000151051 001__ 151051
000151051 005__ 20251017144632.0
000151051 0247_ $$2doi$$a10.1016/j.dark.2022.101001
000151051 0248_ $$2sideral$$a128434
000151051 037__ $$aART-2022-128434
000151051 041__ $$aeng
000151051 100__ $$aNavarro, P.
000151051 245__ $$aWide-band full-wave electromagnetic modal analysis of the coupling between dark-matter axions and photons in microwave resonators
000151051 260__ $$c2022
000151051 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151051 5203_ $$aThe electromagnetic coupling axion–photon in a microwave cavity is revisited with the Boundary Integral-Resonant Mode Expansion (BI-RME) 3D technique. Such full-wave modal technique has been applied for the rigorous analysis of the excitation of a microwave cavity with an axion field. In this scenario, the electromagnetic field generated by the axion–photon coupling can be assumed to be driven by equivalent electrical charge and current densities. These densities have been inserted in the general BI-RME 3D equations, which express the RF electromagnetic field existing within a cavity as an integral involving the Dyadic Green''s functions of the cavity (under Coulomb gauge) as well as such densities. This method is able to take into account any arbitrary spatial and temporal variation of both magnitude and phase of the axion field. Next, we have obtained a simple network driven by the axion current source, which represents the coupling between the axion field and the resonant modes of the cavity. With this approach, it is possible to calculate the extracted and dissipated RF power as a function of frequency along a broad band and without Cauchy–Lorentz approximations, obtaining the spectrum of the electromagnetic field generated in the cavity, and dealing with modes relatively close to the axion resonant mode. Moreover, with this technique we have a complete knowledge of the signal extracted from the cavity, not only in magnitude but also in phase. This can be an interesting issue for future analysis where the axion phase is an important parameter.
000151051 536__ $$9info:eu-repo/grantAgreement/ES/AEI/BES-2017-079787$$9info:eu-repo/grantAgreement/ES/AEI/PID2019-108122GB-C32$$9info:eu-repo/grantAgreement/EUR/ERC-2018-StG-802836-AxScale$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/FPA2016-76978-C3-2-P
000151051 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000151051 590__ $$a5.5$$b2022
000151051 591__ $$aASTRONOMY & ASTROPHYSICS$$b13 / 69 = 0.188$$c2022$$dQ1$$eT1
000151051 592__ $$a1.431$$b2022
000151051 593__ $$aSpace and Planetary Science$$c2022$$dQ1
000151051 593__ $$aAstronomy and Astrophysics$$c2022$$dQ1
000151051 594__ $$a9.4$$b2022
000151051 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151051 700__ $$aGimeno, Benito
000151051 700__ $$aÁlvarez Melcón, A.
000151051 700__ $$aArguedas Cuendis, S.
000151051 700__ $$aCogollos, C.
000151051 700__ $$aDíaz-Morcillo, A.
000151051 700__ $$aGallego, J.D.
000151051 700__ $$aGarcía Barceló, J.M.
000151051 700__ $$aGolm, J.
000151051 700__ $$0(orcid)0000-0003-1163-1687$$aIrastorza, I.G.$$uUniversidad de Zaragoza
000151051 700__ $$aLozano Guerrero, A.J.
000151051 700__ $$aPeña Garay, C.
000151051 7102_ $$12004$$2390$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Atóm.Molec.y Nucl.
000151051 773__ $$g36 (2022), 101001 [14 pp.]$$pPhys. dark universe$$tPhysics of the Dark Universe$$x2212-6864
000151051 8564_ $$s1154760$$uhttps://zaguan.unizar.es/record/151051/files/texto_completo.pdf$$yVersión publicada
000151051 8564_ $$s2912498$$uhttps://zaguan.unizar.es/record/151051/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151051 909CO $$ooai:zaguan.unizar.es:151051$$particulos$$pdriver
000151051 951__ $$a2025-10-17-14:27:06
000151051 980__ $$aARTICLE