Firstly, unlike DESs, DCBs necessitate a very short drug delivery window, favouring a higher drug loading. Secondly, while the majority of coronary DCBs in Europe are coated with paclitaxel, the potential mortality signal raised with paclitaxel DCBs in peripheral interventions has shifted efforts towards the development of limus-eluting balloons. The purpose of this paper is to provide a computational model that allows drug delivery from DCBs and DESs to be investigated and compared. We present a comprehensive computational framework that employs a 2D-axisymmetric geometry, incorporates two nonlinear phases of drug binding (specific and non-specific) and includes the influence of diffusion and advection, within a multilayer arterial wall. We utilise this framework to (i) simulate drug delivery from different types of balloon platform; (ii) explore the influence of DCB application time; (iii) elucidate the importance on release kinetics of elevated pressure during DCB application; (iv) compare DCB delivery of two different drugs (sirolimus and paclitaxel) and; (v) compare simulations of DESs versus DCBs. Key measures of comparison are related to safety (drug content in tissue, DC) and efficacy (specific binding site saturation, %SBSS) markers. Our results highlight the pros and cons of each device in terms of DC and %SBSS levels achieved and, moreover, indicate the potential for designing a DCB that gives rise to sufficiently similar safety and efficacy indicators as current commercial DESs.
000151050 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T24-20R$$9info:eu-repo/grantAgreement/ES/MINECO/PID2019-107517RB-I00
000151050 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000151050 590__ $$a5.8$$b2022
000151050 591__ $$aPHARMACOLOGY & PHARMACY$$b39 / 278 = 0.14$$c2022$$dQ1$$eT1
000151050 592__ $$a0.906$$b2022
000151050 593__ $$aPharmaceutical Science$$c2022$$dQ1
000151050 594__ $$a10.5$$b2022
000151050 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151050 700__ $$aSchmidt, A. F.
000151050 700__ $$0(orcid)0000-0002-0664-5024$$aPeña, E.$$uUniversidad de Zaragoza
000151050 700__ $$0(orcid)0000-0002-8375-0354$$aMartínez, M. A.$$uUniversidad de Zaragoza
000151050 700__ $$aMcGinty, S.
000151050 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000151050 773__ $$g620 (2022), 121742 [14 pp.]$$pInt. j. pharm.$$tInternational Journal of Pharmaceutics$$x0378-5173
000151050 8564_ $$s5213795$$uhttps://zaguan.unizar.es/record/151050/files/texto_completo.pdf$$yVersión publicada
000151050 8564_ $$s2397382$$uhttps://zaguan.unizar.es/record/151050/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151050 909CO $$ooai:zaguan.unizar.es:151050$$particulos$$pdriver
000151050 951__ $$a2025-02-21-09:53:19
000151050 980__ $$aARTICLE