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Resumen

La tesis doctoral se enfoca en la integración de la inferencia causal dentro del aprendizaje
de máquina para mejorar la explicabilidad y comprensión de fenómenos complejos en diversas
aplicaciones. Para alcanzar este objetivo, se ha desarrollado un marco metodológico que abarca
desde una revisión exhaustiva de la literatura hasta la presentación de los resultados y conclu-
siones. Este marco se basa en una planificación detallada, la ejecución de experimentos y un
análisis riguroso de los resultados.

La metodoloǵıa empleada se estructura en torno a la definición de un marco conceptual claro,
la formulación de objetivos espećıficos, el diseño experimental, la configuración de escenarios de
prueba, la generación de datos y el análisis de resultados. Se destaca la importancia de cada
paso para garantizar la calidad y fiabilidad de los resultados obtenidos.

Se destacan cinco experimentos clave que exploran diferentes aspectos de la integración de
la inferencia causal en el aprendizaje de máquina. Estos experimentos abordan la estimación de
iluminancia en escenarios 3D, la determinación de causas de fenómenos de sombra en imágenes,
el modelado cognitivo de agentes en entornos virtuales y la mejora del aprendizaje por refuerzo
mediante inferencia causal.

Los resultados obtenidos en cada experimento son analizados detalladamente, considerando
tanto sus implicaciones teóricas como prácticas. Se resalta el valor de la inferencia causal en la
comprensión de fenómenos complejos y en la mejora del rendimiento de algoritmos de aprendi-
zaje de máquina en diversas aplicaciones.

Finalmente, se presentan conclusiones significativas que subrayan el potencial y relevancia
de la integración de la inferencia causal en procesos de aprendizaje de máquina. Se identifican
áreas prometedoras para futuras investigaciones y se destaca la contribución de la tesis al avance
teórico y práctico en este campo. En conjunto, la tesis ofrece una visión integral de cómo la
inferencia causal puede potenciar el aprendizaje de máquina y mejorar la explicabilidad en una
variedad de aplicaciones.
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Abstract

This doctoral thesis focuses on the integration of causal inference within machine learning
to enhance the explainability and understanding of complex phenomena in various applications.
To achieve this objective, a methodological framework has been developed that encompasses a
comprehensive literature review to the presentation of results and conclusions. This framework
is based on detailed planning, the execution of experiments, and rigorous analysis of the results.

The methodology employed is structured around the definition of a clear conceptual frame-
work, the formulation of specific objectives, experimental design, configuration of test scenarios,
data generation, and result analysis. The importance of each step is highlighted to ensure the
quality and reliability of the results obtained.

Five key experiments are highlighted, exploring different aspects of integrating causal infe-
rence into machine learning. These experiments address illuminance estimation in 3D scenarios,
the determination of causes of shadow phenomena in images, the cognitive modeling of agents
in virtual environments, and the enhancement of reinforcement learning through causal inference.

The results obtained in each experiment are analyzed in detail, considering both their theo-
retical and practical implications. The value of causal inference in understanding complex phe-
nomena and improving the performance of machine learning algorithms in various applications
is emphasized.

Finally, significant conclusions are presented that underline the potential and relevance of
integrating causal inference into machine learning processes. Promising areas for future research
are identified, and the thesis’s contribution to theoretical and practical advancements in this
field is highlighted. Overall, the thesis offers a comprehensive view of how causal inference can
enhance machine learning and improve explainability in a variety of applications.
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Agradezco sinceramente al Dr. Manuel González Bedia por su dedicación, orientación experta
y apoyo continuo a lo largo de este proyecto de investigación. Su profundo conocimiento y su
compromiso fueron fundamentales para dar forma a esta tesis. Al Dr. Luis Fernando Castillo Os-
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4.5. Distribución uniforme a escala logaŕıtmica evitando singularidad: (a) y (b) corres-
ponden a un corte transversal por la cara superior del escenario debajo de donde
se encuentra la fuente de luz. (c) y (d) corresponden a un corte perpendicular por
el centro del escenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6. Distribución no uniforme a escala logaŕıtmica evitando singularidad: (a) y (b)
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Capı́tulo 1
Introducción

En el ámbito del aprendizaje de máquina, la inferencia causal desempeña un papel fundamen-
tal en una amplia gama de aplicaciones. Este trabajo se propone brindar una visión abarcativa
de cómo la inferencia causal puede potenciar diversas aplicaciones de aprendizaje de máquina.
Estas aplicaciones fueron seleccionadas meticulosamente basadas en el criterio proporcionado
por la revisión de literatura, evaluando aspectos como la popularidad, la vigencia, la aplicabili-
dad y la alta complejidad de cada área. Particularmente, el énfasis experimental se centró en el
cálculo de iluminancia, el aprendizaje por refuerzo, los modelos cognitivos de agentes en entornos
virtuales y la explicabilidad de imágenes. Estas áreas fueron elegidas debido a su relevancia y
potencial para avanzar en el campo del aprendizaje de máquina.

Aunque se reconoce que existen otras técnicas que podŕıan verse impactadas con la inclu-
sión de la inferencia causal, estas fueron priorizadas por su importancia y su capacidad para
proporcionar una comprensión más profunda y útil en diferentes contextos de aplicación.

La aplicación de la inferencia causal en el cálculo de la iluminancia permite una comprensión
más detallada de cómo diferentes factores influyen en la distribución de la luz en un entorno
espećıfico, abriendo la puerta a ajustes precisos y adaptativos en configuraciones de iluminación
del mundo real. Los hallazgos subrayan el potencial del aprendizaje profundo en la estimación
de la iluminancia y señalan la importancia de abordar desaf́ıos relacionados con la variación del
número de fuentes de luz, lo que presenta un área interesante para la investigación futura.

La integración de la inferencia causal en el aprendizaje por refuerzo mejora el rendimiento de
los modelos en problemas de control clásicos, permitiendo soluciones más flexibles y resilientes
a problemas complejos del mundo real. Estos hallazgos proporcionan una comprensión más
profunda de la capacidad de los modelos para ajustarse y aplicarse a diversas circunstancias,
lo que presenta oportunidades para futuras mejoras en algoritmos de aprendizaje por refuerzo
mediante Deep Learning.

La aplicación de la inferencia causal en agentes inteligentes ofrece una ventaja significativa
sobre metodoloǵıas alternativas, facilitando la toma de decisiones más acertadas en entornos
diversos. Además, la representación visual de un modelo causal mejora la comprensión del pro-
blema y los roles de los eventos en su resolución, aunque se requiere un conjunto de datos con
una estructura más intrincada para su aplicación.
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Objetivos de la investigación

El objetivo general de esta investigación es explorar y analizar cómo la integración y com-
plementación del aprendizaje de máquina y la inferencia causal pueden mejorar la resolución de
problemas en los que la explicabilidad es fundamental para aportar valor a su solución. Para
conseguir este propósito precisamos espećıficamente:

Desarrollar un modelo de aprendizaje de máquina que, mediante redes neuronales FFNN
y CNN, estime el valor de iluminancia de un escenario 3D con distintas caracteŕısticas de
iluminación.

Desarrollar un modelo que aplique la inferencia causal para determinar la causa de un
fenómeno de sombra captado en una imágen.

Desarrollar un modelo cognitivo, basado en inferencia causal, que apoye el proceso de toma
de decisiones de un agente que debe cumplir una tarea compleja en un entorno virtual.

Desarrollar un modelo de aprendizaje de máquina que, mediante una Deep Q-Network,
aprenda a solucionar un problema de control clásico usando inferencia causal para el pro-
ceso de muestreo del replay buffer.

Inferencia causal como potenciador de algunas aplicaciones de apren-
dizaje de máquina

Luminotecnia

Es esencial comprender que aunque la inferencia causal es crucial en muchas aplicaciones de
aprendizaje de máquina, no siempre es aplicable en todas las situaciones. Un ejemplo claro de
esta limitación se encuentra en el cálculo de iluminancia, donde la ecuación utilizada es simétrica,
y por lo tanto, la causalidad no se aplica directamente. Sin embargo, es importante reconocer
que la comprensión de la naturaleza de la inferencia causal y sus aplicaciones en otras áreas
sigue siendo esencial. La interacción entre la luz y la materia es un fenómeno crucial en diversos
campos, como la fotograf́ıa, la luminotecnia, el diseño de iluminación y la cinematograf́ıa [1]. La
luminotecnia se centra en el control de la luz artificial, abarcando la iluminación y la iluminancia.
La iluminación se refiere al brillo percibido de una superficie, mientras que la iluminancia mide
la luz incidente sobre una superficie [1]. Conseguir configuraciones de iluminación adecuadas
para una escena es un complejo proceso iterativo que implica ajustes en varias caracteŕısticas,
incluida la iluminancia [2].

Explicabilidad

La explicabilidad de los modelos de aprendizaje de máquina, particularmente en el ámbito de
las imágenes, está adquiriendo una importancia cada vez mayor en aplicaciones del mundo real.
La inferencia causal proporciona una comprensión más profunda de cómo los modelos toman
decisiones, lo que facilita la interpretación de los resultados y la identificación de posibles sesgos
o errores. Al considerar cualquier imagen, más allá de verla como un contenedor de objetos,
entre otras cosas, es natural que un ser humano le otorgue un significado o infiera la explica-
ción de algún evento de interés plasmado en ella, pero ¿cómo se puede llegar a tal inferencia a
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través de la inteligencia artificial? La inferencia causal puede aplicarse en muchas áreas de la
ciencia y la tecnoloǵıa, como la economı́a, la epidemioloǵıa, el procesamiento de imágenes o la
conducción autónoma, ámbitos en los que es crucial tomar decisiones precisas. En la actualidad,
existen métodos ampliamente estudiados que, a través de la correlación, reconocen y clasifican
objetos utilizando conjuntos de datos como [3] que tiene el tamaño y la información suficientes
para garantizar una alta precisión en dichas tareas [4]. Sin embargo, en la última década, como
señalan [5], se ha propuesto la IA explicable (XAI) para responder a la necesidad planteada por
importantes contribuciones en inteligencia artificial, que han llevado a una creciente complejidad
de los algoritmos y falta de transparencia de los modelos, y para avanzar en la adopción de la IA
en dominios cŕıticos. Entonces, para obtener la explicación que buscamos sobre un evento captu-
rado en una imagen, tendŕıamos que considerar relaciones causales que bien pueden ser inferidas
a través del conocimiento experto [6] o bien intervenir dichos conjuntos de datos a través de
laexperimentación como se indica en [7] teniendo en cuenta que, en lenguaje probabiĺıstico, no
tener una forma de distinguir entre dar valor a una variable y observarla, impide modelar rela-
ciones causa-efecto [8]. Aśı, tomando el modelado como un paso esencial para lograr la inferencia
causal, [9] discuten el papel de la inferencia causal para mejorar la interpretabilidad y robustez
de los métodos de aprendizaje automático, y destacan las oportunidades en el desarrollo de mo-
delos de aprendizaje automático con capacidad causal adaptados para el análisis de la movilidad
considerando imágenes o datos secuenciales. En el caso puntual, sobre inferencia causal aplicada
a imágenes, [10] proponen utilizar coeficientes neuronales de causalidad (NCCs) que se calculan
aplicando redes neuronales convolucionales (CNNs) a los ṕıxeles de una imagen, de forma que
la aparición de causalidad entre variables sugiere que existe un v́ınculo causal entre las propias
entidades del mundo real, [11] han propuesto un enfoque estad́ıstico -entroṕıa de transferencia-
para descubrir y cuantificar la relación entre el movimiento de la cámara y el movimiento de
un objeto rastreado para predecir la ubicación del objeto rastreado, [12] presentaron un modelo
de gramática bayesiana (C-AOG) para las relaciones causales percibidas por el ser humano que
se pueden aprender de un v́ıdeo, y [13] utilizan el método de causalidad, complementado con
técnicas de visión por ordenador y aprendizaje automático, para determinar si un v́ıdeo se está
reproduciendo hacia delante o hacia atrás observando la ”flecha del tiempo.en una secuencia
temporal.

Modelos cognitivos para agentes inteligentes

Los agentes inteligentes, impulsados por la inteligencia artificial y el aprendizaje automático,
son cada vez más frecuentes en diversas tareas de toma de decisiones en campos como los
videojuegos [14], la conducción autónoma [15] y los sistemas IoT [16], entre otros. Un agente
inteligente percibe su entorno, emprende acciones autónomas para alcanzar objetivos y puede
mejorar su rendimiento mediante el aprendizaje y la adquisición de conocimientos [17]. Están
diseñados para aprender de los datos recopilados, adaptarse a su entorno y tomar decisiones
informadas para llevar a cabo las tareas.

En el advenimiento de la cuarta revolución industrial, la falta de transparencia de los sistemas
basados en la inteligencia artificial representa un obstáculo fundamental para su uso, lo que ha
llevado a la aplicación de la IA explicable (XAI) [18] a estos sistemas. Por ejemplo, los agentes
inteligentes convencionales se entrenan para realizar tareas sin tener en cuenta las relaciones
causales inherentes que subyacen al problema que deben resolver. Este es un problema que debe
abordarse.
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Aprendizaje por refuerzo

En el contexto del aprendizaje por refuerzo y los modelos cognitivos de agentes en video-
juegos, la inferencia causal juega un papel crucial. Al analizar las relaciones causales entre las
acciones y sus consecuencias, los algoritmos de aprendizaje por refuerzo pueden tomar decisio-
nes más informadas y mejorar su rendimiento, especialmente en entornos complejos como los
videojuegos. El aprendizaje profundo por refuerzo (Deep Reinforcement Learning) se ha conver-
tido en una poderosa disciplina dentro de los campos de la inteligencia artificial y el aprendizaje
automático. Su importancia radica en su capacidad para entrenar a las máquinas para que apren-
dan y tomen decisiones autónomas en entornos complejos y dinámicos. Los avances en esta área
han encontrado diversas aplicaciones, como por ejemplo en la robótica [19], la automatización
industrial [20], los videojuegos [21] y la sanidad [22]. En consecuencia, el aprendizaje por refuerzo
implica que los agentes adquieran representaciones eficientes del entorno a partir de entradas
sensoriales de alta dimensión y las utilicen para generalizar experiencias pasadas a situaciones
nuevas como lo afirman [23] y [24]. En este contexto, la Deep Q-Network introducida por [25]
se ha convertido en un punto de referencia fundamental para gran parte de la investigación en
aprendizaje profundo por refuerzo.

El enfoque de replay memory, o replay buffer, es una parte importante de la mejora del
aprendizaje por refuerzo. Este método, que implica el almacenamiento y posterior utilización de
experiencias previas, ha demostrado ser fundamental para aumentar la velocidad y la estabilidad
del proceso de aprendizaje en múltiples situaciones y algoritmos. Por ejemplo, en el caso de los
algoritmos basados en Deep Q-Network, como se analiza en [25], el uso de la replay memory ha
permitido un entrenamiento más eficaz en entornos muy complejos. Del mismo modo, la replay
memory ha surgido como una herramienta importante para abordar problemas en situaciones
dinámicas y no estacionarias en sistemas actor-critic [26]. Además, la esta estructura es funda-
mental para limitar la sobreestimación de los valores de las acciones en el marco del Double Deep
Q-Learning [27]. Esto demuestra la relevancia y adaptabilidad de la técnica de replay memory
en una amplia gama de algoritmos y aplicaciones de aprendizaje por refuerzo.

En el campo del aprendizaje por refuerzo, la priorización de experiencias ha sido un tema de
investigación crucial para mejorar la eficiencia y la capacidad de aprendizaje de los algoritmos
de aprendizaje por refuerzo. Uno de los trabajos pioneros en este ámbito priorizó los métodos de
muestreo para estos algoritmos [28]. El principio subyacente de estos métodos es proporcionar a
la experiencia una mayor probabilidad de selección cuando el error de diferencia temporal indica
un mayor cambio de valor. Como se muestra en [29], una serie de experimentos han demostrado
que este método funciona, mostrando que la priorización puede acelerar en gran medida el pro-
ceso de aprendizaje en entornos de este tipo de aprendizaje.

En la literatura también se han investigado métodos alternativos de ponderación de expe-
riencias en algoritmos de aprendizaje por refuerzo. Por ejemplo, algunos estudios han examinado
la posibilidad de priorizar las experiencias en función de las recompensas adquiridas en lugar de
los errores de diferencia temporal, como se muestra en [30]. Estos estudios han demostrado que
la elección precisa de las medidas de priorización puede influir en la eficacia de los algoritmos de
aprendizaje por refuerzo para diversas tareas.
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Por otra parte, uno de los retos centrales del aprendizaje por refuerzo reside en la toma de
decisiones autónoma dentro de entornos complejos y dinámicos. En este contexto, el concepto
de inferencia causal ha surgido como un componente prometedor para mejorar la eficacia de
los algoritmos de aprendizaje por refuerzo. Según [31], la inferencia causal puede abordar el
reto fundamental de la generalización en el aprendizaje por refuerzo. Esta capacidad permite a
los agentes comprender las relaciones causa-efecto en su entorno, lo que es crucial para tomar
decisiones informadas. Un agente debe ser capaz de discernir cuáles de sus acciones pasadas, o
lecciones aprendidas, contribuyeron a los resultados observados. Al incorporar la inferencia causal
a los algoritmos de aprendizaje por refuerzo, los agentes pueden generalizar más eficazmente sus
conocimientos a nuevas situaciones, lo que se traduce en una toma de decisiones más precisa.

Estructura de la Tesis

Este documento se compone de tres partes:

Primera parte (Introducción): Se explica la motivación para realizar esta investigación, se
formulan los objetivos, se expone la causalidad desde el punto de vista de la ciencia compu-
tacional, se explican las consideraciones metodológicas, se detalla el desarrollo de cada uno
de los experimentos realizados y se presenta el marco conceptual en relación con el aprendi-
zaje de máquina y la inferencia causal, aportando una revisión de la literatura relacionada
con la aplicación de la inferencia causal y el descubrimiento causal en el ámbito compu-
tacional.

Segunda parte (Experimentación): Compuesta por cinco caṕıtulos, cada uno de ellos desti-
nado al desarrollo de un experimento en particular. Cada caṕıtulo documenta el propósito,
el método, los resultados con su respectiva discusión y las conclusiones obtenidas.

Tercera parte (Conclusiones): Se presentan los resultados generales de la tesis, se formulan
las conclusiones de esta investigación y se proponen trabajos futuros derivados. Además, se
destacan las contribuciones metodológicas, emṕıricas y teóricas a la literatura resultantes
de este estudio.
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Capı́tulo 2
Metodoloǵıa general

Para llevar a cabo esta investigación, se implementó una metodoloǵıa sólidamente fundamen-
tada en diversas fuentes académicas relevantes en el ámbito del aprendizaje automático (ML) y
disciplinas afines. Nos basamos en los enfoques metodológicos presentados en estudios previos,
como los realizados por [32], [33], [34], [35], [36], entre otros. Estos estudios abordan una amplia
gama de aplicaciones del ML, desde el aprendizaje por refuerzo en videojuegos hasta el análisis
de imágenes médicas y la predicción de resultados deportivos, entre otros. La figura 2.1 detalla
gráficamente el proceso metodológico que se adoptó para cada experimento.

Figura 2.1. Proceso metodológico para cada experimento.

La metodoloǵıa de esta investigación se estructuró en torno a la planificación, ejecución y
análisis detallado de una serie de experimentos diseñados para abordar el objetivo general del
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estudio. Este enfoque potenció un marco de trabajo coherente y robusto que aseguró la calidad y
fiabilidad de los resultados obtenidos. A continuación, se detalla la metodoloǵıa general empleada
en la realización de cada uno de los experimentos:

2.1. Definición del marco conceptual

Se elaboró un marco conceptual que delineó los conceptos fundamentales y las teoŕıas per-
tinentes que respaldan la presente investigación. Esto implicó una revisión exhaustiva de la
literatura relacionada con el tema de estudio, con el fin de comprender el estado actual del
conocimiento, identificar posibles brechas y establecer una base teórica sólida.

2.2. Formulación de los objetivos de la experimentación

La documentación detallada de cada experimento se inicia con la definición detallada de sus
objetivos, los cuales actúan como directrices fundamentales para orientar tanto el diseño como
la ejecución de cada fase experimental. Estos objetivos fueron concebidos de manera cuidadosa
con el fin de abordar con precisión las preguntas de investigación planteadas, asegurando aśı
la consecución del propósito general planteado en este estudio. La claridad y la precisión en la
definición de estos objetivos no solo garantizan una alineación coherente con los lineamientos
del proyecto, sino que también facilitan una evaluación efectiva de los resultados obtenidos en
relación con los objetivos establecidos.

2.3. Diseño experimental

Se elaboraron experimentos detallados con el propósito de indagar en aspectos espećıficos
del problema de investigación. Este proceso incluyó la identificación de variables relevantes, la
selección meticulosa de métodos de recolección de datos y la planificación de los procedimien-
tos experimentales. Espećıficamente, los experimentos llevados a cabo abordaron los siguientes
aspectos:

Simulación del fenómeno interacción luz-materia

Estimación de valores de iluminancia mediante Deep Learning

Inferencia causal para determinar la causa de un fenómeno de sombra en una imágen

Inferencia causal para el modelo de comportamiento de un agente inteligente

Incorporación de la inferencia causal en el procedimiento de muestreo de una Deep Q-
Network para resolver problemas de control clásico

2.4. Configuración del escenario de pruebas

Se creó un entorno de pruebas acorde al propósito de cada experimento, de manera que
asegurara coherencia y que hiciera que cada experimento fuera realizable y reproducible. Este
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proceso implicó definir las dimensiones, caracteŕısticas y condiciones de cada entorno experimen-
tal. Por ejemplo, se incluyeron entornos virtuales y modelos de escenarios en 3D para garantizar
la fidelidad y la adecuación de los entornos de prueba a las necesidades espećıficas de cada
experimento.

2.5. Generación de datos

Se procedió a la recopilación de datos empleando técnicas y herramientas adecuadas pa-
ra cada experimento. Este proceso involucró la generación de muestras de datos siguiendo los
procedimientos experimentales previamente establecidos. Espećıficamente, en los primeros tres
experimentos (caṕıtulos 4, 5, 6), los datos fueron generados sintéticamente. Por otro lado, en
los dos últimos experimentos (caṕıtulos 7 y 8), los datos se obtuvieron mediante un proceso de
muestreo del conjunto de datos generado durante el entrenamiento de un agente.

2.6. Resultados y conclusiones

En el marco de cada experimento, se procedió a la presentación detallada y análisis de sus
resultados. Su interpretación se dio en relación con el marco conceptual previamente establecido,
considerando tanto sus implicaciones teóricas como prácticas. A través de este análisis, fue posible
alcanzar conclusiones fundamentadas y proporcionar aportes significativos al campo de estudio
abordado.
Además, se llevó a cabo una comparación entre los resultados obtenidos en los experimentos
y teoŕıas existentes, lo que contribuyó a una comprensión más profunda y diferenciada del
fenómeno bajo estudio, y proporcionó una base sólida para futuras investigaciones y desarrollos
en el área.

2.7. Documentación y presentación

Una parte esencial del proceso de investigación fue la documentación exhaustiva de todos
los aspectos relevantes del estudio, que abarcan desde la metodoloǵıa hasta los resultados y las
conclusiones obtenidas. Esta documentación se realizó siguiendo estándares rigurosos para ga-
rantizar la claridad y la precisión de la información recopilada.

La metodoloǵıa utilizada, junto con sus fundamentos teóricos y prácticos, se describió deta-
lladamente, permitiendo aśı una comprensión completa de los procedimientos llevados a cabo
en la investigación. Además, se incluyeron detalles sobre la selección de técnicas, herramientas
y metodoloǵıas espećıficas empleadas en cada etapa del experimento.

En cuanto a los resultados obtenidos, se detallaron los hallazgos más relevantes y las tenden-
cias observadas durante el análisis de los datos. Se incluyeron tablas, gráficos y otros elementos
visuales pertinentes para facilitar la comprensión y la interpretación de los resultados.

Por último, se llevó a cabo una divulgación cient́ıfica de los hallazgos de la investigación
en varios journals especializados, con el objetivo de comunicar los resultados a audiencias tanto
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especializadas como no especializadas. Estas publicaciones se seleccionaron cuidadosamente para
asegurar que los hallazgos alcanzaran la mayor visibilidad y relevancia dentro de la comunidad
académica y cient́ıfica.
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Capı́tulo 3
Marco conceptual

En esta sección, se explora la conexión entre la inferencia causal y el machine learning, dos
campos cruciales en la ciencia de datos contemporánea. Se inicia revisando la importancia del
machine learning en diversas aplicaciones, desde la medicina hasta las finanzas y la industria
[37, 38, 39].

A continuación, se adentra en el concepto de inferencia causal y su importancia dentro del
ámbito del machine learning. A diferencia del enfoque del machine learning en la predicción
basada en correlaciones detectadas en los datos, la inferencia causal facilita la comprensión de
las relaciones causa-efecto subyacentes. Al incorporar la inferencia causal en los modelos de
machine learning, se aumenta la capacidad de interpretar los resultados y se reducen los sesgos
no deseados [40, 41].

Se indaga en investigaciones pertinentes que examinan cómo la inferencia causal ha sido em-
pleada para mejorar los modelos de machine learning, abordando aspectos como la interpretación
de modelos y la toma de decisiones en condiciones de incertidumbre.

Con esta revisión de literatura, se busca proporcionar una comprensión profunda de la inter-
acción entre la inferencia causal y el machine learning, aśı como su importancia en la investigación
actual en ciencia de datos y sus aplicaciones prácticas.

3.1. Machine Learning: Fundamentos y aplicaciones

El campo del machine learning se basa en tres paradigmas principales: el aprendizaje su-
pervisado, el aprendizaje no supervisado y el aprendizaje por refuerzo. De acuerdo a [42] el
aprendizaje supervisado es fundamental en numerosas aplicaciones del mundo real, como reco-
nocimiento de voz, diagnóstico médico, y detección de fraudes, ya que permite entrenar modelos
para hacer predicciones precisas basadas en datos históricos. Por otra parte [43] sostiene que
el aprendizaje no supervisado desempeña un papel crucial en la exploración y comprensión de
conjuntos de datos complejos, facilitando tareas como la segmentación de clientes, la detección
de anomaĺıas y la reducción de la dimensionalidad. En cuanto al aprendizaje por refuerzo, [44]
y [23] concuerdan en que es esencial en áreas como la robótica, los juegos y la optimización de
procesos, ya que permite que los agentes aprendan a tomar decisiones secuenciales en entornos
dinámicos para lograr objetivos espećıficos. Inscritos en estos tipos de aprendizaje, existen dos
clases de modelos: los modelos de regresión, son herramientas estad́ısticas empleadas para en-
tender la relación entre una variable dependiente y una o más variables independientes. Estos

21



modelos buscan establecer la relación entre las variables mediante una función matemática que
pueda predecir el valor de la variable dependiente en función de los valores de las variables inde-
pendientes [45] y, por otra parte, los modelos de clasificación, que son herramientas en el campo
del aprendizaje automático y la estad́ıstica que se utilizan para predecir la clase o categoŕıa a la
que pertenecen los datos. Estos modelos se entrenan utilizando ejemplos de datos previamente
etiquetados con su clase correspondiente y luego se emplean para predecir la clase de nuevos
datos no etiquetados [46].

3.1.1. Aprendizaje supervisado

El aprendizaje automático supervisado implica la tarea de extraer significado de datos de
entrenamiento etiquetados, los cuales consisten en un conjunto de ejemplos de entrenamiento
[47]. El objetivo es que el modelo aprenda a predecir la salida correcta para nuevas entradas
basadas en ejemplos previamente etiquetados.

Aplicaciones comunes del aprendizaje supervisado

El aprendizaje supervisado tiene una amplia gama de aplicaciones en la práctica en diversas
industrias. Entre otros autores, [42] y [48] consideran que algunas de las aplicaciones más comunes
incluyen:

Reconocimiento de voz y procesamiento de lenguaje natural: Utilizado en sistemas de
reconocimiento de voz como Siri de Apple, asistentes virtuales como Alexa de Amazon y
en el procesamiento de lenguaje natural para la traducción automática y la generación de
resúmenes de texto.

Visión por computadora: Empleado en aplicaciones como reconocimiento facial, detección
de objetos y segmentación de imágenes en campos que van desde la seguridad hasta la
medicina.

Diagnóstico médico: Aplicado en la detección temprana de enfermedades mediante el análi-
sis de imágenes médicas, datos genéticos y registros de salud electrónicos.

Principales modelos del aprendizaje supervisado

1. Regresión lineal: Un modelo simple pero efectivo para problemas de regresión que busca
establecer una relación lineal entre las caracteŕısticas de entrada y la variable de salida.

2. Regresión loǵıstica: Utilizado para problemas de clasificación binaria, la regresión loǵısti-
ca estima la probabilidad de que una instancia pertenezca a una clase particular.

3. Random Forest: Un algoritmo de ensemble que combina múltiples árboles de decisión
para realizar predicciones más precisas. Es robusto frente al sobreajuste y capaz de manejar
conjuntos de datos grandes con alta dimensionalidad.

4. Redes Neuronales de propagación hacia adelante (FFNN): son modelos en los que
la información se mueve en una sola dirección, de la entrada a través de las capas ocultas
hacia la salida. Son utilizadas para una variedad de tareas de aprendizaje automático,
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incluyendo la clasificación, la regresión, el reconocimiento de patrones y la generación de
secuencias, entre otras.

5. Redes Neuronales Convolucionales (CNN): Especialmente eficaces en problemas de
visión por computadora, las CNN son capaces de aprender automáticamente caracteŕısticas
jerárquicas de las imágenes, como bordes, formas y texturas.

6. Redes Neuronales Recurrentes (RNN): Utilizadas en tareas de procesamiento de
secuencias, como el procesamiento de lenguaje natural y la traducción automática, las
RNN pueden manejar entradas de longitud variable y capturar dependencias temporales
en los datos.

7. Support Vector Machines (SVM) kernelizados: Una extensión de las SVM que utiliza
funciones kernel para mapear los datos en un espacio de mayor dimensionalidad, permi-
tiendo la separación de clases no linealmente separables.

8. K-Nearest Neighbors (KNN): Un algoritmo simple pero poderoso que clasifica nuevas
instancias según la mayoŕıa de las etiquetas de las k instancias más cercanas en el espacio
de caracteŕısticas.

Ventajas y desventajas del aprendizaje supervisado

Varios autores como [49] y [50], han identificado tanto ventajas como desventajas del apren-
dizaje supervisado. Entre las ventajas, destacan las predicciones altamente precisas que estos
modelos pueden realizar, basadas en datos de entrenamiento. Además, los resultados del modelo
son interpretables, lo que facilita la comprensión de las relaciones entre las caracteŕısticas y las
salidas. En muchos casos, también es posible acceder a grandes conjuntos de datos etiquetados
para el entrenamiento del modelo.

Por otro lado, se consideran algunas limitaciones. Estos modelos requieren grandes cantidades
de datos etiquetados para su entrenamiento efectivo, lo que puede conducir al sobreajuste a los
datos de entrenamiento y a una generalización deficiente a nuevos datos. Además, existe la
dificultad inherente para capturar relaciones complejas y no lineales entre las caracteŕısticas y
las salidas.

3.1.2. Aprendizaje no supervisado

Este tipo de aprendizaje permite obtener representaciones a partir de datos sin etiquetar o
experiencias que puedan ser empleadas para un aprendizaje más efectivo de tareas posteriores,
incluso con cantidades modestas de datos etiquetados [51]. El objetivo es explorar la estructura
oculta de los datos y generar conocimiento útil a partir de ellos.

Aplicaciones comunes del aprendizaje no supervisado

El aprendizaje no supervisado tiene una amplia gama de aplicaciones en diversas áreas.
Una de las aplicaciones más comunes es el clustering, que implica agrupar automáticamente
datos similares en grupos o clústeres. Este enfoque se utiliza ampliamente en la segmentación
de clientes para estrategias de marketing, aśı como en el agrupamiento de documentos para
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la organización eficiente y la búsqueda de información relevante [46] y [43]. Otra aplicación
importante es la reducción de dimensionalidad, que consiste en disminuir el número de variables
o caracteŕısticas en un conjunto de datos mientras se conserva la mayor cantidad posible de
información. Esta técnica se aplica en el análisis de datos de alta dimensionalidad, como imágenes
o datos genómicos, aśı como en la visualización de datos para comprender la estructura y las
relaciones entre variables [46] y [50]. Además, el aprendizaje no supervisado se utiliza en la
detección de anomaĺıas, que implica identificar instancias inusuales o at́ıpicas en un conjunto
de datos. Esta aplicación es fundamental en la detección de fraudes en transacciones financieras
y en la monitorización de sistemas para la detección de fallos o intrusiones [52] y [53]. Estas
aplicaciones son solo algunas de las muchas formas en que el aprendizaje no supervisado se aplica
en la práctica para extraer información útil y descubrir patrones en los datos sin la necesidad de
etiquetas expĺıcitas.

Principales modelos del aprendizaje no supervisado

1. Clustering: Los algoritmos de clustering, como K-Means [54], DBSCAN [55] y Hierar-
chical Clustering [56], agrupan automáticamente datos similares en grupos o clústeres sin
la necesidad de etiquetas previas. Estos algoritmos son ampliamente utilizados en la seg-
mentación de datos y la exploración de patrones en conjuntos de datos no etiquetados
[46].

2. Reducción de dimensionalidad: Estos modelos, como PCA (Análisis de Componen-
tes Principales)[57] y t-SNE (t-Distributed Stochastic Neighbor Embedding) [58], reducen
la dimensionalidad de un conjunto de datos conservando la mayor cantidad posible de
información. Son útiles para visualizar datos de alta dimensionalidad y para encontrar
representaciones más compactas de los datos.

3. Detección de anomaĺıas: Los modelos de detección de anomaĺıas identifican instancias
inusuales o at́ıpicas en un conjunto de datos [59]. Algunos algoritmos comunes incluyen el
método de detección de outliers basado en la desviación estándar, el algoritmo de bosques
aleatorios y los modelos de mezclas gaussianas [53].

4. Asociación: Estos modelos, como Apriori [60] y FP-Growth [61], identifican patrones de
asociación entre diferentes variables en un conjunto de datos. Son utilizados en la mineŕıa de
datos para descubrir reglas de asociación entre elementos en bases de datos transaccionales
[50].

Ventajas y desventajas del aprendizaje no supervisado

El aprendizaje no supervisado ofrece varias ventajas significativas en el análisis de datos.
Una de las principales ventajas es su capacidad para explorar y descubrir patrones en conjuntos
de datos sin la necesidad de etiquetas previas, lo que facilita la exploración inicial de datos
y la identificación de estructuras subyacentes [46]. Además, el aprendizaje no supervisado es
altamente flexible y adaptable a una amplia variedad de problemas y tipos de datos, ya que
no requiere etiquetas de salida espećıficas [62]. Esto lo hace especialmente útil en situaciones
donde no se dispone de datos etiquetados o donde la naturaleza de los datos es desconocida.
Otra ventaja importante es su capacidad para descubrir conocimiento oculto en los datos, lo
que puede llevar a una mejor comprensión de los datos y a nuevas ideas o descubrimientos [50].
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Sin embargo, el aprendizaje no supervisado también presenta desventajas. Por ejemplo, es dif́ıcil
evaluar la calidad y el rendimiento de los modelos de aprendizaje no supervisado, ya que no hay
una medida clara de éxito como en el aprendizaje supervisado [46]. Además, la interpretación de
los resultados puede ser complicada y subjetiva, ya que los patrones descubiertos pueden carecer
de un significado claro o ser dif́ıciles de interpretar sin el contexto adecuado [62]. Existe también
el riesgo de sobreajuste, donde los algoritmos pueden extraer patrones espurios o irrelevantes,
especialmente en conjuntos de datos grandes y complejos [50].

3.1.3. Aprendizaje por refuerzo

El aprendizaje por refuerzo es un paradigma de aprendizaje automático donde un agente
aprende a tomar decisiones secuenciales con el fin de maximizar una recompensa acumulativa.
En este enfoque, el agente interactúa con un entorno, observa su estado actual, selecciona una
acción y recibe una recompensa (o castigo) como resultado de esa acción. El objetivo del agente es
aprender una poĺıtica óptima, es decir, una estrategia que maximice la recompensa acumulativa a
lo largo del tiempo [31]. El objetivo es aprender una poĺıtica óptima que maximice la recompensa
acumulada a lo largo del tiempo.

Aplicaciones comunes del aprendizaje por refuerzo

El aprendizaje por refuerzo se ha destacado en diversas aplicaciones, respaldado por inves-
tigaciones significativas en la literatura. En el ámbito de los juegos y estrategias, el trabajo
seminal de [44] sobre el dominio del Go mediante redes neuronales profundas y búsqueda de
árboles marcó un hito en la capacidad de los agentes de aprendizaje automático para enfrentar
desaf́ıos complejos. Asimismo, [23] demostraron el potencial del aprendizaje profundo en el con-
trol humano-nivel en juegos de Atari. En robótica, el aprendizaje por refuerzo ha permitido el
desarrollo de agentes autónomos capaces de aprender tareas complejas, como la navegación en
entornos desconocidos o la manipulación de objetos [63] y [64]. Además, en sistemas de reco-
mendación y personalización, el aprendizaje por refuerzo se utiliza para adaptar y mejorar las
recomendaciones de productos o contenido para usuarios individuales [31] y [25]. Por último, en
la gestión de recursos y planificación, [65] han investigado el uso del aprendizaje por refuerzo en
la administración eficiente de enerǵıa en edificios inteligentes, mientras que [66] han propuesto
algoritmos de aprendizaje profundo para la asignación óptima de recursos en redes de comuni-
cación. Estas investigaciones destacan el potencial del aprendizaje por refuerzo en una variedad
de aplicaciones prácticas, desde juegos y robótica hasta sistemas de recomendación y gestión de
recursos.

Principales modelos del aprendizaje por refuerzo

1. Q-Learning: Este algoritmo es uno de los más básicos y ampliamente utilizados en apren-
dizaje por refuerzo. A través de la actualización de una función de valor llamada Q-valor,
el agente aprende a tomar decisiones óptimas en un entorno desconocido [67].

2. SARSA (State-Action-Reward-State-Action): Similar a Q-learning, SARSA es otro
algoritmo fundamental en aprendizaje por refuerzo. A diferencia de Q-learning, SARSA
actualiza el valor Q utilizando la acción tomada por el agente, lo que lo convierte en un
método de aprendizaje on-policy [68].
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3. Deep Q-Networks (DQN): Introducido por [23], DQN es un método que combina el
aprendizaje profundo con Q-learning para aprender a jugar videojuegos de Atari direc-
tamente desde ṕıxeles en bruto. Utiliza una red neuronal convolucional profunda para
aproximar la función Q.

4. Policy Gradient Methods: Estos métodos, como REINFORCE [69] y TRPO (Trust
Region Policy Optimization) [70], aprenden directamente la poĺıtica óptima de un agente
mediante el cálculo de gradientes de rendimiento con respecto a los parámetros de la
poĺıtica.

5. Actor-Critic Methods: Estos métodos combinan elementos de los métodos de gradiente
de poĺıticas y los métodos de función de valor. Un ejemplo es A3C (Asynchronous Ad-
vantage Actor-Critic) [71], que utiliza una red neuronal profunda para aproximar tanto la
poĺıtica del agente como la función de valor.

Ventajas y desventajas del aprendizaje por refuerzo

El aprendizaje por refuerzo ofrece una serie de ventajas significativas en el ámbito del aprendi-
zaje automático. Una de las principales ventajas es su capacidad para aprender de la interacción
directa con el entorno, lo que lo hace adecuado para problemas donde los datos son escasos o
costosos de obtener [31]. Además, el aprendizaje por refuerzo puede generalizarse a una amplia
gama de problemas, desde juegos y robótica hasta gestión de recursos y planificación [72]. Otra
ventaja importante es su capacidad para aprender poĺıticas óptimas de comportamiento a través
de la maximización de una señal de recompensa, lo que lo hace adecuado para problemas de
toma de decisiones secuenciales [31]. Sin embargo, el aprendizaje por refuerzo también tiene al-
gunas limitaciones. Por ejemplo, puede requerir una cantidad significativa de tiempo y recursos
computacionales para entrenar agentes que puedan desempeñarse bien en entornos complejos
[72]. Además, la estimación de las señales de recompensa puede ser dif́ıcil en algunos problemas
del mundo real, lo que puede llevar a un aprendizaje subóptimo o a comportamientos inesperados
del agente [31].

3.2. Inferencia causal en Machine Learning

Aunque las estructuras causales están impĺıcitas en los modelos de probabilidad, abarcan
información adicional que está ausente en estos últimos. El proceso de obtener conclusiones a
partir de un modelo causal se denomina razonamiento causal, que es análogo a cómo la teoŕıa
de la probabilidad nos permite razonar sobre los resultados de experimentos aleatorios. Por otro
lado, el razonamiento causal es más efectivo que el razonamiento probabiĺıstico debido a que
los modelos causales contienen más información que los modelos probabiĺısticos. Esto se debe a
que el razonamiento causal nos permite examinar el impacto de intervenciones o cambios en la
distribución [41]. La inferencia causal desempeña un papel crucial en el fortalecimiento de los
modelos de machine learning al ofrecer un sólido marco teórico para comprender las relaciones
subyacentes de causa y efecto en los datos. Según [40], estos métodos pueden ayudar a identificar
variables confusoras y mitigar sesgos en los modelos de machine learning, mejorando aśı la pre-
cisión y la capacidad de generalización de los resultados. Además, la integración de la inferencia
causal en estos modelos puede potenciar la interpretación de los resultados al proporcionar una
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comprensión más profunda de las relaciones entre las caracteŕısticas y las salidas, como sugiere
[10].

Aplicaciones de la Inferencia Causal en Machine Learning

La inferencia causal ha emergido como una herramienta poderosa en el campo del machine
learning, ofreciendo una forma de comprender y manipular las relaciones causa-efecto en los
datos. En la interpretación de modelos, la inferencia causal puede ayudar a identificar relacio-
nes causales subyacentes que no son evidentes mediante técnicas puramente correlativas. Por
ejemplo, en un estudio reciente, [73] utilizaron métodos de inferencia causal para desentrañar las
relaciones entre las caracteŕısticas de un modelo de machine learning y sus predicciones, propor-
cionando una comprensión más profunda de cómo y por qué el modelo toma ciertas decisiones.
Este enfoque no solo mejora la interpretabilidad del modelo, sino que también puede ayudar a
identificar posibles sesgos o efectos indeseados.

En cuanto a la generación de datos sintéticos, la inferencia causal puede utilizarse para si-
mular datos realistas y controlados que reflejen las relaciones causales en el mundo real. Por
ejemplo, [74] integración de la inferencia causal y el machine learning se evidencia en enfoques
innovadores como el uso de generative adversarial networks (GANs) para generar datos sintéticos
justos y libres de sesgos. Este enfoque incorpora expĺıcitamente el modelo causal estructural en
el proceso de generación de datos, lo que permite reconstruir cada variable condicionada a sus
padres causales. Al hacerlo, no solo se asegura la reducción del sesgo en la generación de datos,
sino que también se demuestra cómo la comprensión de las relaciones causa-efecto subyacentes
puede mejorar significativamente la calidad de los modelos de machine learning. Esta capacidad
para generar datos sintéticos basados en relaciones causales subyacentes puede ser invaluable en
situaciones donde los datos reales son escasos o costosos de obtener.

Además, en la toma de decisiones bajo incertidumbre, la inferencia causal puede proporcionar
un marco teórico sólido para evaluar y mitigar riesgos potenciales. Por ejemplo, en un contexto
de salud pública, [75] utilizaron métodos de inferencia causal para evaluar el impacto causal de
diferentes intervenciones en la propagación de una enfermedad infecciosa, lo que ayudó a informar
decisiones de poĺıtica pública. Al considerar las relaciones causales subyacentes, los investigadores
pueden tomar decisiones más informadas y efectivas en entornos complejos y dinámicos.

Técnicas y enfoques para aplicar la inferencia causal

1. Modelos de Ecuaciones Estructurales: Estos modelos representan relaciones causales
entre variables observadas y no observadas utilizando ecuaciones simultáneas. Se utilizan
principalmente en estudios longitudinales y de panel.

2. Métodos de Propensity Score Matching: Estos métodos se utilizan para reducir el
sesgo de selección en estudios observacionales mediante la creación de grupos comparables
basados en la probabilidad de pertenencia a un tratamiento.

3. Análisis de Instrumentos: Esta técnica se utiliza para estimar el efecto causal de una
variable de interés en presencia de endogeneidad utilizando variables instrumentales que
están relacionadas con la variable de tratamiento pero no con el resultado.
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4. Estudio de Regresión Discontinua: Se utiliza cuando la asignación a un tratamiento
está determinada por una regla de asignación basada en un umbral, lo que permite estimar
el efecto causal del tratamiento cerca de este umbral.

5. Diseños Experimentales: Los diseños experimentales, como los ensayos cĺınicos aleato-
rizados en medicina, son considerados el mejor método para establecer relaciones causales,
ya que permiten controlar los sesgos mediante la asignación aleatoria de tratamientos.

6. Modelos de Grafos Causales: Estos modelos representan las relaciones causales entre
variables como un grafo dirigido aćıclico, lo que permite visualizar y analizar las relaciones
de causa y efecto de manera expĺıcita.

Ventajas y desventajas de la inferencia causal aplicada al machine learning

La aplicación de la inferencia causal en el campo del machine learning presenta una serie de
ventajas y desventajas que han sido ampliamente discutidas en la literatura. En cuanto a las
ventajas, [40] enuncia que la inferencia causal proporciona un marco teórico sólido para compren-
der y modelar las relaciones de causa y efecto entre las variables en los datos. Esta comprensión
profunda de las relaciones causales subyacentes permite una mejor interpretación de los modelos
de machine learning y facilita la toma de decisiones informadas en entornos complejos. Además,
la inferencia causal puede ayudar a mitigar el sesgo y mejorar la generalización de los modelos al
controlar variables confusoras y eliminar la contaminación causada por relaciones espurias. Sin
embargo, también existen desventajas en la aplicación de la inferencia causal en el machine lear-
ning. Por ejemplo, [75] sostienen que la identificación y especificación adecuada de las relaciones
causales puede ser un desaf́ıo en muchos casos, especialmente cuando las relaciones son complejas
o no lineales. Además, la inferencia causal puede requerir datos adicionales o información sobre
el mecanismo causal subyacente, lo que puede ser dif́ıcil o costoso de obtener en la práctica. A
pesar de estas limitaciones, como se verá en la siguiente sección, la integración de la inferencia
causal en el machine learning sigue siendo un área de investigación activa y prometedora que tie-
ne el potencial de mejorar significativamente la calidad y la ética de los modelos de aprendizaje
automático.

3.3. Trabajos relacionados

3.3.1. Estimación de la iluminancia

Estimar la iluminancia representa un desaf́ıo significativo en este campo, ya que es una me-
dida fotométrica crucial para evaluar la calidad de la iluminación [76]. Hasta donde se sabe,
investigaciones anteriores no han explorado la aplicación del aprendizaje profundo en la estima-
ción de la iluminancia y su integración en el proceso de configuración de la iluminación. Hay
diversos enfoques para este problema. Por ejemplo, en [77] los autores proponen una red neu-
ronal convolucional que estima la iluminación en una escena mediante aprendizaje supervisado,
considerando la limitación de requerir una gran cantidad de datos de entrenamiento. Gardner et
al. [78] presentan un método automático que utiliza una red neuronal convolucional para inferir
la iluminación a partir de una única fotograf́ıa y un campo de visión limitado en una escena
interior. En [79] los autores abordan la estimación de la luz que llega desde todas las direcciones
a un punto 3D en una imagen descomponiendo la predicción de la iluminación en estimación
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de geometŕıa, completado de escena y estimación de rango dinámico de baja a alta. Zhang et
al. [80] proponen un método de aprendizaje basado en el canal de luminancia de la región del
cielo y una red neuronal convolucional con mejoras en el rendimiento. En cuanto a la luminancia
aplicada a la industria de los videojuegos, en [81] el autor desarrolló un sistema de iluminación
dinámica en tiempo real llamado ELE (Expressive Lighting Engine) para establecer una confi-
guración de iluminación óptima. Otros estudios, como [82, 83, 84, 85, 86, 87, 88, 89, 90], también
han explorado diferentes técnicas para la estimación de la iluminancia utilizando aprendizaje
profundo o métodos relacionados.

3.3.2. Inferencia causal para la explicación de eventos captados en
imágenes

Al considerar cualquier imagen, más allá de verla simplemente como un conjunto de objetos,
es natural para un ser humano atribuirle significado o inferir la explicación de algún evento de
interés capturado en ella. Sin embargo, ¿cómo puede alcanzar tal inferencia la inteligencia arti-
ficial? La inferencia causal puede aplicarse en diversas áreas de la ciencia y la tecnoloǵıa, como
la economı́a, la epidemioloǵıa, el procesamiento de imágenes y la conducción autónoma, donde
es crucial tomar decisiones precisas.

Actualmente, existen métodos ampliamente estudiados que, a través de la correlación, per-
miten reconocer y clasificar objetos utilizando conjuntos de datos robustos, como se presenta en
[3], que proporcionan información suficiente para garantizar una alta precisión en estas tareas
[4]. Sin embargo, en la última década, como señala [5], la inteligencia artificial explicativa (XAI)
ha surgido como respuesta a la complejidad creciente de los algoritmos y la falta de transparen-
cia de los modelos, lo que ha llevado a la necesidad de hacer que los sistemas de IA sean más
interpretables y comprensibles, especialmente en dominios cŕıticos.

Entonces, ¿cómo pueden obtenerse explicaciones sobre eventos capturados en imágenes me-
diante inteligencia artificial? Para lograrlo, se deben considerar relaciones causales que pueden
inferirse a través del conocimiento experto [6] o mediante intervenciones en los conjuntos de
datos, como se describe en [7]. Sin embargo, es importante tener en cuenta que, en el lenguaje
probabiĺıstico, la incapacidad para distinguir entre dar valor a una variable y observarla puede
dificultar la modelización de las relaciones causa-efecto [8].

Por lo tanto, el modelado juega un papel crucial en la inferencia causal. [91] discute cómo la
inferencia causal puede mejorar la interpretabilidad y la robustez de los métodos de aprendizaje
automático, destacando oportunidades en el desarrollo de modelos de aprendizaje automático
con capacidad causal adaptada para el análisis de la movilidad a partir de imágenes o datos
secuenciales.

En el ámbito espećıfico de la inferencia causal aplicada a imágenes, existen diversas aproxima-
ciones. Por ejemplo, [10] proponen el uso de coeficientes de causalidad neural (NCC) calculados
mediante redes neuronales convolucionales (CNN) aplicadas a los ṕıxeles de una imagen. Otros,
como [11], han desarrollado un enfoque estad́ıstico basado en la transferencia de entroṕıa para
descubrir y cuantificar la relación entre el movimiento de la cámara y el de un objeto rastrea-
do, mientras que [12] han presentado un modelo gramatical bayesiano (C-AOG) para relaciones
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causales percibidas por humanos en videos. Asimismo, [13] utilizan el método de causalidad,
junto con técnicas de visión por computadora y aprendizaje automático, para determinar si un
video se reproduce hacia adelante o hacia atrás mediante la observación de la flecha del tiempo
en una secuencia temporal. Tomando en consideración las causas subyacentes de la formación
de sombras, la inferencia causal puede brindar predicciones más precisas y mejorar el realismo
general de los entornos virtuales. Por lo cual, dada la relevancia de este tema y la necesidad
de experimentación en casos espećıficos que podŕıan ser contribuyentes a campos en evolución
como los gráficos 3D, donde la detección de sombras representa un área en la que la inferencia
causal puede aplicarse para mejorar la precisión y eficiencia en este proceso, en contraposición
a técnicas tradicionales como el trazado de rayos, que resulta computacionalmente costoso en
términos de manejo de escenas complejas con múltiples objetos [92]. Este desaf́ıo es reconocido
igualmente en soluciones innovadoras como la propuesta por [93], quien calcula derivadas de
funciones escalares en una imagen renderizada con respecto a parámetros arbitrarios de la esce-
na, como la ubicación de la cámara, la geometŕıa de la escena, los materiales y los parámetros
de iluminación, utilizando un algoritmo de muestreo de bordes. Nuestro estudio proporciona un
punto de referencia para abordar un aspecto de este problema mediante el uso de la inferencia
causal para detectar y deducir la causa de una sombra proyectada sobre la superficie de una
escena 3D.

3.3.3. Inferencia causal para determinar el comportamiento de un
agente inteligente

Los agentes inteligentes, impulsados por la inteligencia artificial y el aprendizaje automático,
han adquirido una creciente presencia en diversas tareas de toma de decisiones en campos como
los videojuegos [14], la conducción autónoma [15], y los sistemas IoT [16], entre otros. Un agente
inteligente percibe su entorno, toma acciones autónomas para alcanzar objetivos y puede mejorar
su desempeño mediante el aprendizaje y la adquisición de conocimientos [17]. Están diseñados
para aprender de los datos recopilados, adaptarse a su entorno y tomar decisiones informadas
para realizar tareas.

En el contexto de la cuarta revolución industrial, la falta de transparencia en los sistemas ba-
sados en inteligencia artificial representa un obstáculo crucial para su adopción, lo que ha llevado
a la aplicación de la inteligencia artificial explicativa (XAI) [18] a estos sistemas. Por ejemplo,
los agentes inteligentes convencionales están entrenados para realizar tareas sin considerar las
relaciones causales subyacentes que fundamentan el problema que deben resolver. Este es un pro-
blema que debe abordarse. Sin embargo, como señaló [94], incorporar la inferencia causal en los
agentes inteligentes es un desaf́ıo debido a las numerosas variables ocultas dentro del modelo. No
obstante, ha habido un reciente aumento del interés en el desarrollo de algoritmos que generan
comportamiento de agente interpretable con respecto a objetivos, planes o recompensas, como
se discute en [95]. Esto ha allanado el camino para investigaciones, como las de [96], [97], y [98],
que demuestran la viabilidad de integrar el razonamiento probabiĺıstico y los mapas causales en
la lógica de los agentes inteligentes. Al adoptar el razonamiento causal, los agentes inteligentes
pueden ir más allá de simplemente identificar correlaciones y discernir las causas fundamentales
de los eventos, facilitando procesos de toma de decisiones más sólidos, fiables e interpretables.
Por ejemplo, [99] han utilizado el .aprendizaje meta-reforzado”para generar un agente capaz de
ejecutar tareas mediante inferencias causales, incluso sin conocimiento expĺıcito de la causalidad.
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De manera similar, en relación con el diseño de un sistema de enerǵıa de red inteligente,
[100] propone un modelo de comunicación de inferencia causal (CICM) para garantizar un fun-
cionamiento eficiente del sistema y reducir el ancho de banda de comunicación. La eficacia de
su algoritmo se demostró en experimentos utilizando tareas de navegación en el mundo virtual
de StarCraft II, un videojuego. [101] ha presentado un agente de inferencia dinámica que utiliza
representaciones numéricas en lugar de representaciones simbólicas para modelar, inferir y tomar
decisiones.

Además, [102] han sugerido un método de diseño y una arquitectura de agente que se basan
en el marco de Creencias, Deseos e Intenciones (BDI) que [103] describieron para crear agentes
inteligentes. Resaltando la dificultad de modelar con precisión la estructura causal de un agente,
[104] ha enfatizado este desaf́ıo utilizando la Competición Angry Birds AI como ejemplo, don-
de los agentes deben analizar niveles y predecir las consecuencias f́ısicas de sus acciones para
obtener altas puntuaciones, como se describe en [105]. En respuesta a esta competencia, [106]
han desarrollado una arquitectura de agente que emplea inferencia bayesiana para mejorar las
habilidades de toma de decisiones.

Aunque algunos estudios han abordado el desarrollo de agentes inteligentes que incorporan
inferencia causal en su aprendizaje, se necesita más experimentación en este tema, lo que indica
la necesidad de más estudios emṕıricos para obtener una comprensión más profunda de cómo la
inferencia causal puede mejorar las capacidades de toma de decisiones de los agentes inteligentes.

Esta investigación examinará a fondo la intersección entre agentes inteligentes e inferencia
causal para explorar cómo la incorporación del razonamiento causal puede mejorar significati-
vamente las habilidades de toma de decisiones y la ejecución de tareas, proporcionando a estos
agentes una ventaja distintiva sobre otros sistemas. El propósito principal de esta investigación
es contribuir al creciente cuerpo de conocimiento en los campos de sistemas de agentes inteligen-
tes e inferencia causal, arrojando luz sobre el potencial prometedor de fusionar estas áreas para
crear sistemas de toma de decisiones más informados y transparentes.

3.3.4. Inferencia causal para el muestreo priorizado en modelos de
aprendizaje por refuerzo

El aprendizaje profundo por refuerzo (DRL) se ha convertido en una disciplina poderosa
dentro de los campos de la inteligencia artificial y el aprendizaje automático. Su prominencia
radica en su capacidad para entrenar máquinas para aprender y tomar decisiones autónomas en
entornos complejos y dinámicos. Los avances en DRL han encontrado aplicaciones en diversos
campos, incluyendo la robótica [19], la automatización industrial [20], los videojuegos [21], y
la atención médica [22]. En consecuencia, el aprendizaje por refuerzo implica que los agentes
adquieran representaciones eficientes del entorno a partir de entradas sensoriales de alta dimen-
sión y las utilicen para generalizar experiencias pasadas a nuevas situaciones [23],[24]. En este
contexto, la Deep Q-Network introducida por [25] se ha convertido en un punto de referencia
fundamental para gran parte de la investigación en aprendizaje profundo por refuerzo.

El enfoque de memoria de repetición (Replay Buffer) es una parte importante para mejorar

31



el aprendizaje por refuerzo. Este método, que implica almacenar y luego utilizar experiencias
previas, se ha demostrado que es fundamental para aumentar la velocidad y la estabilidad del
proceso de aprendizaje en múltiples situaciones y algoritmos. Por ejemplo, en el caso de algorit-
mos basados en Deep Q-Network, como se exploró en [25], el uso de la memoria de repetición ha
permitido un entrenamiento más efectivo en entornos altamente complejos. De manera similar,
la memoria de repetición ha surgido como una herramienta significativa para abordar problemas
en situaciones dinámicas y no estacionarias en sistemas actor-critic [26]. Además, la memoria
de repetición es cŕıtica para limitar la sobreestimación de los valores de acción en el contexto
del doble Q-Learning [27]. Esto demuestra la relevancia y la adaptabilidad de la técnica de me-
moria de repetición en una amplia gama de algoritmos y aplicaciones de aprendizaje por refuerzo.

En el campo del aprendizaje por refuerzo (RL), la priorización de la experiencia ha sido un
tema de investigación crucial destinado a mejorar la eficiencia y la capacidad de aprendizaje
de los algoritmos de RL. Uno de los trabajos pioneros en este ámbito priorizó los métodos de
muestreo para algoritmos de RL [28]. El principio subyacente de estos métodos es proporcionar
experiencia con una mayor probabilidad de selección cuando el error de diferencia temporal (TD)
indica un mayor cambio en el valor. Como se muestra en [29], una serie de experimentos han
demostrado que este método funciona, mostrando que la priorización puede acelerar el proceso
de aprendizaje en entornos de RL en gran medida.

También se han investigado métodos alternativos de ponderación de experiencias en algo-
ritmos de RL en la literatura. Por ejemplo, ciertos estudios han examinado la posibilidad de
priorizar experiencias según las recompensas adquiridas en lugar de los errores TD, como se
demuestra en [30]. Estos estudios han demostrado que la elección meticulosa de medidas de
priorización puede influir en la eficacia de los algoritmos de aprendizaje por refuerzo para diver-
sas tareas.

Por otro lado, uno de los desaf́ıos centrales en el aprendizaje por refuerzo radica en la toma
de decisiones autónoma dentro de entornos complejos y dinámicos. En este contexto, el con-
cepto de inferencia causal ha surgido como un componente esencial para mejorar la eficiencia
y efectividad de los algoritmos de RL. Según [31], la inferencia causal puede abordar el desaf́ıo
fundamental de la generalización en RL. Esta capacidad permite que los agentes de RL com-
prendan las relaciones de causa y efecto en su entorno, lo cual es crucial para tomar decisiones
informadas. Un agente debe ser capaz de discernir qué acciones pasadas contribuyeron a los
resultados observados. Al incorporar la inferencia causal en los algoritmos de RL, los agentes
pueden generalizar más efectivamente su conocimiento a nuevas situaciones, lo que resulta en
una toma de decisiones más precisa. En [107], se propone un algoritmo basado en DQN arraigado
en la inferencia causal, denominado Çausal Inference Q-Network (CIQ)”. La evaluación del ren-
dimiento de CIQ en diversos entornos de referencia de Redes Q Profundas con diferentes tipos
de interferencias como etiquetas auxiliares demuestra que el método propuesto podŕıa lograr un
mejor rendimiento y una mayor resistencia contra interferencias observacionales. Además, [108]
profundiza en cómo la inferencia causal puede aprovecharse para entender el comportamiento de
sistemas de aprendizaje altamente complejos que interactúan con sus entornos. Además, enfati-
za cómo las predicciones basadas en la inferencia causal pueden ser beneficiosas tanto para los
humanos como para los algoritmos al seleccionar cambios que podŕıan mejorar potencialmente el
rendimiento del sistema. Este enfoque proporciona un marco general para aplicar el razonamien-
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to contrafáctico y la inferencia causal a sistemas de aprendizaje, allanando el camino para un
enfoque más sólido y preciso para optimizar sistemas complejos en el contexto del aprendizaje
por refuerzo.

Según [109], los autores exploraron el uso de tareas auxiliares no supervisadas en el aprendi-
zaje por refuerzo. Los investigadores crearon un agente de aprendizaje por refuerzo que maximiza
múltiples funciones de pseudo-recompensa y dirige la recompensa acumulativa. La representación
compartida de las tareas auxiliares evoluciona sin recompensas externas, como el aprendizaje no
supervisado. También introdujeron una nueva forma de centrarse en las recompensas externas,
lo que ayuda a los agentes a comprender rápidamente los puntos clave de la tarea. El agente
utilizado superó al anterior mejor rendimiento en Atari en un 880% en comparación con el ren-
dimiento humano experto. Además, superó a los humanos expertos en tareas de laberinto en
primera persona y tridimensionales dif́ıciles, con un aumento promedio de velocidad de apren-
dizaje de 10× y un rendimiento promedio del 87%. El estudio de [110] aborda el desaf́ıo de
entrenar agentes generalistas para una adaptación eficiente a nuevas tareas en el aprendizaje
profundo por refuerzo (DRL). Además investigaron el pre-entrenamiento no supervisado con re-
compensas intŕınsecas autosupervisadas para la adaptación. El Banco de Pruebas de Aprendizaje
por Refuerzo No Supervisado (URLB) facilita comparaciones justas y un desarrollo posterior.
URLB tiene pre-entrenamiento sin recompensas y adaptación de tareas basadas en recompensas
extŕınsecas. Prueban sus habilidades con doce tareas de control continuo en tres dominios utili-
zando la Suite de Control DeepMind. Ofrecen versiones de código abierto de ocho de los mejores
métodos de RL no supervisados. Aunque se han logrado avances, las ĺıneas de base no resuelven
URLB, lo que resalta la necesidad de más investigación.

A pesar de que ha habido mejoras en cómo el aprendizaje por refuerzo prioriza la experiencia,
todav́ıa existe una brecha en la literatura sobre cómo agregar inferencia causal al proceso de
muestreo priorizado de una Deep Q-Network. Esta investigación aborda esta brecha explorando
cómo la inferencia causal puede complementar y mejorar las técnicas de priorización existentes
en el contexto del aprendizaje profundo por refuerzo.

3.4. Conclusiones

En esta sección, se exploraron diversos aspectos relacionados con la aplicación de la infe-
rencia causal en el campo del machine learning. Se discutieron diferentes enfoques, técnicas y
aplicaciones de la inferencia causal, aśı como su relevancia para mejorar la interpretabilidad, la
precisión y la capacidad de generalización de los modelos de machine learning.

La inferencia causal desempeña un papel crucial en el fortalecimiento de los modelos de
machine learning al proporcionar un marco teórico sólido para comprender las relaciones sub-
yacentes de causa y efecto en los datos. Se destacó que los modelos de machine learning que
integran la inferencia causal pueden identificar variables confusoras, mitigar sesgos y mejorar la
interpretación de los resultados. Además, se resaltó la importancia de la inferencia causal en la
generación de datos sintéticos realistas y controlados, aśı como en la toma de decisiones bajo
incertidumbre en contextos como la salud pública.
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La integración de la inferencia causal en el machine learning sigue siendo un área de inves-
tigación activa y prometedora. Se sugiere que futuras investigaciones se centren en desarrollar
métodos y técnicas más avanzados para la inferencia causal en machine learning, especialmente
en entornos donde los datos son escasos o costosos de obtener. Además, se anima a explorar
aplicaciones espećıficas de la inferencia causal en áreas como la interpretación de modelos de
deep learning, el diseño de experimentos y la optimización de poĺıticas en sistemas de toma de
decisiones autónomas.

En śıntesis, la inferencia causal tiene el potencial de impulsar el avance del machine learning
al proporcionar una comprensión más profunda y sólida de las relaciones causa-efecto en los
datos, lo que puede conducir a modelos más robustos, interpretables y éticos. Su aplicación
adecuada y continuada en el ámbito del machine learning promete abrir nuevas oportunidades
y desaf́ıos emocionantes en la investigación y la práctica.
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Parte II

Experimentación
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Capı́tulo 4
Simulación y visualización del fenómeno
interacción luz-materia

4.1. Objetivo

El objetivo de este experimento fue simular la distribución del valor de iluminancia (E), una
magnitud asociada a un fenómeno f́ısico de interacción luz-materia, en un dominio espacial 3D
vaćıo con distintas configuraciones de iluminación, para generar los conjuntos de datos utilizados
en los experimentos posteriores y establecer una ĺınea base para la visualización de resultados.

4.2. Método

Diseño y configuración del escenario de pruebas

La forma y tamaño definidos para el escenario fue un cubo de 11m por lado, este ocupa un
volumen de 1331m3; el cual se consideró como un volumen razonable para la experimentación.
Para definir puntos de interés dentro del escenario, este se dividió en dos mallas regulares de
11x11x11 y 121x121x121 para obtener un cálculo más denso de la iluminancia por m3 del escena-
rio. Cada punto de las mallas se caracterizó por su posición (X, Y, Z) en el espacio tridimensional
y el valor de su iluminancia (E).

La iluminación del escenario se configuró posicionando fuentes lumı́nicas en lugares espećıficos
del espacio. Cada fuente lumı́nica estaba determinada por su posición (X, Y, Z) en el espacio
tridimensional y su flujo luminoso en lux. Con el fin de inspeccionar la variación de iluminancia
dentro del escenario, definimos nueve cortes, como lo ilustra la figura 4.1: uno por cada cara del
cubo que representa al escenario y tres que cortan por la mitad cada eje coordenado.
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Figura 4.1. Cortes definidos en un plano

Cálculo de la Iluminancia (E)

La iluminancia (E) es una unidad de medida expresada como E = ϕ
S
, lo que corresponde al

flujo luminoso por unidad de área [2]. Sin embargo, dadas las caracteŕısticas del escenario definido
para la experimentación, se estimó necesario tener en cuenta el ángulo que forma la dirección de la
luz con la superficie sobre la cual incide. La figura 4.2 muestra las dos componentes -Iluminancia
horizontal (EH) e Iluminancia vertical (EV )- que incorporó el cálculo de la iluminancia en este
experimento aplicando el razonamiento que se muestra en las ecuaciones 4.1, 4.2 y 4.3, siendo
(I) la intensidad de cada fuente lumı́nica, (d) la distancia entre el punto y las fuentes lumı́nicas,
(h) la altura del punto, (hp) el segmento de recta entre el punto de corte de (h) con el plano
horizontal y el punto (P) y (α) el ángulo.

(a) Iluminancia horizontal (b) Iluminancia vertical

Figura 4.2. Iluminancia horizontal (EH) y vertical (EV ) para el cáculo de E.

EH =
I ∗ cosα
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h
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E =

√
(EH)

2 + (EV )
2 (4.3)

Generación de la data

Para la generación de la data se definió una muestra uniforme de 1728 puntos del escenario, a
cada uno de los cuales se le calculó el valor de iluminancia correspondiente aplicando la ecuación
4.3. Se generaron dos (2) conjuntos de datos cuya estructura se compone de la posición (x, y, z)
de cada fuente, la intensidad (I) de cada fuente, la posición (x, y, z) de cada punto, la distancia
(d) desde entre cada una de las fuentes lumı́nicas y el punto y la altura (h) de cada punto.

Visualización

La visualización fue el instrumento de validación del cálculo de iluminancia para los puntos
definidos en la malla. Para este proceso se consideraron dos configuraciones del escenario. En la
primera, el escenario estaba iluminado con una sola fuente lumı́nica de 6522 lx de intensidad,
ubicada de manera centrada sobre la cara superior del cubo que representa el escenario para
garantizar simetŕıa en la iluminación. En la segunda, el escenario se iluminó con tres fuentes
lumı́nicas, la primera ubicada en el centro de la cara superior, la segunda ubicada en la cara
lateral derecha y la tercera ubicada en la cara posterior; la intensidad lumı́nica de la tres fuentes
fue 6522 lx, 3261 lx y 3261 lx respectivamente. Con cada configuración se hicieron tres ejercicios
de visualización, en el primer ejercicio se consideraron el cálculo de la iluminancia (CI) y su
visualización en escala real (VER), en el segundo se anuló la fuente lumı́nica (AF) pero se consi-
deró su visualización en escala real (VAF) y, en el tercero, se tomaron en cuenta los cálculos del
primer ejercicio (CI) pero la visualización del segundo (VAF). La tabla 4.1 muestra la casúıstica
de los ejercicios de visualización.

Tabla 4.1. Casúıstica de los ejercicios de visualización

Escenario No Fuentes
Posición

de la fuente
Intensidad

lumı́nica (lx)

Visualización y
resultados

X Y Z VER CI VAF AF

1 1 5.5 5.5 10.5 6522

X X

X X
X X

2 3
5.5 5.5 10.5 6522 X X
5.5 10.5 5.5 3261 X X
10.5 5.5 5.5 3261 X X
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4.3. Resultados

Primera configuración:

En el primer ejercicio de visualización era de esperarse la visualización de una distribución
uniforme de la luz como lo muestra la figura 4.3; sin embargo, la escala consideraba saltos muy
grandes entre los rangos, lo que significa que quedaban detalles por apreciarse a pesar de usar
curvas de nivel para intentar detectarlos. Esto sucedió porque al considerar la ubicación de la
fuente lumı́nica para el cálculo de la iluminancia, se presentaba una singularidad.

(a) (b)

(c) (d)

Figura 4.3. Distribución uniforme a escala real:(a) y (b) corresponden a un corte transversal
por la cara superior del escenario debajo de donde se encuentra la fuente de luz. (c) y (d)

corresponden a un corte perpendicular por el centro del escenario.

En el segundo ejercicio de visualización, para controlar la singularidad detectada, en el cálculo
de la iluminancia no se incluyeron los puntos cuya distancia a la ubicación de la fuente lumı́nica
estuviera en el rango [0, 1]. Aśı, al haberse evitado la singularidad, se pudo observar con mejor
detalle la propagación de la luz en zonas más alejadas de la fuente lumı́nica como lo muestra la
figura 4.4
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(a) (b)

(c) (d)

Figura 4.4. Distribución uniforme a escala real evitando la singularidad: (a) y (b) corresponden
a un corte transversal por la cara superior del escenario debajo de donde se encuentra la fuente

de luz. (c) y (d) corresponden a un corte perpendicular por el centro del escenario.

Finalmente, con el fin de evitar la singularidad en la visualización pero śı conservar los
cálculos reales de la iluminancia, en el tercer ejercicio de visualización, se consideró el cálculo de
la iluminancia y la visualización del primer y segundo ejercicio de visualización respectivamente.
Sin embargo, aunque en este ejercicio se visualizaron mejores detalles y los cálculos reales, No
fue suficiente para mostrar la cobertura total del área de corte, por lo cual se utilizó la técnica
del falso color [111] para la visualización y aśı poder apreciar con mayor claridad las transiciones
que hay entre los rangos de la escala, como se aprecia en la figura 4.5.
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(a) (b)

(c) (d)

Figura 4.5. Distribución uniforme a escala logaŕıtmica evitando singularidad: (a) y (b)
corresponden a un corte transversal por la cara superior del escenario debajo de donde se

encuentra la fuente de luz. (c) y (d) corresponden a un corte perpendicular por el centro del
escenario.

Segunda configuración:

El propósito de definir más de una fuente lumı́nica fue romper con la simetŕıa observada en
los ejercicios de visualización para un escenario iluminado con una sola fuente lumı́nica (primera
configuración) y aśı validar que la distribución de los valores de iluminancia fuera la esperada.
En la figura 4.6 puede verse la distribución asimétrica de la iluminancia en escala logaŕıtmica.
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(a) (b)

(c) (d)

Figura 4.6. Distribución no uniforme a escala logaŕıtmica evitando singularidad: (a) y (b)
corresponden a un corte transversal por la cara superior del escenario debajo de donde se

encuentra la fuente de luz. (c) y (d) corresponden a un corte perpendicular por el centro del
escenario.

4.4. Conclusiones

Se logró un mejor detalle de la visualización cuando las subdivisiones son de once por cada
metro cúbico, aunque el tiempo de cálculo aumentó casi nueve veces más que el de los escenarios
subdivididos en uno por cada metro cúbico.

La escala logaŕıtmica fue determinante para visualizar con mejor detalle los cambios de ilu-
minancia en el escenario, esto permitió comprender la exactitud del cálculo de iluminancia y
validarlo. La anulación de la fuente lumı́nica, en las visualizaciones, hizo posible enfocarse en
los cambios de iluminancia tras descartar la singularidad que se presentaba en el cálculo de
iluminancia en los puntos cuya distancia a la fuente lumı́nica es menor o igual a uno.
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El espaciado entre curvas de nivel fue útil para validar que, en la escala real, la visualización
deb́ıa considerar ajustes para no excluir de la visualización algunos rangos de iluminancia.
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Capı́tulo 5
Estimación de valores de iluminancia mediante
Deep Learning

5.1. Objetivo

El objetivo de este experimento fue desarrollar modelos de redes neuronales capaces de esti-
mar el valor de iluminancia (E) en un punto dentro de un espacio tridimensional vaćıo, teniendo
en cuenta una configuración precisa de fuentes de luz. Esta estimación se integraŕıa en el proceso
estándar utilizado para calcular la luminancia en una imagen, ofreciendo un método comple-
mentario para mejorar la precisión y la fidelidad visual de las representaciones generadas. Este
enfoque busca aprovechar el poder de las redes neuronales para proporcionar una estimación
más precisa y detallada de la iluminancia.

5.2. Método

Para obtener los modelos, el enfoque de este experimento implicó dos pasos principales:
en primer lugar, se creó un entorno virtual utilizando Unreal Engine [112, 113], lo que hizo
posible manipular la configuración de iluminación para la generación de datos. Posteriormente,
utilizando Keras [114] y TensorFlow [115], se diseñaron dos redes neuronales (una feed-forward y
una convolucional). La Figura 5.1 proporciona una representación visual del proceso involucrado
en la obtención de cada modelo. Cada red neuronal pasó por un proceso iterativo de refinamiento,
donde -aplicando la ecuación 5.1- se compararon los errores obtenidos en su fase de aprendizaje
hasta lograr dos modelos de precisión satisfactoria para la estimación de la iluminación en cada
tipo de red.

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (5.1)

Generación de la data

Para la generación de la data, se siguió el mismo método que se aplicó para la simulación del
fenómeno interacción luz-materia. Se simuló un escenario en 3D para configurar la iluminación
especificando la posición, intensidad y número de fuentes de luz. Por ejemplo, la Figura 5.2
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Figura 5.1. Proceso de adquisición del modelo.

ilustra dos escenarios potenciales: el primero con una sola fuente de luz para garantizar simetŕıa
en la iluminación, y el segundo con dos fuentes de luz para introducir asimetŕıa.
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(a) Escenario simétricamente iluminado

(b) Escenario asimétricamente iluminado

Figura 5.2. Escenarios con distintas configuraciones de iluminación.

Luego, se generó una muestra uniforme de 1728 puntos dentro del escenario. A cada uno
de estos puntos, se aplicó la ley del coseno cuadrado de Lambert (ec. 5.2) [2], considerando la
intensidad (I) de cada fuente de luz, la distancia (d) de cada fuente de luz al punto y la altura
(h) del punto.

E =

√(
I ∗ h
d3

2)
+

(
I
√
d2 − h2

d3

2)
(5.2)

El Algoritmo 1 describe el método para crear el conjunto de datos. Antes de su ejecución,
el algoritmo requiere una colección de puntos que definen la escena y una configuración que
contiene información sobre las fuentes de luz que iluminan la escena. Para cada fuente de luz, se
recopiló la información sobre su posición e intensidad luminosa (ĺıneas 3 a 5). Luego, se deter-
minaron la altura y la distancia de cada punto en el escenario dado con respecto a la fuente de
luz (ĺıneas 6 a 9). Si la distancia cae dentro del rango [0, 1], la intensidad del punto se establece
igual a la de la fuente de luz para evitar una singularidad (ĺıneas 10 y 11). De lo contrario, se
calcula la iluminación horizontal y vertical y estas se suman al valor de intensidad general del
punto (ĺıneas 13 a 18). Luego, se retornó el conjunto de datos, habiendo agregado previamente la
información de la fuente de luz, la información del punto y los valores de iluminación horizontal
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y vertical (ĺıneas 20 a 23).

Algorithm 1: Generación de Datos

Input: lst lights, lst points
Output: dataset

1 dataset ← [];
2 foreach light in lst lights do
3 light ← lst lights[f].p;
4 I ← lst lights[f].I;
5 foreach p in lst points do
6 h ← | light.z - p.z |;
7 p.h ← h;

8 dist ←
√

(light.x− p.x)2 + (light.y− p.y)2 + (light.z− p.z)2;
9 if dist ≥ 0 and dist ≤ 1 then

10 p.I ← I;
11 end
12 else
13 EH ← (I × h) / (dist3);

14 EV ← (I ×
√

(dist2)− (h2)) / (dist3);

15 p.I ← p.I +
√

(EH2) + (EV 2);
16 if p = light then
17 p.I ← I;
18 end

19 end
20 dataset.append([light.x, light.y, light.z, I, p.x, p.y, p.z, dist, h, EH, EV, p.I]);

21 end

22 end
23 return dataset ;

Las Figuras 5.3 y 5.4 muestran tres secciones transversales a lo largo de los ejes x, y, y z
para evaluar la distribución de luz en el escenario, lo que proporciona información valiosa sobre
las diversas condiciones de iluminación que surgen de diferentes configuraciones, facilitando la
comprensión de los impactos sutiles de los arreglos de iluminación en la distribución general de
brillo dentro del escenario. La Figura 5.3 representa una escena con iluminación simétrica, con
una única fuente de luz ubicada en el centro del lado superior de la escena. La fuente de luz
tiene una intensidad de 6522 lx y, como se puede observar, proporciona una distribución de luz
consistente en todo el escenario.
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Figura 5.3. Representación detallada de la distribución de la luz en un escenario con una única
fuente de luz

La Figura 5.4 representa un arreglo de iluminación asimétrico con dos fuentes de luz inde-
pendientes. La fuente inicial, que tiene una intensidad luminosa de 4000 lx, se encuentra en el
centro superior de la escena. En contraste, la segunda fuente, con una intensidad de 2522 lx, está
ubicada en la esquina superior derecha de la escena. Esta configuración produce una dispersión
de luz variada, resaltando las variaciones en el brillo a lo largo del rango espacial del escenario.
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Figura 5.4. Representación detallada de la distribución de la luz en un escenario con dos
fuentes de luz

Preprocesamiento de la data

Para garantizar que las caracteŕısticas están en la misma escala, lo que se sabe que mejora el
rendimiento de los algoritmos de optimización y aprendizaje automático [116], se normalizaron
los datos del conjunto de datos. Esto se hizo mediante la aplicación de la ecuación 5.3, teniendo
en cuenta la amplia gama de valores cubiertos por el conjunto de datos.

Xnorm =
Xi −Xmax

Xmax −Xmin

(5.3)

A continuación, el conjunto de datos se dividió en tres partes: el 80% de los datos se asignó
aleatoriamente a la fase de entrenamiento, mientras que el 20% restante se repartió equitativa-
mente entre las fases de validación y prueba.

Enfoque de redes neuronales Feed-Forward

Mediante experimentación, se ajustaron iterativamente los valores paramétricos de dos redes,
como la tasa de aprendizaje y el número de neuronas en la capa oculta. Aśı, la tabla 5.1 muestra
diferentes modelos experimentales que cambiaron tanto el número de neuronas como la tasa
de aprendizaje para estimar los valores de iluminación en un entorno con iluminación simétrica.
Como puede observarse, el Modelo 6 (FFNN-1) demostró una precisión superior en la estimación.
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Tabla 5.1. Ajuste óptimo de parámetros para una red feed-forward en una configuración de
iluminación simétrica.

Modelo Tasa de aprendizaje Neuronas Mean Squared Error

1 0.01 70 0.000076
2 0.01 80 0.000083
3 0.01 90 0.000007
4 0.001 70 0.000057
5 0.001 80 0.000032
6 (FFNN-1) 0.001 90 0.000002
7 0.0001 70 0.000015
8 0.0001 80 0.000023
9 0.0001 90 0.000006

La Tabla 5.2 presenta varios modelos experimentales que vaŕıan en el número de neuronas
y la tasa de aprendizaje. Estos modelos se utilizaron para estimar los valores de iluminación en
un entorno con iluminación asimétrica. En esta instancia, el Modelo 8 (FFNN-2) exhibió una
precisión superior en sus estimaciones.

Tabla 5.2. ajuste óptimo de parámetros para una red feed-forward en una configuración de
iluminación asimétrica.

Modelo Tasa de aprendizaje Neuronas Mean Squared Error

1 0.01 70 0.009691
2 0.01 80 0.006986
3 0.01 90 0.000108
4 0.001 70 0.00012
5 0.001 80 0.000158
6 0.001 90 0.000182
7 0.0001 70 0.000098
8 (FFNN-2) 0.0001 80 0.000094
9 0.0001 90 0.000141

Este proceso condujo a la identificación de una arquitectura de red óptima, como se muestra
en la Figura 5.5, mientras que la Figura 5.6 representa las curvas de aprendizaje asociadas con
cada uno de esos modelos.
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Figura 5.5. Arquitectura de las FFNNs.

(a) Escenario con una fuente lumı́nica
(FFNN-1)

(b) Escenario con dos fuentes lumı́nicas
(FFNN-2)

Figura 5.6. Gráficos de aprendizaje de FFNN para diferentes configuraciones de iluminación.

Enfoque de redes neuronales convolucionales

Se diseñaron dos redes convolucionales (CNN-1 y CNN-2), y sus valores de parámetros se
obtuvieron mediante un proceso iterativo similar al utilizado para las redes feed-forward. En estos
modelos experimentales, el único parámetro que experimentó variación fue la tasa de aprendizaje.
El Modelo 9 (CNN-1) se muestra como el más preciso en la tabla 5.3 para estimar los valores de
iluminación en un espacio con iluminación uniforme.
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Tabla 5.3. Ajuste óptimo de parámetros para una red neuronal convolucional en una
configuración de iluminación simétrica.

Modelo Tasa de aprendizaje Mean Squared Error

1 10 15748180.0
2 1 28.7261524
3 0.5 0.8346124
4 0.1 0.0336059
5 0.05 0.0320606
6 0.01 0.0000985
7 0.005 0.0000695
8 0.001 0.0001140
9 (CNN-1) 0.0005 0.0000921
10 0.0001 0.0004632
11 0.00005 0.0009414
12 0.00001 0.0047176
13 0.000005 0.0049788
14 0.000001 0.0277012

De igual manera, el Modelo 7 (CNN-2) en la tabla 5.4 fue el más preciso para predecir la
cantidad de luz en una situación con simetŕıa en la configuración de las fuentes lumı́nica.

Tabla 5.4. Ajuste óptimo de parámetros para una red neuronal convolucional en una
configuración de iluminación asimétrica.

Modelo Tasa de aprendizaje Mean Squared Error

1 10 76042736.0
2 1 145.2624359
3 0.5 0.791321397
4 0.1 0.030259281
5 0.05 0.005472712
6 0.01 0.000259001
7 (CNN-2) 0.005 0.000128485
8 0.001 0.000164776
9 0.0005 0.000246788
10 0.0001 0.00067971
11 0.00005 0.0016336
12 0.00001 0.005003111
13 0.000005 0.010371411
14 0.000001 0.022327378

La arquitectura de estas redes convolucionales se ilustra en la figura 5.7, y la figura 5.8
muestra las curvas de aprendizaje para cada modelo.
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Figura 5.7. Arquitectura de las CNN.

(a) Escenario con una fuente lumı́nica (b) Escenario con dos fuentes lumı́nicas

Figura 5.8. Gráficos de aprendizaje de redes neuronales convolucionales para diferentes
configuraciones de iluminación.

Estimación de la luminancia (L) de una imágen mediante los modelos

Para este ejercicio, fue crucial comprender la distinción entre dos conceptos fundamentales: la
luminancia (L) y la iluminancia (E). Según [117], la luminancia (L) se refiere al brillo percibido de
una superficie, mientras que la iluminancia (E) cuantifica la cantidad de luz incidente sobre dicha
superficie. Aśı entonces se generó un total de dieciocho escenarios de prueba, que comprend́ıan
seis escenas iluminadas con una única fuente de luz, seis escenas iluminadas con dos fuentes
de luz y seis escenas iluminadas con tres fuentes de luz. Posteriormente, empleando el método
descrito en [118], se usó la ecuación 5.4 para calcular la luminancia de cada escena mediante
un cálculo de suma ponderada. Finalmente, se compararon estos resultados con las estimaciones
proporcionadas por las redes convolucionales para cada escena respectiva.
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I(x, y) =
[
0,2989 0,5870 0,1140

] R(x, y)
G(x, y)
B(x, y)


L =

1

MN

M−1∑
x=0

N−1∑
y=0

I(x, y)

(5.4)

Donde:

I(x, y): Representa la función que hace la conversión de un ṕıxel a escala de grises basada
en sus coordenadas x e y.

M,N : Representan el ancho y el alto de la imagen, respectivamente.

El Algoritmo 2 muestra el cálculo del brillo de la imagen, requiriendo la recuperación de
todos los datos de ṕıxeles y las dimensiones de la imagen (ĺıneas 2-4). La imagen se convierte a
escala de grises y se rota de manera lineal multiplicando el componente RGB de cada ṕıxel por
su valor correspondiente en la secuencia [0.2989, 0.5870, 0.1140]. Finalmente, el valor total se
divide por el tamaño de la imagen (ĺıneas 5-10).

Algorithm 2: Algoritmo para el cálculo de luminancia

Input : Image img
Output: Luminance L

1 pixels← img.load();
2 L← 0;
3 S← img.size();

4 for x in 1 to S[0] do
5 for y in 1 to S[1] do
6 L← L + (img[x][y]× [0.2989, 0.5870, 0.1140]);
7 end

8 end

9 return((L× 1/(S[0]× S[1])));

5.3. Resultados

Enfoque de redes neuronales Feed-Forward

Cuando solo hab́ıa una fuente de luz, el modelo logró determinar con gran precisión el brillo
de los objetos, con una tasa de éxito del 98.8%. De manera más general, al considerar situaciones
con dos fuentes de luz, el modelo mostró un alto nivel de precisión, con una tasa de precisión del
96.0%. Los valores de iluminancia obtenidos a partir de los cálculos para ambos escenarios se
representan visualmente en la figura 5.9. La imagen muestra los valores esperados para la ilumi-
nación en una configuración con una sola fuente de luz (figura 5.9A), las proyecciones realizadas
por la red neuronal feed-forward (figura 5.9B), y la diferencia entre los valores esperados y pre-
dichos (figura 5.9C). Además, el diagrama presenta los niveles anticipados de luminosidad para
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una configuración que incluye dos fuentes de luz (figura 5.9D), los valores calculados derivados
de la red neuronal feed-forward (figura 5.9E), y la disparidad entre ambos (figura 5.9F).

Figura 5.9. Estimación de la red Feed-Forward (FFNN). Los valores esperados para dos
escenarios iluminados por una y dos fuentes de luz se muestran en las subfiguras A y D. Las

predicciones de iluminancia de FFNN para ambos escenarios se encuentran en las subfiguras B
y E. Las subfiguras C y F muestran las discrepancias entre los valores esperados de cada

escenario y las proyecciones realizadas.

Enfoque de las redes Convolucionales

En situaciones donde solo hab́ıa una fuente de luz, el modelo demostró un alto nivel de
precisión en sus estimaciones, logrando una tasa de precisión del 99.2%. En casos donde el
escenario estaba iluminado por dos fuentes de luz, el nivel de precisión observado se redujo
ligeramente al 96.4%. Los valores de iluminancia estimados para ambos tipos de escenarios se
presentan en la figura 5.10. La figura 5.10A ilustra los valores de iluminancia predichos para una
configuración con una única fuente de luz. Por otro lado, la figura 5.10B muestra la estimación
comparable derivada del modelo de Red Neuronal Convolucional (CNN). Finalmente, la figura
5.10C exhibe la disparidad entre estas dos representaciones. La figura 5.10D muestra los valores
de iluminancia predichos cuando se consideraban dos fuentes de luz. La estimación de la CNN
se ilustra en la figura 5.10E, mientras que la figura 5.10F presenta la disparidad entre ambas.

Redes Neuronales Feed-Forward Vs Redes Neuronales Convolucionales

La superioridad de uno u otro tipo de modelo, FFNN o CNN, dependió del contexto espećıfico
y de las caracteŕısticas del problema en cuestión. Los distintos escenarios mostraron diferentes
niveles de precisión para cada tipo de modelo. En este caso, los modelos CNN superaron a los
modelos FFNN con un ligero margen. En la Tabla 5.5 se comparan las estimaciones obtenidas
con los modelos.
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Figura 5.10. Estimaciones de la red neuronal convolucional (CNN). Se muestran los valores
esperados para dos escenarios iluminados por una y dos fuentes de luz en las subfiguras A y D.

Las predicciones de iluminancia de la CNN para ambos escenarios se presentan en las
subfiguras B y E. Las subfiguras C y F ilustran las discrepancias entre los valores esperados de

cada escenario y las predicciones.

Tabla 5.5. Comparación entre los modelos FFNN y CNN

Configuración lumı́nica Modelo Precisión

Una fuente lumı́nica
FFNN-1 98.8%
CNN-1 99.2%

Dos fuentes lumı́nicas
FFNN-2 96.0%
CNN-2 96.4%

Comparación de las estimaciones basadas en CNN con el método tradicional en
distintas condiciones de iluminación

En las escenas en las que la iluminación se ajustó a los datos de entrenamiento de las CNN,
concretamente los escenarios con una y dos fuentes de luz, las estimaciones proporcionadas por
estas coincidieron estrechamente con las calculadas por el método tradicional. Sin embargo, en
el caso de la tercera escena, en la que intervinieron tres fuentes de luz, la discrepancia entre los
cálculos y las estimaciones se hizo más pronunciada, lo que indica que hubo una disminución
de la precisión del modelo. La figura 5.11 presenta los resultados obtenidos, contrastando las
estimaciones basadas en CNN con los resultados derivados de aplicar el método tradicional en
escenarios con una, dos y tres fuentes de luz.
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(a) Configuración con una fuente lumı́nica

(b) Configuración con dos fuentes lumı́nicas

(c) Configuración con tres fuentes lumı́nicas

Figura 5.11. Comparación de resultados: CNN vs. método tradicional.
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Inferencia causal en el cálculo de la iluminancia

La inferencia causal se refiere a la comprensión de las relaciones de causa y efecto entre
diferentes variables en un sistema [119]. En el contexto de la ecuación para calcular la ilumi-

nancia E =
√

(EH)
2 + (EV )

2, es posible aplicar la inferencia causal para entender cómo varios

factores afectan la iluminancia en un entorno determinado. Como fue indicado anteriormente,
E representa la iluminancia total, EH y EV son las componentes horizontales y verticales de
la iluminancia, respectivamente; de manera que es posible considerar que estas componentes
representan diferentes fuentes de luz o diferentes caracteŕısticas de la iluminación en un entorno
determinado. Aplicando la inferencia causal, fue posible examinar cómo varios factores afec-
tan las componentes horizontales y verticales de la iluminancia, lo que a su vez influye en la
iluminancia total E. Algunos factores que podŕıan influir en estas componentes podŕıan ser:

Orientación de las fuentes de luz: La orientación de las fuentes de luz podŕıa afectar tanto
a la componente horizontal como a la vertical de la iluminancia. Por ejemplo, una fuente
de luz situada en un ángulo particular podŕıa tener un impacto más significativo en la
iluminancia horizontal que en la vertical, o viceversa. Aśı, es posible modelar la influencia
de la orientación de las fuentes de luz (θ) en las componentes horizontales y verticales
de la iluminancia por medio de las siguientes ecuaciones estructurales: EH = f(θ, Z1),
EV = g(θ, Z2), donde Z1 y Z2 son variables latentes que representan otros factores no
observados que pueden influir en la iluminancia.

Distribución espacial de las fuentes de luz: La manera en que están distribuidas las fuentes
de luz en el entorno también podŕıa influir en las componentes horizontales y verticales
de la iluminancia. Por ejemplo, una distribución más concentrada de fuentes de luz podŕıa
generar una mayor iluminancia en ciertas direcciones, afectando aśı las componentes ho-
rizontal y vertical. Aśı, es factible modelar la influencia de la distribución espacial de las
fuentes de luz (D) en las componentes horizontales y verticales de la iluminancia por medio
de las siguientes ecuaciones estructurales: EH = h(D,Z3), EV = i(D,Z4), donde Z3 y Z4

son variables latentes adicionales.

Reflectividad de las superficies: La reflectividad de las superficies en el entorno puede in-
fluir en cómo se distribuye la luz, afectando aśı las componentes horizontal y vertical de la
iluminancia. Por ejemplo, superficies altamente reflectantes pueden aumentar la iluminan-
cia horizontal en comparación con la vertical. Aśı, la reflectividad (R) puede influir en la
iluminancia, lo cual puede ser modelado a través de las siguientes ecuaciones estructurales:
EH = j(R,Z5), EV = k(R,Z6), donde Z5 y Z6 son variables latentes relacioandas con la
reflectividad.

Obstrucciones y sombras: La presencia de obstrucciones o sombras en el entorno puede
afectar la distribución de la luz y, por lo tanto, las componentes horizontal y vertical
de la iluminancia. Aśı, La presencia de obstrucciones o sombras (O) puede influir en las
componentes de iluminancia de la siguiente manera: EH = l(O,Z7), EV = m(O,Z8), donde
Z7 y Z8 son variables latentes asociadas con las obstrucciones y sombras.

Utilizando la regla de la cadena de Pearl [120], es posible calcular cómo cada uno de estos
factores afecta la iluminancia totalE, de manera que para cada uno de estos factores, es necesario
calcular las derivadas parciales correspondientes de las componentes horizontales y verticales de
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la iluminancia con respecto a los factores causales relevantes. No obstante, para realizar un análi-
sis causal más concreto, se haŕıa necesario contar con datos espećıficos sobre cómo cada factor
afecta la iluminancia en un entorno real. Dado que el conjunto de datos generado no cuenta con
esos datos espećıficos, se usaron valores hipotéticos para ilustrar el proceso de análisis causal aśı:

Orientación de las fuentes de luz (θ)
Incrementar la orientación de las fuentes de luz en 10 grados (θ) aumenta la iluminancia hori-
zontal (EH) en 100 lux y la iluminancia vertical (EV ) en 50 lux.

∂E

∂θ
=

∂E

∂EH

∂EH

∂θ
+

∂E

∂EV

∂EV

∂θ

Dado que:
∂E

∂EH

= 1,
∂E

∂EV

= 1,
∂EH

∂θ
= 100 lux/°,

∂EV

∂θ
= 50 lux/°

Entonces:
∂E

∂θ
= (1× 100) + (1× 50) = 150 lux/°

Distribución espacial de las fuentes de luz (D)
Agregar una luz adicional en el techo (D) aumenta la iluminancia horizontal (EH) en 150 lux y
la iluminancia vertical (EV ) en 100 lux.

∂E

∂D
=

∂E

∂EH

∂EH

∂D
+

∂E

∂EV

∂EV

∂D

Dado que:
∂EH

∂D
= 150 lux/luz,

∂EV

∂D
= 50 lux/luz

Entonces:
∂E

∂D
= (1× 150) + (1× 50) = 200 lux/luz

Reflectividad de las superficies (R)
Pintar las paredes con pintura reflectante (R) aumenta la iluminancia horizontal (EH) en 80 lux
y la iluminancia vertical (EV ) en 40 lux.

∂E

∂R
=

∂E

∂EH

∂EH

∂R
+

∂E

∂EV

∂EV

∂R

Dado que:
∂EH

∂R
= 80 lux/reflectividad,

∂EV

∂R
= 40 lux/reflectividad

Entonces:
∂E

∂R
= (1× 80) + (1× 40) = 120 lux/reflectividad

Obstrucciones y sombras (O)
Eliminar una partición en la oficina (O) aumenta la iluminancia horizontal (EH) en 120 lux y la
iluminancia vertical (EV ) en 60 lux

∂E

∂O
=

∂E

∂EH

∂EH

∂O
+

∂E

∂EV

∂EV

∂O

Dado que:
∂EH

∂O
= 120 lux/partición,

∂EV

∂O
= 60 lux/partición

Entonces:
∂E

∂O
= (1× 120) + (1× 60) = 180 lux/partición

59



Al entender cómo estos factores afectan las componentes horizontales y verticales de la iluminan-
cia, es posible tener una comprensión más completa de cómo se determina la iluminancia total
en un entorno dado. Esto permite tomar decisiones informadas sobre cómo diseñar o ajustar la
iluminación para cumplir con ciertos requisitos o necesidades espećıficas. Por ejemplo, en cuanto
a la orientación de las fuentes de luz, es posible observar que un aumento en la orientación de
las fuentes de luz puede aumentar significativamente la iluminancia total en el escenario.

En cuanto a la distribución espacial de las fuentes de luz, la instalación de luces adicionales
podŕıa aumentar aún más la iluminancia total en el escenario. Por lo tanto, una posible decisión
podŕıa ser agregar más luces en áreas espećıficas. en cuanto a la reflectividad de las superficies,
pintar las paredes de un color reflectante podŕıa ser una decisión efectiva para aumentar la ilu-
minancia total en la oficina, pues al aumentar la reflectividad de las superficies, se incrementaŕıa
la cantidad de luz reflejada en el espacio, lo que resultaŕıa en una mayor iluminancia horizontal
y vertical en todo el escenario.

En cuanto a las obstrucciones y sombras, eliminar o reubicar elementos que creen sombras
podŕıa mejorar la iluminancia total en el escenario, pues al eliminar obstáculos que bloqueen la
luz, se permitiŕıa una distribución más uniforme de la iluminancia en todo el escenario, lo que
resultaŕıa en una mejora en la iluminación general.

5.4. Conclusiones

Este experimento demostró el éxito de la aplicación de técnicas de Deep Learning para esti-
mar valores de iluminancia en diversas configuraciones de iluminación. Aprovechando un volumen
considerable de datos y ajustando cuidadosamente los parámetros de las redes neuronales, se lo-
graron estimaciones con niveles aceptables de precisión.

Aunque la precisión de las estimaciones de las redes neuronales no alcanzó el 100%, es consi-
derable aducir que la precisión conseguida es suficientemente fiable para incorporar el aprendizaje
profundo a la tarea de estimación de la iluminancia. Sin embargo, fue evidente que la precisión de
la estimación disminuyó significativamente cuando el entrenamiento de los modelos no tuvo en
cuenta el número de fuentes de luz presentes en la escena. Esta observación pone de manifiesto la
necesidad de diseñar modelos adaptables a las variaciones en las configuraciones de iluminación.

Los hallazgos de este experimento subrayan el potencial del aprendizaje profundo como una
herramienta valiosa para la estimación de la iluminancia, al tiempo que destacan la importancia
de abordar los desaf́ıos relacionados con la variación del número de fuentes de luz. El desarrollo
de modelos adaptativos capaces de estimar con precisión la iluminancia bajo diversas configura-
ciones de iluminación presenta un área interesante para la investigación futura.

El uso de la inferencia causal en el cálculo de la iluminancia ofrece una visión más detallada
sobre cómo diferentes factores inciden en la distribución de la luz en un entorno espećıfico. Se
identificaron diversos elementos influyentes, como la orientación y distribución de las fuentes de
luz, la reflectividad de las superficies y la presencia de obstáculos o sombras. Estos factores tienen
un impacto notable en la iluminancia total del área, afectando tanto su componente horizontal
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como vertical y, por ende, la calidad general de la iluminación.

En general, este experimento aportó evidencias sólidas de la aplicabilidad del aprendizaje pro-
fundo en la estimación de la iluminancia, sentando las bases para nuevos avances en este campo
y allanando el camino para modelos más precisos y adaptables en escenarios de iluminación del
mundo real.
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Capı́tulo 6
Inferencia causal para determinar la causa de un
fenómeno de sombra en una imágen

6.1. Objetivo

El objetivo de este experimento fue desarrollar un modelo artificial que utilizara la inferencia
causal para explicar la formación de una sombra proyectada sobre la superficie inferior de un
escenario tridimensional. En este entorno, además de la iluminación, se incluyó la presencia de
un objeto esférico. Al aplicar la explicabilidad en inteligencia artificial (XAI) a este contexto, se
buscó comprender cómo el modelo interpreta y analiza los datos de entrada, especialmente en
relación con la formación de la sombra captada en una imagen. Esto permitió una comprensión
más profunda de cómo el modelo utiliza la información causal para generar predicciones y explicar
fenómenos visuales complejos.

6.2. Método

Generación de la data

Para la generación de la data produjimos sintéticamente cuatro posibles escenas en las que,
a pesar de haber muchas más como el color y la posición de los objetos, entre otros, definimos
cuatro caracteŕısticas observables. En la primera escena se observan la luz, la esfera, la superficie
y la sombra, en la segunda escena solo se observan la luz y la esfera, en la tercera escena se
perciben la luz y la superficie, y en la cuarta escena ninguna caracteŕıstica se percibe. La figura
6.1 muestra las cuatro posibles escenas.
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(a) (b)

(c) (d)

Figura 6.1. Posibles escenas para generación de datos.

Aśı, se creó un conjunto de datos sintético de 1x106 registros de observaciones basados en
un escenario hipotético similar al usado por [120] para demostrar la importancia de las proba-
bilidades. El 99% de los registros todas las caracteŕısticas se observaron, mientras que del 1%
restante, en el 70% de los registros se observaron la iluminación y la esfera, pero no superficie
ni sombra, del 30% restante, en la mitad de las imágenes ninguna caracteŕıstica fue observada,
mientras que, en la segunda mitad, solo se percibieron la iluminación y la superficie, mas no la
esfera ni la sombra. El algoritmo 3 ilustra el proceso para la construcción del conjunto de datos
y la tabla 6.1 muestra las proporciones de cada muestra y da una idea clara de la representación
de cada observación.
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Algorithm 3: Proceso para la generación del conjunto de datos.

1 DS ← createDataset() ;
2 DS.columns← [′A′,′ B′,′ C ′,′ Y ′] ;
3 DS.size← 1000000 ;
4 idxAllColumnsSample← DS.sample(990000) ;
5 foreach idx in idxAllColumnsSample do

6 foreach col in DS.columns do

7 DS[idx][col]← 1;

8 Filter ← DS[A] = 0 & DS[B] = 0 & DS[C] = 0 & DS[Y ] = 0;
9 sublistLightSphere← DS.sublist(Filter);

10 idxLightSphereColumnsSample← sublistLightSphere.sample(7000);
11 foreach idx in idxLightSphereColumnsSample do

12 Ds[idx][A]← 1;
13 Ds[idx][B]← 1;

14 Filter ← DS[A] = 0 & ds[B] = 0 & ds[c] = 0 & ds[y] = 0;
15 sublistLightSurface← DS.sublist(Filter);
16 idxLightSurfaceColumnsSample← sublistLightSurface.sample(1500);
17 foreach idx in idxLightSurfaceColumnsSample do

18 DS[idx][A]← 1;
19 DS[idx][C]← 1;

Tabla 6.1. Proporciones de cada escena en el conjunto de datos

A (Luz) B (Esfera) C (Superficie) D (Sombra) Cantidad
1 1 1 1 990000
1 1 0 0 7000
1 0 1 0 1500
0 0 0 0 1500

Modelo Causal Estructural (SCM)

Según [119], un modelo causal estructural es una forma de describir las caracteŕısticas rele-
vantes del mundo y cómo interactúan entre śı. Espećıficamente, este modelo describe cómo la
naturaleza asigna valores a las variables de interés. La inferencia causal generalmente requiere
conocimientos especializados e hipótesis no comprobables sobre la red causal que vincula el tra-
tamiento, el resultado y otras variables.

Al resumir el conocimiento y las hipótesis de manera intuitiva, los grafos ayudan a aclarar
problemas conceptuales y mejorar la comunicación entre investigadores [75]. En consecuencia,
se diseñó un modelo causal estructural en el que cada nodo corresponde a una caracteŕıstica
observable y todas las aristas apuntan a un único nodo colisionador, ”Y ”. La Figura 2 muestra
el modelo causal estructural y la independencia de las variables que lo componen.
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Figura 6.2. Modelo causal estructural e independencia de variables.

Inferencia causal

Una vez que se construye el modelo, se calcularon las distribuciones de probabilidad condicio-
nal, las cuales estaban definidas para un conjunto de variables aleatorias discretas y mutuamente
dependientes para mostrar las probabilidades condicionales de una variable única con respecto a
las demás [50]. Estas se calcularon aplicando la regla de la cadena, como se ilustra en la ecuación
(1), donde Xi es un evento y N es el número de eventos considerados en el modelo, por lo tanto,
0 < i < N .

P (xn) = P (x1)P (x2|x1)P (x3|x1, x2) . . . P (xn|x1, x2, x3 . . . x(n−1)) (6.1)

Como se muestra en la Figura 6.3, se debe calcular la probabilidad de cada valor posible de cada
variable conociendo los valores tomados por las otras variables.
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Figura 6.3. Distribución de probabilidad condicional para cada variable del modelo.

Luego, para fortalecer la hipótesis formulada, se consultó al modelo sobre qué sucedeŕıa si no
se hubiera detectado ninguna esfera, es decir, se hizo una intervención al modelo debido a la no
detección de la esfera para obtener la probabilidad de detectar la sombra. Para aclarar qué papel
desempeñan las variables del modelo causal estructural en el proceso de inferencia causal que se
siguió, entre otros, [121], [122] y [123], quienes explican que un proceso de inferencia causal está
determinado por un tratamiento, un conjunto de factores de confusión y un resultado, la tabla
6.2 muestra el papel de cada variable del modelo en el proceso de inferencia causal.

Tabla 6.2. Papel de las variables del modelo estructural en el proceso de inferencia causal.

Etiqueta Variable

Tratamiento B
Factores de confusión [A,C]

Resultado Y

Posteriormente, considerando esta intervención, para todo el conjunto de casos (N) se calculó
el efecto del tratamiento para medir la diferencia promedio entre los casos en los que se aplicó
el tratamiento (Y1) y los casos de control (Y2) mediante la aplicación de 6.2.

ATE =
1

N

N∑
i=1

(Y1(i)− Y0(i)) (6.2)

Finalmente, para contrastar los resultados del tratamiento y aśı obtener la estimación de qué
tan lejos estaba la hipótesis de ser nula, es decir, que no hubiera relación entre la esfera y la
sombra, para un intervalo de confianza del 95%, se generó una tabla de puntuaciones z aplicando
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(3), donde Xi es cada resultado, µ es la media y σ es la desviación estándar, y luego se calculó
el valor p de cola bilateral y un nivel de significancia α = 0,05.

Z =
Xi − µ

σ
(6.3)

Aśı, se tomó una muestra de control de 3000 escenas y una muestra de tratamiento de 997000
escenas para intervenir el modelo con dos consultas de tipo ”what if”:

1. ¿Qué pasaŕıa si no hubiera habido sombra?

2. ¿Qué pasaŕıa si no hubiera habido luz?

Detección de la sombra

Dentro del ámbito de la detección de sombras en imágenes, se destacan métodos prominen-
tes como el umbral adaptativo, la segmentación por umbral [124], y la segmentación basada en
agrupamiento (Felzenszwalb) [125]. Este último método se complementó integrándole un módulo
de inferencia causal, lo cual no solo facilitó la detección de sombras, sino que también permitió
la identificación de sus causas fundamentales dentro de escenarios espećıficos. Este enfoque de-
mandó parámetros que abarcaran un registro completo de elementos perceptibles dentro de la
imagen, como la luz, la esfera, la superficie y la sombra, junto con el modelo de inferencia causal.

Para ilustrar este proceso, el Algoritmo 4 detalla la intrincada interacción entre la detección
de sombras y la inferencia causal dentro del fenómeno de las sombras.

Algorithm 4: Algoritmo para la detección de sombra y su explicación mediante infe-
rencia causal
Data: Image, scale, sigma, min size, light, sphere, shadow, surface, CI model
Result: Segmented regions

1 Initialize an empty image segment map segments;
2 Initialize an empty priority queue pq for merging;
3 for each pixel p in Image do
4 Create a new segment for p and add it to pq;
5 end
6 while pq is not empty do
7 Merge the two smallest segments from pq;
8 if merge does not violate min size constraint then
9 Add the merged segment to segments;

10 Add the merged segment to pq;

11 end

12 end
13 return CI model.estimates(light, sphere, shadow, surface)
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6.3. Resultados

Modelo causal

El modelo causal estructural fue diseñado basado en el conocimiento experto como señaló [75],
pero validado en dos intentos mediante el uso del método de descubrimiento causal NOTEARS.
En el primer intento, el algoritmo tomó casi 5 minutos para generar el modelo mostrado en la
figura 6.4a, lo cual se consideró bastante largo para el tamaño del conjunto de datos, resultando en
un modelo que no fue muy coherente según el conocimiento experto. Por otro lado, en el segundo
intento, se agregó una restricción al algoritmo para considerar que A, B y C son independientes.
El algoritmo, como se puede observar en la figura 6.4b, generó el modelo con la coherencia
esperada y en muy corto tiempo (menos de un minuto).

(a)

(b)

Figura 6.4. Modelos descubiertos por el algoritmo NOTEARS.
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Inferencia causal

A partir de la distribución de probabilidad condicional, fue posible consultar el modelo bajo
la hipótesis formulada. En la Tabla 6.3 se puede observar que, al eliminar la esfera, habŕıa
una probabilidad del 99.5% de que no se proyectara ninguna sombra; además, se puede ver
que la hipótesis adquiere fuerza al obtener un valor de p menor que 0.05 (el valor de umbral
predeterminado), lo que indica que la hipótesis nula es falsa, y un valor de efecto promedio de
tratamiento positivo (ATE) sugiere que P (Y |B) > P (Y ), lo que indica que la presencia de la
esfera aumenta la probabilidad de detectar una sombra proyectada en la superficie o, en otras
palabras, fue posible inferir que la esfera es la causa más probable de la sombra proyectada en
la superficie.

Tabla 6.3. Inferencia causal de la intervención P(Y — do(B = 0))

Resultado Probabilidad ATE z P > |z| Intervalo de confianza

Y(0) 0.995
0.993 11874 0.00001 95%

Y(1) 0.005

Inferencia causal y detección de sombras

Para establecer un contraste, se utilizó una imagen idéntica y se introdujo un elemento de
confusión al alinear el color de fondo con la tonalidad de la sombra proyectada sobre la superficie.
La ejecución posterior abarcó el método de Felzenszwalb integrado con el módulo de inferencia
causal, aśı como las técnicas de umbral adaptativo y segmentación de umbral. Los resultados de
esta aproximación se visualizan en la Figura 6.5.

(a) Felzenszwalb con inferencia
causal

(b) Segmentación de umbral (c) Umbral adaptativo

Figura 6.5. Resultados de la detección de sombras.

En el contexto de la detección de sombras, los resultados son evidentes. Entre los enfoques,
la combinación del método de Felzenszwalb con inferencia causal (Figura 6.5a) mostró los resul-
tados más prometedores. Logró una precisión aceptable en la detección de sombras del 51,5%.
Siguiendo de cerca, el método de umbral adaptativo alcanzó una precisión del 51,7% (Figura
6.5c), mientras que el método de segmentación de umbrales alcanzó una precisión del 55,9%
(Figura 6.5b).

Es importante destacar que la presencia de factores de confusión influyó significativamente
en la precisión de los resultados de detección. Sin embargo, al considerar la determinación de
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la causalidad de la sombra, el impacto de los factores de confusión se volvió insignificante.
Especialmente, solo el método de Felzenszwalb (Figura 6.5a) arrojó un resultado sustancial en
este sentido.

6.4. Conclusiones

Se demostró cómo emplear la inferencia causal para fortalecer una hipótesis y, como resul-
tado, deducir la causa de un fenómeno de sombra con alta certeza. Esto se logró utilizando
intervenciones e investigaciones dentro del modelo causal.

Se comenzó con un conjunto de imágenes de un escenario 3D en el que se examinaron cuatro
eventos como parte de un modelo causal estructural validado con el algoritmo NOTEARS para
detección causal. Al contrastar su desempeño, también se demostró que agregar un módulo de
inferencia causal a un enfoque de detección de sombras es factible y ventajoso.
Esto abre la puerta a conexiones similares en otras formas diversas y complejas.

La representación visual de un modelo causal mejora la comprensión del problema y los roles
que desempeñan los eventos en su resolución. A pesar de probar el modelo causal con el algoritmo
NOTEARS, se encontró cierta preocupación sobre la necesidad de establecer ĺımites basados en
el conocimiento experto.

Se requiere un conjunto de datos con una estructura más intrincada para la aplicación de la
inferencia causal, en comparación con los conjuntos de datos t́ıpicos utilizados para aplicaciones
de aprendizaje automático, en los que predomina la correlación entre las caracteŕısticas.

Los factores de confusión tuvieron un impacto considerable en la precisión del método de
detección, pero no en el modelo de inferencia causal.
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Capı́tulo 7
Inferencia causal para el modelo de
comportamiento de un agente inteligente

7.1. Objetivo

El objetivo de este experimento fue desarrollar un agente inteligente que empleara la infe-
rencia causal para comprender las causas detrás de los fallos de otros agentes al completar una
tarea. Esta comprensión permitiŕıa al agente identificar los factores clave que llevan al fracaso
y, en consecuencia, mejorar su capacidad para abordar la tarea de manera más efectiva. Luego,
este agente fue diseñado para ejecutar la tarea tomando decisiones informadas basadas en la
inferencia causal, utilizando esta comprensión para anticipar posibles obstáculos y tomar medi-
das correctivas apropiadas. El objetivo final era aumentar la probabilidad de completar la tarea
con éxito al minimizar los errores y maximizar la eficiencia del agente durante la ejecución de la
tarea.

7.2. Método

Diseño de la tarea

La tarea implicaba que un agente inteligente navegara a través de un entorno virtual, con
el objetivo de alcanzar la posición ocupada por otro agente dentro del mismo entorno sin ser
detectado. Las etapas del experimento incluyeron el diseño y configuración del entorno virtual,
el desarrollo de los agentes explorador (EBOT) y guardián (GBOT), la recolección de datos y
la implementación del agente causal (CBOT).

Diseño del escenario y configuración del entorno virtual

Para los experimentos, se utilizó Unreal Tournament, un videojuego de tipo First-Person
Shooter que permite a los desarrolladores configurar entornos y programar la lógica de los bots
antes de desplegarlos en el mundo virtual. En Unreal Editor [126] se diseñó el escenario de
pruebas, que consiste en una serie de corredores interconectados, como se muestra en la figura
7.1, para garantizar el acceso a cualquier punto de interés en el mapa a través de siete rutas
distintas:
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Path: S-A-C-E-H-K-T

Path: S-B-D-E-H-K-T

Path: S-A-C-F-H-K-T

Path: S-B-D-G-H-K-T

Path: S-A-C-F-I-K-T

Path: S-B-D-G-J-K-T

Path: S-B-D-G-J-M-N-T

Estas rutas fueron cuidadosamente diseñadas para garantizar el acceso a varias áreas de interés
en el entorno virtual.

Figura 7.1. Rutas configuradas en el entorno virtual.

Pogamut es un componente crucial que garantiza una interacción fluida entre los agentes
dentro del entorno virtual. Sirve como una interfaz intermedia que permite controlar a los agen-
tes virtuales en diferentes motores de juego y entornos. Este proporciona una API de Java para
generar y gestionar agentes virtuales, y una interfaz gráfica fácil de usar para facilitar la depura-
ción [127]. El modelo arquitectónico que soporta la integración del CBOT con el entorno virtual
a través de Pogamut se ilustra en la Figura 7.2.
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Figura 7.2. Modelo Arquitectónico para la ejecución del CBOT.

Después de instalar el middleware, se configuó el script para lanzar el servidor DeathMatch
y cargar el escenario de prueba diseñado espećıficamente para la tarea. Luego, para desarrollar
los modelos de comportamiento del agente, se utilizó la herramienta Eclipse IDE y la plantilla
EmptyBot predefinida gestionada a través de un repositorio Maven. El proceso de ejecución de
una partida se muestra en la Figura 7.3.
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(a)

(b)

(c)

(d)

(e)

Figura 7.3. Proceso de ejecución de una partida. (a) Consola. (b) Servidor. (c) Escenario vaćıo.
(d) Vista GBOT. (e) Vista CBOT.

La secuencia de acciones durante la ejecución de la partida se resumió en los siguientes pa-
sos: primero, se ejecutó el servidor responsable de cargar el entorno de prueba designado (Figura
7.3a). Luego, UT2004 se conectó a este servidor (Figura 7.3b), lo que resultó en la aparición
del escenario de prueba vaćıo (Figura 7.3c). Posteriormente, desde Eclipse, se lanzaron ambos
agentes (GBOT y EBOT) en el entorno virtual. Las figuras 7.3d y 7.3e muestran el punto de
vista de cada agente, respectivamente.

Utilizando Pogamut versión 3.7.0 y Eclipse® versión 4.29.0 (Build 20230907-1323), se de-
sarrolló una plataforma para diseñar, probar e implementar los comportamientos de cada uno
de los agentes y su interacción con el entorno. Estas herramientas fueron fundamentales para
la ejecución y prueba de agentes inteligentes dentro de un entorno experimental controlado y
reproducible.
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Desarrollo de los agentes explorador (EBOT) y guardián (GBOT)

Las caracteŕısticas de los agentes fueron heredadas de los avatares que interactúan en el
videojuego Unreal Tournament [128]. Sin embargo, se programaron completamente sus modelos
de comportamiento utilizando la API de Pogamut.

Agente guardian (GBOT)

La tarea principal del agente Guardián era eliminar cualquier otro agente que identificara
acercándose a su posición, siguiendo una alerta del sistema de mensajeŕıa global del entorno
virtual.

Modelo de comportamiento

El agente Guardian fue diseñado para mantener una posición fija en el entorno, con la po-
sibilidad de activar o desactivar sus sensores visual y auditivo. Cuando el sensor visual estaba
activo, y un agente enemigo entraba en su campo de visión, el agente guardian lo identificaba
con éxito. Por otro lado, si el sensor visual estaba inactivo, pero el sensor auditivo estaba activo,
el agente detectaba los pasos que se acercaban y giraba en dirección a la fuente del sonido, pero
no identificaba al agente que produćıa el sonido. Es decir, detectaba pero no identificaba. Sin
embargo, cuando ambos sensores estaban activos, el agente Guardian detectaba e identificaba
eficazmente al agente que se acercaba, sin importar la dirección. La lógica del GBOT se ilustra
claramente en el Algoritmo 5.

Algorithm 5: Modelo de comportamiento del GBOT

Input : agent’s configuration parameters: canSee, canListen
Output: None

1 while true do
2 if canSee then
3 player ← game.players.getNearestPlayer();
4 if player is not null then
5 sendMessage(player, 2ou’ve been identified.”);
6 game.kick(player);

7 if canListen then
8 if isHearingNoise then
9 turnTo(getNoiseSource());

Agente Explorador (EBOT)

El objetivo principal del agente explorador consistió en navegar por una ruta que lo llevara
a tomar la posición ocupada por el agente GBOT. El entorno ofrećıa diversas rutas, lo que
permit́ıa al agente Explorador acercarse al agente GBOT desde diferentes direcciones, ya sea
desde el frente, por ambos costados o desde la parte trasera.
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Modelo de comportamiento

Se crearon dos versiones de este agente. La primera versión, que se utilizó para generar el
conjunto de datos, empleó un algoritmo de búsqueda no informada. Este agente agente siempre
comenzaba en un punto fijo y eleǵıa aleatoriamente una de las rutas disponibles que lo llevaŕıa a
la ubicación del agente guardian. La segunda versión, que se utilizó para evaluar el rendimiento
del agente causal, utilizaba el algoritmo de búsqueda informada A* por su utilidad inherente para
solucionar problemas de búsqueda de rutas. La ejecución del agente terminaba de dos maneras:
si el agente GBOT identificaba al agente explorador o si el agente explorador tomaba con éxito
la ubicación del agente GBOT. Antes de concluir su ejecución, el agente explorador registraba
sus datos de rendimiento, que se muestran en la tabla 7.1. Tanto el EBOT de búsqueda no
informada como el EBOT de búsqueda informada siguen la lógica descrita en los algoritmos 6 y
7, respectivamente.

Tabla 7.1. Estructura del conjunto de datos.

Etiqueta Valor Descripción

BOT [0. . . 1199] Número consecutivo que identifica a cada EBOT
C [1. . . 7] Camino elegido por el EBOT
T Nodes [1. . . path length] Longitud del camino
T Visited [1. . . path length] Cantidad de nodos visitados por EBOT
Can see [0,1] ¿El GBOT puede ver?
Can listen [0,1] ¿El GBOT puede escuchar?
Outcome [0,1] ¿El EBOT completó la tarea?
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Algorithm 6: EBOT- Búsqueda no informada

Input : Map of the game: game.map
Output: None

1 g ← generateGraph(game.map);
2 lstPaths← getAllPaths(g, S, T );
3 (path, pathId)← chooseRandomPath(lstPaths);
4 while true do
5 visited← 0;
6 foreach node in path do
7 agent.moveTo(node);
8 visited← visited+ 1;
9 if getMessage() is 2ou’ve been identified.” then

10 id = game.agentId;
11 pathId = pathId;
12 length = path.length;
13 canListen = game.GBOT.canListen();
14 canSee = game.GBOT.canSee();
15 saveData(id, pathId, length, visited, canListen, canSee, 1);
16 return;

17 if node is T then
18 id = game.agentId;
19 pathId = pathId;
20 length = path.length;
21 canListen = game.GBOT.canListen();
22 canSee = game.GBOT.canSee();
23 saveData(id, pathId, length, visited, canListen, canSee, 0);
24 return;

77



Algorithm 7: EBOT - Búsqueda informada

Data: start, goal
Result: Camino más corto desde start hasta goal

1 Function Astar(start, goal):
2 openSet ← {start};
3 cameFrom ← un mapa vaćıo;
4 gScore[start] ← 0;
5 fScore[start] ← Heuristic(start, goal);
6 while openSet no está vaćıo do
7 current ← el nodo en openSet con el valor de fScore más bajo;
8 if current es goal then
9 return ReconstructPath(cameFrom, current);

10 end
11 openSet.remove(current);
12 foreach neighbor de current do
13 tentativeGScore ← gScore[current] + Distance(current, neighbor);
14 if tentativeGScore < gScore[neighbor] then
15 cameFrom[neighbor] ← current;
16 gScore[neighbor] ← tentativeGScore;
17 fScore[neighbor] ← gScore[neighbor] + Heuristic(neighbor, goal);
18 if neighbor not in openSet then
19 openSet.add(neighbor);
20 end

21 end

22 end

23 end
24 return emptySet

25 Function Heuristic(node, goal):
26 return | node.x− goal.x | + | node.y − goal.y | +penalty;

La complejidad temporal del algoritmo A* depende tanto de la heuŕıstica elegida como de la
estructura subyacente del grafo. El mejor escenario, definido por una heuŕıstica consistente, tiene
una complejidad computacional de O(d), donde d es la longitud del camino más corto, mientras
que la naturaleza exponencial del peor escenario puede atribuirse a la presencia de heuŕısticas
ineficaces o grafos complejos. La complejidad espacial de un grafo se determina por su tamaño,
aśı como por el número de nodos abiertos y cerrados. En circunstancias desfavorables, el costo
computacional también puede ser sustancial debido al espacio de almacenamiento necesario para
retener datos sobre los nodos recorridos.

Recolección de los datos

Para recopilar los datos necesarios, Se realizaron 1200 partidas en el entorno de prueba, te-
niendo en cuenta la complejidad de las tareas asignadas a los agentes GBOT y EBOT. Cada
partida siguió la secuencia de lanzar primero el agente GBOT, seguido por el EBOT. Al final de
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cada partida, el agente EBOT registró y almacenó los datos relevantes.

La figura 7.4a muestra las posiciones iniciales de los agentes en el entorno virtual al comienzo
de una partida, y la figura 7.4b proporciona una instantánea del conjunto de datos generado
durante una de estas partidas.

(a)

(b)

Figura 7.4. Ejemplo de una partida y los datos generados.(a) Ubicación inicial de los agentes.
(b) Dataset generado con las variables de una partida.

Implementación del agente causal (CBOT)

El papel del agente CBOT es idéntico al del agente EBOT, pero su proceso está guiado por
inferencia causal antes de entrar al entorno virtual.

Inferencia Causal

El proceso de inferencia causal comenzó cargando los datos de las 1200 partidas. Se uti-
lizó un modelo causal estructural para estimar la distribución conjunta del conjunto de datos
[129]. Posteriormente, diseñamos el modelo causal, ilustrado en la figura 7.5, para proporcionar
información adicional en la toma de decisiones del agente CBOT durante su ejecución.
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Figura 7.5. Modelo causal estructural.

En este modelo, se consideraron dos variables explicativas: la del sensor visual (S) y la del
sensor auditivo (L). El resultado (Y) se determinó en función del estado de estos dos sensores, sin
descartar que inicialmente el CBOT teńıa formulada la hipótesis de que la activación de uno de
estos sentidos inflúıa en el éxito de la tarea. Para probar la validez de esta creencia, al consultar
el modelo se predijo el efecto de intervenciones espećıficas en las relaciones causales, siguiendo
el enfoque propuesto por [120].

Distribución de Probabilidad Condicional

Una distribución de probabilidad condicional es una tabla que muestra las probabilidades de
una variable con respecto a otras [50]. Según [130], estas estructuras permiten realizar consultas
al modelo y razonar sobre los contrafácticos utilizando la ecuación 7.1.

P (A | B) = P (A ∩B)/P (B) (7.1)

Donde:

P (A | B): Representa la probabilidad de que ocurra el evento A dado que el evento B ya
ha ocurrido.

P (A ∩B): Es la probabilidad de que ocurran simultáneamente los eventos A y B.

P (B): Es la probabilidad de que ocurra el evento B, sin condiciones adicionales.

Se utilizó el paquete pgmpy [131] para generar la distribución de probabilidad condicional
correspondiente y se realizaron las siguientes consultas:

¿Qué sucedeŕıa si el GBOT pudiera ver y escuchar al mismo tiempo?

¿Qué sucedeŕıa si el GBOT pudiera ver pero no escuchar?

¿Qué sucedeŕıa si el GBOT pudiera escuchar pero no ver?

Para validar los resultados de estas consultas ”qué pasaŕıa si” [75], se dividió la muestra
en un grupo de control y un grupo de tratamiento utilizando el paquete causalnex [132]. Esto
permitió medir el impacto de cada intervención, como activar o desactivar un sensor, a través
del efecto promedio del tratamiento (Average Treatment Effect, ecuación 7.2). Al analizar esta
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medida, pudimos determinar la precisión de la creencia del CBOT en su proceso de toma de
decisiones.

ATE =
1

N

N∑
i=1

(Y1(i))︸ ︷︷ ︸
Resultado total con tratamiento

−
N∑
i=1

(Y0(i))︸ ︷︷ ︸
Resultado total sin tratamiento

(7.2)

Donde:

N : Número de muestras.

Y0(i): Resultado sin tratamiento para la muestra i.

Y1(i): Resultado con tratamiento para la muestra i.

i: Índice que representa muestras individuales.

Modelo de comportamiento

Después de llevar a cabo el proceso de inferencia causal, el CBOT obtuvo una comprensión
de la causa subyacente del fracaso basada en su creencia sobre el logro de la tarea. Siguiendo un
proceso lógico similar al del EBOT, donde el camino se elige al azar, el CBOT ejecuta la ruta
con la mayor probabilidad de éxito.

7.3. Resultados

En el contexto de este experimento, se examinó la evaluación del rendimiento de agentes
en un entorno virtual donde el objetivo principal era que los agentes EBOT se desplazaran
desde un punto inicial hasta la posición ocupada por un agente guardián GBOT sin ser detecta-
dos por este, cuyo sentido de visión y audición pueden estar activados o desactivados a demanda.

Dado que esta configuración única no ha sido ampliamente explorada en la literatura académi-
ca consultada, las comparaciones directas con estudios anteriores han resultado dif́ıciles debido
a la falta de estudios completamente análogos. Como resultado, para situar nuestros hallazgos
en el contexto más amplio de los métodos de toma de decisiones, llevamos a cabo una evaluación
considerando métricas clave como la tasa de éxito de la tarea, el consumo de enerǵıa de los
agentes y la relación entre el consumo de enerǵıa de estos y sus tasas de éxito y fracaso. Si bien
estudios anteriores se han centrado en diferentes enfoques y contextos, el análisis comparativo
que se realizó hizo posible discutir las implicaciones de estos hallazgos en el contexto de la toma
de decisiones mediada por la inteligencia artificial.

Inferencia causal

Al calcular la distribución de probabilidad condicional, como se muestra en la tabla 7.2,
fue posible consultar el modelo causal para responder preguntas contrafácticas. Esto permitió
determinar la probabilidad de éxito (Y = 1) o fracaso (Y = 0) para cada combinación de estados
o posibles valores de las variables explicativas (L, S).
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Tabla 7.2. Distribucion de probabilidad condicional del modelo causal estructural.

L L(0) L(0) L(1) L(1)
S S(0) S(1) S(0) S(1)

Y(0) 0.5 0.8204 0.0 1.0
Y(1) 0.5 0.1795 1.0 0.0

El CBOT créıa que el éxito en la ejecución de la tarea estaba determinado por uno de los
sensores del GBOT, lo que requeŕıa intervenciones en ambos sensores para reforzar esta creencia.
La Figura 7.6 ilustra los efectos de las intervenciones resultantes de las consultas al modelo, con
el objetivo de deducir la causa del fracaso en la tarea.

Figura 7.6. Efecto de las intervenciones.

Si el GBOT pod́ıa ver y escuchar (S = 1, L = 1), la probabilidad de fracaso (Y = 0) expre-
sada como P (Y = 0|S = 1, L = 1) = 1,0 fue absoluta, lo que implicaba que no hab́ıa posibilidad
de lograr la tarea. A pesar de reforzar la creencia del CBOT, no fue posible identificar qué sensor
determinó el éxito de la tarea.

Por otro lado, si el GBOT pod́ıa ver pero no escuchar (S = 1, L = 0), la probabilidad de
fracaso (Y = 0) expresada como P (Y = 1|S = 1, L = 0) = 0,8204 fue del 82% independiente-
mente de la ruta tomada, de manera que activar el sensor de visión (S = 1) tuvo un impacto
desfavorable en la variable de interés (Y ) con un efecto de ATE = −0,888. La creencia del
CBOT se reforzó, lo que permitió hacer una primera inferencia con considerable certeza sobre
qué sensor determinó el éxito de la tarea.

Finalmente, si el GBOT no pod́ıa ver pero pod́ıa escuchar (S = 0, L = 1), la probabilidad
de fracaso (Y = 0) expresada como P (Y = 1|S = 0, L = 1) = 0,0 fue nula, independientemente
de la ruta tomada, de manera que, en este caso, activar el sensor auditivo (L = 1) tuvo un
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impacto favorable en la variable de interés (Y ) con un efecto de ATE = 0,304, siempre y cuando
el sensor de visión permaneciera inactivo (S = 0). Esto reforzó la creencia de que el sensor de
visión determinó el éxito de la tarea.

Evaluación del rendimiento de CBOT

El rendimiento de CBOT se comparó con dos EBOTs: uno que utiliza un algoritmo de
búsqueda a ciegas (sin información) y otro un algoritmo de búsqueda informada (A*). La Tabla
7.3 presenta los resultados de 250 partidas en el mismo escenario de prueba.

Tabla 7.3. Resultado de evaluación del desempeño.

Agente Lógica Aciertos Fallos Tasa de acierto Tasa de fallos Enerǵıa

EBOT-USa Random search 75 175 30 70 76.39
EBOT-ISb A* 198 52 79.2 20.8 37.7
CBOT Causal inference 205 45 82 18 35.4

a EBOT con búsqueda no informada. b EBOT con búsqueda informada.

Como se esperaba, el EBOT con el algoritmo de búsqueda ciega tuvo un rendimiento defi-
ciente en comparación con los demás en la Figura 7.7. El CBOT superó por poco al EBOT con
A*, principalmente porque el cálculo heuŕıstico de este último inclúıa una penalización por ser
detectado mientras calculaba la ruta, considerándolo un fracaso. Sin embargo, el comportamiento
de este EBOT se basó en un cálculo heuŕıstico que no teńıa en cuenta elementos causales.

Figura 7.7. Resultados de validación.

La Figura 7.8 muestra un análisis de la tasa de éxito de los agentes en relación con el estado
del sensor de visión del GBOT. Se observa una diferencia significativa entre los casos en los que
el sensor de visión está activado y los casos en los que está desactivado. La capacidad de evadir
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la detección es considerablemente más efectiva cuando el agente enemigo no puede utilizar su
sentido de la vista para rastrearlos, lo cual sucede cuando el sensor de visión está desactivado.

Figura 7.8. Tasa de éxito según el estado del sensor de vista.

La figura 7.9 presenta un análisis de la relación entre el consumo de enerǵıa de los agentes
y el estado del sensor de visión del agente enemigo. Es evidente que los agentes que operan
en un entorno donde el sensor de visión está desactivado consumen menos enerǵıa que aquellos
que operan en entornos donde el sensor de visión está activado. Este hallazgo ilustra cómo la
capacidad de evadir la detección visual puede afectar la eficiencia con la que los agentes utilizan
sus recursos energéticos.

Figura 7.9. Consumo de enerǵıa según el estado del sensor de vista.
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La figura 7.10 ilustra la relación entre el consumo de enerǵıa y la detección por parte de
GBOT. Como se puede observar, el consumo de enerǵıa generalmente es menor en los casos
en los que los agentes no son detectados. Sin embargo, esta relación presenta algunos valores
at́ıpicos que sugieren cierto grado de variación. Por lo tanto, aunque existe una correlación entre
la detección y el consumo de enerǵıa, otros factores, como la presencia de un sensor de escucha,
también podŕıan afectar este factor.

Figura 7.10. Consumo de enerǵıa Vs. Identificación de los EBOT.

7.4. Conclusiones

En este experimento, se exploró la convergencia entre agentes inteligentes e inferencia causal.
Los hallazgos proporcionaron una nueva perspectiva sobre los efectos transformadores de incor-
porar el razonamiento causal en la ejecución de tareas y la toma de decisiones, otorgando aśı
una ventaja competitiva a los agentes.

La aplicación de la inferencia causal en el CBOT mostró una ventaja significativa sobre las
metodoloǵıas alternativas. Proporcionó una comprensión profunda de las causas detrás de los
eventos de detección, permitiendo al CBOT tomar decisiones inteligentes y diseñar planes que
optimizaran la finalización de tareas. En contraste, los agentes EBOT se basaban únicamente
en la selección aleatoria de rutas, lo que requeŕıa una comprensión exhaustiva de los factores
influyentes. Del mismo modo, el GBOT se enfocaba en la eliminación de agentes sin considerar
expĺıcitamente las relaciones causales.

Este experimento resaltó la importancia de las distribuciones de probabilidad condicional
para comprender las posibles eventualidades y validar hipótesis. Sin embargo, también puso de
manifiesto la naturaleza contextual de estos métodos, como lo destacado por [133], subrayan-
do la importancia de las técnicas de razonamiento para los agentes inteligentes que operan en
entornos de simulación f́ısica diversos. Además, evidenció el potencial de agregar la inferencia
causal a agentes inteligentes, especialmente en situaciones donde los sensores pueden indicar qué
comportamientos son causados, lo que facilitaŕıa la toma de decisiones más acertadas.
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Capı́tulo 8
Incorporación de la inferencia causal en el
procedimiento de muestreo de una Deep
Q-Network para resolver problemas de control
clásico

8.1. Objetivo

El objetivo de este experimento fue desarrollar una Deep Q-Network que integrara un método
de muestreo basado en la inferencia causal. Esta red neuronal teńıa como propósito aprender
a equilibrar de manera efectiva un poste vertical sobre un carrito móvil mediante un conjunto
limitado de operaciones, espećıficamente movimientos hacia la izquierda o derecha. A través de
un diseño experimental, se evaluó cómo el uso del muestreo basado en la inferencia causal afecta
el rendimiento de la Deep Q-Network en comparación con el método tradicional de muestreo
aleatorio que se hace sobre el replay buffer del agente.

8.2. Método

Diseño de la tarea

El entorno CartPole provisto por OpenAI Gym, conocido como un ejemplo clásico en el
campo del aprendizaje por refuerzo, fue seleccionado como el escenario experimental para este
experimento [134]. La tarea del CartPole consiste en mantener el equilibrio vertical de un poste
mediante dos acciones diferentes: moviendo el carro hacia la izquierda o hacia la derecha.

La idea fue implementar una Deep Q-Network que permitiera a un agente el aprendizaje de
una poĺıtica que solucionara dicha tarea; aśı, esta implementación se llevó a cabo utilizando el
framework PyTorch [135], mientras que el procedimiento de muestreo basado en la inferencia
causal fue desarrollado utilizando los módulos scikit-learn [136] y SciPy [137].

86



Deep Q-Network (DQN)

La red neuronal profunda utilizada en este estudio, como se ilustra en la figura 8.1, siguió
una arquitectura convencional para el aprendizaje profundo por refuerzo. La capa de entrada
recibió observaciones del entorno. Se estableció una capa oculta compuesta por 128 neuronas,
cada una de las cuales utilizó la función de activación Rectified Linear Unit (ReLU) que por sus
caracteŕısticas resulta ser útil en neuronas de capas intermedias. Además, se creó una capa de
salida que conteńıa dos neuronas para cada acción en la tarea de CartPole.
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Figura 8.1. Arquitectura de la DQN
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Entrenamiento de la Deep Q-Network

El procedimiento de entrenamiento de la Deep Q-Network siguió metodoloǵıas bien esta-
blecidas en el campo del aprendizaje por refuerzo, tomando como referencia el algoritmo de
Q-learning como marco fundamental [138]. A lo largo del procedimiento de entrenamiento, la
Deep Q-Network se integró en un patrón recurrente de episodios en los cuales interactuaba con
el entorno. Según la información proporcionada en la publicación de [139], el agente en cuestión
elegiŕıa una acción de un conjunto predefinido de acciones durante cada episodio. Esta acción
seleccionada luego se aplicaŕıa al entorno de prueba, lo que resultaŕıa en alteraciones tanto en
la recompensa que obteńıa el agente, como en el conjunto de acciones (transiciones) que hab́ıa
ejecutado durante su fase de entrenamiento.

Para asegurar una exploración efectiva y un equilibrio entre la exploración y la explotación,
se implementó un mecanismo de exploración-explotación basado en la poĺıtica epsilon-greedy
según lo recomendado por [140]. Esto implicó que para cada iteración, el agente seleccionaŕıa
una acción mediante uno de dos enfoques potenciales: exploración o explotación. El proceso de
exploración implica seleccionar acciones al azar con una probabilidad denotada como ϵ. Por el
contrario, la explotación implica seleccionar la acción con el valor ”Q”más alto basado en la
poĺıtica actual, con una probabilidad de 1− ϵ.

Lo novedoso de este enfoque de entrenamiento radicó en cómo se manejó el replay buffer. El
replay buffer es una parte clave del aprendizaje profundo por refuerzo, que ayuda a aprender
mediante el uso de transiciones de muestra [141]. La utilización de un replay buffer facilitó el al-
macenamiento y la recuperación de transiciones históricas del entorno, lo que permitió al agente
adquirir conocimientos a partir de experiencias previas. No obstante, el experimento implementó
una metodoloǵıa novedosa al modificar dinámicamente las prioridades de las transiciones alma-
cenadas en el replay buffer.

Para aplicar técnicas de inferencia causal para examinar una transición en el replay buffer
derivó en analizar la acción que tomó el agente en cada episodio. Según [142], si el valor p de-
rivado del análisis estad́ıstico resultaba ser menor que el nivel de significancia predeterminado
(α), indicando una disparidad estad́ısticamente significativa en la longitud media de equilibrio
resultante de la intervención, se asignaba una prioridad correspondiente a la transición respec-
tiva. Al enfatizar las transiciones que tuvieron un impacto significativo en su rendimiento, esta
técnica facilitó la capacidad del agente para aprender de manera más eficiente.

En śıntesis, el procedimiento de entrenamiento de la Deep Q-Network se siñó a enfoques
convencionales en el campo del aprendizaje por refuerzo. Sin embargo, introdujo un aspecto
novedoso al integrar la inferencia causal en el mecanismo de priorización del manejo del replay
buffer. Esto permitió al agente mejorar su eficiencia de aprendizaje y, en última instancia, mejorar
su rendimiento en el problema de control clásico.

Muestreo Basado en Inferencia Causal

La metodoloǵıa implicó la integración de un procedimiento de inferencia causal en tiempo
real en el enfoque de muestreo del replay buffer. Para cada transición de experiencia almacenada
en el replay buffer, se llevó a cabo un análisis de inferencia causal espećıficamente sobre la
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acción del agente. El objetivo de este enfoque consistió en evaluar el impacto de priorizar las
transiciones en el proceso de muestreo, basándose en la presencia o ausencia de una diferencia
causal significativa, en la recompensa obtenida. La hipótesis nula se confirmó cuando no se
observó una diferencia causal estad́ısticamente significativa, lo que indicó que la acción no tuvo
un impacto significativo en la recompensa obtenida. El resultado se logró ajustando la prioridad
de la transición en el replay buffer, considerando la magnitud de la diferencia causal identificada.

El algoritmo 8, muestra los pasos en los que se incorporó la prioridad determinada por la
inferencia causal.

Algorithm 8: Proceso para agregar transiciones al replay buffer con inferencia causal

Require: state, action, nextState not Null
Require: rwd, episode dur ≥ 0

1 if current episode < MIN EPISODES then
2 T ← Transition(state, action, nextState, rwd);
3 replay memory.push(T, episode dur);
4 priorities.push(0);

5 end
6 else
7 ps1← calc prop score(action = left);
8 ps2← calc prop score(action = right);
9 match← KNN(ps1, ps2);

10 T ← Transition(state, action, nextState, rwd);
11 replay memory.push(T, episode dur);
12 has significant diff, diff ← calc dif dur avg(match, ps1, ps2);
13 if has significant diff then
14 priorities.push(diff);
15 end
16 else
17 priorities.push(0);
18 end
19 adjust priorities(has significant diff, diff);

20 end

La variable state corresponde a la representación actual del entorno durante la simulación.
Para el problema del CartPole, el estado t́ıpicamente comprende cuatro variables separadas:

Posición de la rueda: denota la ubicación actual de la rueda en un eje horizontal.

Velocidad del carrito: se refiere a la velocidad a la que el carrito se desplaza en dirección
horizontal.

Ángulo del péndulo: se refiere a la inclinación actual del poste en relación con su posi-
ción vertical.

Velocidad angular del péndulo: coresponde a la tasa instantánea a la que el poste se
mueve en dirección hacia adelante o hacia atrás.
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La variable action denota el desplazamiento lateral del carrito, que es una acción funda-
mental para mantener el equilibrio en el péndulo.

La variable nextState dicta la nueva configuración del sistema después de que el agente
ejecuta una acción particular.

La variable rwd representa las recompensas acumulativas obtenidas durante cada episodio.

La variable episode dur especifica la duración o longitud de cada episodio en el proceso de
simulación.

Priorización de Transiciones

Para priorizar las transiciones en el replay buffer, basándose en la inferencia causal, se utilizó
el propensity score matching [143], una técnica de la teoŕıa causal que se basa en calcular
puntajes (8.1), que representan la probabilidad condicional de tomar una acción espećıfica dado
un conjunto de caracteŕısticas.

PS(T | X) = P (T | X) (8.1)

Donde P (T | X) se estima a partir de los datos de entrenamiento. Estos puntajes de Pro-
pensión se usaron para emparejar transiciones con acciones ligeramente distintas, calculando la
diferencia promedio en las duraciones de los episodios entre transiciones con T = 1 y T = 0.

Aśı entonces, se determinó T cómo la acción tomada por el agente (por ejemplo, mover hacia
la izquierda o hacia la derecha), Y como la duración del episodio, y X como un conjunto de
caracteŕısticas observadas (por ejemplo, el estado del entorno). Luego, se aplicó el propensity
score matching para estimar el efecto causal de T en Y controlando las diferencias en X.

Las prioridades de las transiciones se ajustaron según la diferencia causal estimada, como se
muestra en la ecuación 8.2 para una transición i.

Priority(i) = |EstimatedCausalDifference(i)| (8.2)

La diferencia causal estimada se obtuvo mediante el emparejamiento de estos puntajes, por
lo tanto, si la diferencia causal es significativa (valor − p > α), se asigna una alta prioridad; de
lo contrario, la prioridad es cero. Donde α corresponde al nivel de significancia en la prueba de
hipótesis para determinar si la diferencia causal es estad́ısticamente significativa o no [144].

Muestreo Basado en Prioridades

Durante el proceso de muestreo del replay buffer, la elección de las transiciones se llevó a
cabo considerando su prioridad. Las probabilidades de selección P (i) para cada transición i se
definieron siguiendo la ecuación (8.3).
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P (i) =
Priority(i)∑
j Priority(j)

(8.3)

Esto garantizó que las transiciones con prioridades más altas tuvieran una probabilidad
mayor de ser seleccionadas durante el proceso de muestreo, mientras que aquellas con prioridades
cercanas a cero tuvieron una probabilidad muy baja.

Validación Experimental

Para evaluar el rendimiento del enfoque de muestreo basado en la inferencia causal, se realizó
una comparación rigurosa con un enfoque tradicional de muestreo aleatorio, por lo cual se imple-
mentaron dos versiones de la Deep Q-Network con configuraciones idénticas, excepto por cómo
se gestionaba el replay buffer como se describe a continuación:

Deep Q-Network con muestreo basado en inferencia causal Esta iteración de la Deep
Q-Network implementó el proceso de muestreo basado en inferencia causal descrito previa-
mente. Las transiciones almacenadas en el Replay Buffer fueron priorizadas en función de
la magnitud de la diferencia causal estimada, lo que resultó en un muestreo no uniforme.
El agente de aprendizaje utilizó estas muestras para actualizar su poĺıtica y mejorar su
rendimiento en CartPole.

Deep Q-Network con Muestreo Basado en Inferencia Causal La versión de la Deep Q-
Network con muestreo aleatorio segúıa la práctica estándar de seleccionar transiciones de
manera aleatoria y uniforme del replay buffer. Estas transiciones se eleǵıan sin tener en
cuenta ninguna inferencia causal, lo que refleja el enfoque tradicional del aprendizaje por
refuerzo.

Métricas de Evaluación

Durante el proceso de entrenamiento de la Deep Q-Network con muestreo basado en inferencia
causal, se utilizaron diversas métricas para evaluar el rendimiento y el comportamiento del agente
en el entorno del problema de control clásico. Estas métricas se calcularon para cada episodio y
proporcionaron la información relativa a la capacidad de aprendizaje y exploración del agente.
Las métricas clave incluyen:

Recompensa acumulativa o Duración Esta métrica representa la recompensa total obteni-
da por el agente en un episodio. La recompensa acumulativa, también denominada duración
en ciertos escenarios, indica la suma total de las recompensas obtenidas por el agente dentro
de un episodio particular en un entorno de aprendizaje por refuerzo. Esta métrica es funda-
mental para evaluar la eficiencia del agente en lograr sus objetivos dentro del entorno dado.

En un entorno de control clásico, como el entorno de CartPole, la duración está intŕınse-
camente relacionada con la capacidad del agente para mantener el sistema en un estado
equilibrado durante un peŕıodo de tiempo dado. La duración se define como el número
de pasos de tiempo, o iteraciones, durante los cuales el agente logra mantener el sistema
estable antes de que se alcance un criterio de finalización predefinido.
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El cálculo de la recompensa acumulativa, como se muestra en (8.4), se obtiene sumando las
recompensas individuales Rt adquiridas en cada paso de tiempo t a lo largo de un episodio
completo.

CR =
T∑
t=1

Rt (8.4)

Pérdida acumulativa La pérdida acumulativa representa la pérdida total experimentada por
la red neuronal durante un episodio. Esta métrica se calcula sumando las pérdidas en cada
paso de tiempo y puede utilizarse para evaluar la capacidad de adaptación del modelo
Deep Q-Network.

Porcentaje de Exploración Este valor representa la proporción de acciones que fueron selec-
cionadas mediante exploración en lugar de explotación durante el episodio. La exploración
se realiza seleccionando acciones al azar, mientras que la explotación elige la acción con el
mayor valor esperado según la poĺıtica actual. Un alto porcentaje de exploración indica un
agente que continúa explorando nuevas acciones.

Porcentaje de Explotación Este valor es el complemento del porcentaje de exploración y
representa la proporción de acciones seleccionadas a través de la explotación en lugar de
la exploración. Un alto porcentaje de explotación sugiere que el agente depende más de su
conocimiento adquirido para seleccionar acciones.

Entroṕıa de la Poĺıtica de la Red La entroṕıa es una medida de la incertidumbre en la
poĺıtica del agente. Se calcula a partir de las probabilidades de selección de acciones.
Una entroṕıa alta indica una poĺıtica incierta y exploratoria, mientras que una entroṕıa
baja indica una poĺıtica más determinista.

Al calcular y registrar métricas para cada episodio durante el proceso de entrenamiento de la
Deep Q-Network, el estudio evaluó qué tan bien funcionaba agregar inferencia causal al aprendi-
zaje por refuerzo. Espećıficamente, se realizó una comparación entre el rendimiento del algoritmo
de Deep Q-Network con muestreo basado en inferencia causal y el algoritmo de Deep Q-Network
con muestreo aleatorio.

Es esencial destacar que las métricas utilizadas en este experimento han demostrado ser
altamente informativas para evaluar tanto el rendimiento como la exploración del agente. Estas
métricas han establecido la base para el análisis adicional y las conclusiones derivadas de este
experimento, pues ambas variantes de la Deep Q-Network fueron evaluadas a lo largo de múltiples
episodios de entrenamiento, registrando métricas relevantes en cada episodio. Se compararon
sus resultados de rendimiento en términos de duración del episodio, recompensa acumulativa,
pérdida acumulativa, porcentaje de exploración, porcentaje de explotación y entroṕıa de las
poĺıticas aprendidas.

8.3. Resultados

Se presentan los resultados obtenidos utilizando la metodoloǵıa de muestreo basada en infe-
rencia causal dentro del marco de la Deep Q-Network. Durante las distintas sesiones de entre-
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namiento y evaluación, se recopiló una gran cantidad de datos que ofrecen una visión detallada
sobre la eficacia y las implicaciones de integrar la inferencia causal en el proceso de muestreo de
la Deep Q-Network.

Comparación de rendimiento entre modelos con muestreo basado en inferencia cau-
sal y muestreo aleatorio en diferentes configuraciones de redes neuronales

Se realizó una evaluación de diez modelos de Deep Q-Network en el entorno de aprendizaje
por refuerzo CartPole. Estos modelos se pueden dividir en dos grupos distintos: cinco de ellos
aplican técnicas de muestreo basadas en inferencia causal en el replay buffer, mientras que los
otros cinco utilizan métodos convencionales de muestreo aleatorio. La diferencia principal entre
estos dos grupos reside en su enfoque para manejar la selección de transiciones durante el entre-
namiento de la Deep Q-Network.

El experimento involucró la configuración de diversas arquitecturas de redes neuronales para
cada grupo de modelos. Esto implicó la implementación de dos metodoloǵıas de muestreo: una
basada en inferencia causal y otra utilizando muestreo aleatorio. Para estas configuraciones, fue
necesario ajustar el número de neuronas en la capa oculta. Se estableció un nivel de significancia
de α = 0,05 para el experimento. El tamaño de la muestra se determinó en función del tamaño de
la memoria de repetición del agente, mientras que el tamaño del lote se mantuvo constante en 64.

Se observó cómo se comportó el rendimiento de la Deep Q-Network al emplear muestreo
basado en inferencia causal en diversas situaciones de modelado de la función Q, utilizando di-
ferentes arquitecturas de redes. La tabla 8.1 proporciona una visión general exhaustiva de los
resultados recopilados, mostrando diversas métricas y sus abreviaturas correspondientes.

Las métricas incluyen el modelo utilizado, el número de capas ocultas (NHL) y las técnicas
de muestreo utilizadas, como muestreo basado en inferencia causal (CIS) y muestreo aleatorio
(RS). Además, también presenta métricas relacionadas con la recompensa promedio (AR), la
exploración promedio (AER) y la explotación promedio (AET).

Tabla 8.1. Métricas de rendimiento de modelos con muestreo basado en inferencia causal y
muestreo aleatorio.

Model NHL CIS RS AR AER AET

1 8 X 119.5 44.30 75.20
2 8 X 116.95 44.20 72.75
3 16 X 120.75 44.85 75.90
4 16 X 148.15 45.80 102.35
5 32 X 125.05 44.60 80.45
6 32 X 120.2 44.45 75.75
7 64 X 132.9 45.45 87.45
8 64 X 117.9 45.75 72.15
9 128 X 131.9 45.35 86.55
10 128 X 345.95 62.35 283.60
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Es evidente que, en tres de los cinco grupos, la Deep Q-Network con muestreo basado en
inferencia causal exhibió un rendimiento superior en comparación con la Deep Q-Network con
muestreo aleatorio. Sin embargo, es importante tener en cuenta que la arquitectura y la confi-
guración del modelo tienen un impacto significativo en su rendimiento. Entre los tres modelos
considerados, el de la Deep Q-Network con muestreo basado en inferencia causal destacó por su
rendimiento notable. Para propósitos de evaluación, se optó por el modelo 7, el cual demostró
un rendimiento superior, al igual que su contraparte, el modelo 8.

Comparación de modelos de proceso de Markov y la Deep Q-Network con muestreo
basado en inferencia causal

Se compararon dos modelos de proceso de Markov en el escenario de control CartPole de
OpenAI Gym [134] (figura 8.2), y se observaron disparidades significativas en términos de rendi-
miento y efectividad. El modelo inicial, desarrollado internamente y presentado en el algoritmo
9, alcanza una recompensa promedio de 29.806. Aunque este modelo produce resultados acepta-
bles, el otro modelo evaluado exhibe un rendimiento superior.

El segundo modelo, [145], muestra una recompensa media notablemente elevada, alcanzando
un valor de 96.15. La mejora sustancial en el rendimiento implica la utilización de estrategias más
refinadas en contraste con el modelo inicial. Por otro lado, el modelo Deep Q-Network, que se
basa en inferencia causal para su procedimiento de muestreo, alcanza una recompensa promedio
de 20.17. Aunque este modelo demuestra un rendimiento ligeramente inferior en comparación
con los modelos de proceso de Markov, vale la pena mencionar que los tres modelos muestran
diferentes niveles de éxito al abordar el problema de CartPole. La variación en los resultados
entre estos modelos resalta la importancia de la metodoloǵıa de diseño y la incorporación de
técnicas particulares en algoritmos de aprendizaje por refuerzo.

Figura 8.2. Entornos de prueba CartPole y MountainCar.
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Algorithm 9: Cálculo de recompensas en el entorno CartPole usando el proceso de
Markov
Input: env, policy, render

1 Function DiscretizeAngle(angle):
2 if angle ≥ 0 then
3 return 1
4 end
5 else
6 return 0
7 end

8 observation← env.reset();
9 total reward← 0;

10 for t = 1 to 1000 do
11 if render then
12 env.render();
13 end
14 angle← observation[2] state← DiscretizeAngle(angle) action← policy(state)

observation, reward, done, , ← env.step(action);
15 total reward← total reward+ reward;
16 if done then
17 break;
18 end

19 end
20 return total reward;

Rendimiento de la Deep Q-Network en los entornos de MountainCar y CartPole

Se evaluó el rendimiento de la Deep Q-Network en el entorno de OpenAI Gym, espećıficamen-
te empleando muestreo basado en inferencia causal en el escenario de MountainCar. El modelo
mostró una recompensa promedio de -175, lo cual es significativamente menor que la recompen-
sa promedio original de 20.17 en el escenario de CartPole. En el escenario de MountainCar, el
proceso de toma de decisiones abarcó tres variables distintas para cada estado, mientras que en
CartPole solo están involucradas dos variables. En el entorno de MountainCar, el objetivo princi-
pal es subir la montaña, lo que generalmente conduce a una disminución en la recompensa total.
La presencia de una recompensa promedio negativa indica que existe la necesidad de mejorar y
optimizar el modelo. La influencia de la complejidad de las variables y el número de episodios de
entrenamiento en el proceso de aprendizaje es evidente, lo que resalta la importancia de tener
una cantidad suficiente de datos en el replay buffer para mejorar la precisión del proceso de
inferencia causal.

Métricas de Evaluación

Para evaluar la efectividad de integrar inferencia causal en el proceso de muestreo de la
Deep Q-Network, se recolectaron y analizaron diversas métricas de evaluación durante la fase
de entrenamiento y las interacciones entre el agente y el entorno en un escenario de control
estándar. Estas métricas brindan una visión integral del rendimiento de los modelos en términos
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de aprendizaje, exploración, explotación y estabilidad durante la resolución de tareas de control.
En la evaluación del rendimiento de los modelos 7 y 8, se observaron diferencias notables

en su comportamiento y rendimiento en el problema de control clásico. Como se muestra en la
figura 8.3, el modelo 7, que utilizó el muestreo basado en inferencia causal como parte de su
proceso de aprendizaje, tiende a obtener más recompensas en cada episodio de entrenamiento
que el modelo 8. Este hallazgo sugiere que la integración de la inferencia causal en el muestreo
puede conducir a una mejora en la capacidad del agente para alcanzar un rendimiento más alto
en términos de recompensas acumuladas. Además, se observa que los episodios en el modelo 7
tienden a durar ligeramente más en comparación con el modelo 8. La duración de los episodios
es un indicador de la estabilidad del controlador, y estos resultados sugieren que el modelo 7
puede ser más efectivo en mantener el sistema en un estado equilibrado durante más tiempo.

Figura 8.3. Recompensa Acumulativa: Muestreo Basado en Inferencia Causal vs. Muestreo
Aleatorio en Deep Q-Network

Sin embargo, como se muestra en la figura 8.4, un aspecto interesante es la divergencia
en las estrategias de exploración entre los dos modelos. A pesar de alcanzar recompensas más
altas y episodios más largos, el modelo 7 exhibió un aumento en el porcentaje de exploración
en comparación con el modelo 8. Este aumento en la exploración puede indicar que el Modelo
7 continuó explorando un rango más amplio de acciones, incluso cuando su rendimiento fue
superior.

97



Figura 8.4. Porcentaje de Exploración: Muestreo Basado en Inferencia Causal vs. Muestreo
Aleatorio en Deep Q-Network

Por otro lado, como se ilustra en la figura 8.5, el modelo 7, aunque tuvo un porcentaje de
exploración más bajo, muestra un porcentaje de explotación más alto en sus acciones. Este
equilibrio entre exploración y explotación es una caracteŕıstica importante del aprendizaje por
refuerzo y puede influir en la efectividad general del agente.
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Figura 8.5. Porcentaje de Explotación: Muestreo Basado en Inferencia Causal vs. Muestreo
Aleatorio en Deep Q-Network

En cuanto a las métricas de pérdida en la figura 8.6, el modelo 8 muestra valores de pérdida
acumulada más bajos en comparación con el modelo 7. Esto puede indicar una convergencia más
rápida o una adaptación más efectiva del Modelo 8 a las recompensas y transiciones del entorno.
Esto también confirma lo mencionado por [146], ”la priorización en el replay buffer podŕıa ralen-
tizar el aprendizaje”. No obstante, es importante considerar que la pérdida no necesariamente es
el único indicador de rendimiento, y otras métricas como las recompensas acumuladas también
son cruciales para evaluar el rendimiento del agente.

99



Figura 8.6. Pérdida Acumulativa: Muestreo Basado en Inferencia Causal vs. Muestreo
Aleatorio en Deep Q-Network

Un aspecto intrigante se relaciona con la entroṕıa de las poĺıticas aprendidas en ambos
modelos. En la figura 8.7 se observa que la entroṕıa de la poĺıtica del modelo 7 se mantuvo
consistentemente por encima de la del modelo 8, y ambos mostraron un aumento considerable
en cada episodio. Este fenómeno puede interpretarse como una señal de que una poĺıtica con
alta entroṕıa es más exploratoria, ya que tiende a considerar un factor de ajuste (γ) más amplio
de acciones de manera equitativa. Por otro lado, una poĺıtica con baja entroṕıa se vuelve más
determinista y predecible en sus acciones. La presencia de alta entroṕıa en el modelo 7 pudo estar
relacionada con el grado de exploración y la capacidad para descubrir estrategias más diversas.
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Figura 8.7. Entroṕıa de la Poĺıtica aprendida: Muestreo Basado en Inferencia Causal vs.
Muestreo Aleatorio en Deep Q-Network

En general, estos resultados resaltan la influencia de la inferencia causal en el proceso de
aprendizaje por refuerzo. Si bien el modelo 7 mostró una tendencia hacia la obtención de re-
compensas más altas y episodios más largos, su estrategia de exploración y la alta entroṕıa de
la poĺıtica despertaron interés en comprender cómo se equilibran la exploración y la explotación
en la toma de decisiones del agente. Estos hallazgos enfatizan la complejidad de integrar la in-
ferencia causal en el aprendizaje por refuerzo y sugieren que su impacto puede variar según el
contexto del problema y los objetivos del agente.

8.4. Conclusiones

En este experimento, se evaluó el rendimiento de dos modelos de Deep Q-Network con ar-
quitecturas de redes neuronales idénticas pero empleando dos enfoques de muestreo diferentes:
muestreo basado en inferencia causal y muestreo aleatorio. Los hallazgos revelan diferencias sig-
nificativas en el comportamiento y rendimiento de estos modelos en el contexto de un problema
de control clásico.

Los resultados indican que la integración de la inferencia causal en el muestreo de una Deep
Q-Network puede mejorar su rendimiento en términos de duración del episodio y recompensas
acumuladas en problemas de control clásicos. Sin embargo, también se observaron diferencias en
la exploración y la entroṕıa de la poĺıtica, subrayando la importancia de considerar cuidadosa-
mente el equilibrio entre exploración y explotación en el diseño de algoritmos de aprendizaje por
refuerzo.
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A través de la implementación de esta estrategia, el objetivo no fue solo evaluar la eficacia
numérica de los modelos, sino también adquirir una comprensión más profunda de su capacidad
para ajustarse y aplicarse a diversas circunstancias.

El muestreo basado en inferencia causal generó conocimientos que pueden eventualmente
mejorar el progreso de los algoritmos de aprendizaje por refuerzo mediante Deep Learning,
permitiendo soluciones más flexibles y resilientes a problemas complejos del mundo real.
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Resultados, conclusiones y trabajo
futuro

103



Capı́tulo 9
Resultados

En esta estudio, se realizaron cinco experimentos para investigar la integración de la inferencia
causal en procesos de Machine Learning. Cada experimento abordó aspectos espećıficos de esta
integración y proporcionó información relevante sobre su efectividad y aplicabilidad en diferentes
contextos.

9.1. Experimento 1: Simulación y visualización del fenómeno

interacción luz-materia

El primer experimento tuvo como objetivo simular la distribución del valor de iluminancia
en un dominio espacial 3D con diversas configuraciones de iluminación. Los resultados de este
experimento proporcionaron una ĺınea base para la visualización de resultados en experimentos
posteriores.

En el primer ejercicio de visualización, se observó una distribución uniforme de la luz, pero
con detalles perdidos debido a una singularidad en los cálculos.
En el segundo ejercicio, al evitar esta singularidad, se mejoró la visualización de la propagación
de la luz en zonas más alejadas de la fuente lumı́nica. Sin embargo, aún no se logró una cobertura
total del área de interés.
En el tercer ejercicio, se combinaron los cálculos reales de iluminancia con la visualización me-
jorada del segundo ejercicio, aunque se utilizó la técnica del falso color para una representación
más clara de los datos. Además, se demostró la asimetŕıa en la distribución de la iluminancia al
introducir múltiples fuentes lumı́nicas.

Patrones emergentes: Los resultados de este experimento destacaron la importancia de con-
siderar singularidades en los cálculos de iluminancia para una visualización precisa. Además, se
demostró la capacidad de las técnicas de visualización para mejorar la comprensión de fenómenos
f́ısicos complejos.
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9.2. Experimento 2: Estimación de valores de iluminancia

mediante Deep Learning

Este experimento se centró en el desarrollo de modelos de redes neuronales para estimar el
valor de iluminancia en un espacio tridimensional, teniendo en cuenta configuraciones precisas
de fuentes de luz -determindas en el primer experimento-. Se evaluaron dos enfoques: uno basado
en Feed-Forward Neural Networks (FFNN) y otro en Convolutional Neural Networks (CNN).

En el enfoque Feed-Forward Neural Networks, se observó que el modelo FFNN logró una
alta precisión en la estimación de la iluminancia, alcanzando tasas de éxito del 98.8% y 96.0%
en situaciones con una y dos fuentes de luz, respectivamente. La visualización de los valores
de iluminancia estimados mostró una correspondencia estrecha con los valores esperados, con
diferencias mı́nimas entre ellos. En el enfoque Convolutional Neural Networks, el modelo CNN
también demostró un alto nivel de precisión en sus estimaciones, con tasas de éxito del 99.2% y
96.4% en situaciones con una y dos fuentes de luz, respectivamente. La comparación entre los
valores de iluminancia estimados y los valores esperados mostró una excelente correspondencia,
destacando la efectividad de este enfoque. Al comparar los modelos FFNN y CNN, se mostró
que ambos modelos tuvieron un desempeño similar en términos de precisión, aunque los modelos
CNN mostraron una ligera ventaja sobre los modelos FFNN en algunos escenarios.

En este experimento se exploró la aplicación de la inferencia causal en el cálculo de la ilu-
minancia, considerando diversos factores que podŕıan influir en la distribución de la luz. Estos
factores incluyeron, entre otras, la orientación de las fuentes de luz, la distribución espacial de
las fuentes de luz, la reflectividad de las superficies y la presencia de obstrucciones y sombras.
A través de modelos estructurales, se pudo analizar cómo cada factor afecta las componentes
horizontal y vertical de la iluminancia, lo que proporcionó una comprensión más completa de la
iluminación en un entorno dado.

9.3. Experimento 3: Inferencia causal para determinar la

causa de un fenómeno de sombra en una imagen

En este experimento, se desarrolló un modelo artificial basado en inferencia causal para ex-
plicar la formación de sombras proyectadas en una imagen, espećıficamente sobre la superficie
inferior de un escenario tridimensional. Se utilizó el método de descubrimiento causal NOTEARS
para validar el modelo causal estructural diseñado.

Se observó que la generación del modelo causal estructural fue exitosa tras aplicar una res-
tricción adicional al algoritmo de descubrimiento causal. Este modelo proporcionó coherencia a
la representación de las relaciones causales entre las variables involucradas, incluida la presencia
de la esfera y la proyección de la sombra. A partir de la distribución de probabilidad condicional
obtenida del modelo causal, se realizaron inferencias sobre la causa de la sombra proyectada. Se
encontró que la presencia de la esfera aumenta significativamente la probabilidad de detectar
una sombra en la superficie, lo que sugirió que la esfera fue la causa más probable de la sombra
observada.
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Se compararon diferentes métodos de detección de sombras, incluida una combinación del
método de Felzenszwalb con inferencia causal. Se encontró que este enfoque mostró los resultados
más prometedores, con una precisión del 51.5% en la detección de sombras. A pesar de la
presencia de factores de confusión, este enfoque logró determinar la causalidad de la sombra con
éxito, lo que resalta la utilidad de la inferencia causal en la comprensión de fenómenos visuales
complejos a costa de un conjunto de datos que no solo se caracterice por lo correlativo sino que
incluya esencialmente información sobre intervenciones, factores de confusión, y resultados.

9.4. Experimento 4: Inferencia causal para el modelo de

comportamiento de un agente inteligente

En este experimento, se desarrolló un agente inteligente que empleó la inferencia causal para
comprender las causas detrás de los fallos de otros agentes al completar una tarea. Este agente
fue diseñado para ejecutar la tarea tomando decisiones informadas basadas en la inferencia cau-
sal, lo que le permitió anticipar posibles obstáculos y tomar medidas correctivas apropiadas.

Se aplicó inferencia causal para determinar la causa de los fallos en la ejecución de la tarea
por parte de otros agentes. Se encontró que la presencia de sensores espećıficos en el agente opo-
nente teńıa un impacto significativo en la probabilidad de éxito del agente. La inferencia causal
permitió identificar qué sensor del agente oponente inflúıa más en el resultado de la tarea.
Se comparó el rendimiento del agente inteligente basado en inferencia causal con otros dos agen-
tes: uno que utilizaba un algoritmo de búsqueda no informada y otro que utilizaba el algoritmo
de búsqueda informada A*. Se encontró que el agente basado en inferencia causal superaba al
agente con búsqueda no informada y que también teńıa un rendimiento similar al agente con
búsqueda informada, pero con una comprensión más profunda de las causas subyacentes de los
fallos.

Además, se analizó la relación entre el estado de los sensores del agente oponente y el éxito
en la tarea, aśı como el consumo de enerǵıa de los agentes en diferentes escenarios. Se observó
una correlación entre la detección por parte del agente oponente y el consumo de enerǵıa del
agente, lo que sugiere que la capacidad de evadir la detección visual puede afectar la eficiencia
con la que se utilizan los recursos energéticos.

9.5. Experimento 5: Incorporación de la inferencia causal

en el procedimiento de muestreo de una Deep Q-

Network

El objetivo fue desarrollar una Deep Q-Network que integrara un método de muestreo basado
en la inferencia causal para equilibrar un poste vertical sobre un carrito móvil (entorno CartPole
de OpenAI GYM).

Se evaluaron diez modelos de tipo Deep Q-Network, cinco con muestreo basado en inferencia
causal y cinco con muestreo aleatorio. Se observó un rendimiento superior en tres de los cinco
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modelos con muestreo basado en inferencia causal. La elección del modelo dependió de la ar-
quitectura y configuración de la red. Se compararon dos modelos de proceso de Markov con el
modelo Deep Q-Network que utiliza muestreo basado en inferencia causal. Aunque este último
mostró un rendimiento ligeramente inferior, se destacó la importancia de las estrategias de di-
seño en el aprendizaje por refuerzo. Aśı mismo, se contrastó el rendimiento del modelo Deep
Q-Network con muestreo basado en inferencia causal en los entornos de control clásico CartPo-
le y MountainCar -también de OpenAI GYM-. En esta evaluación se observó una recompensa
promedio más baja en MountainCar debido a la complejidad de las variables y la necesidad de
más datos en la memoria de repetición o replay buffer.

Se determinó que la integración de la inferencia causal en el muestreo de una Deep Q-Network
puede mejorar su capacidad para alcanzar mayores recompensas y prolongar los episodios. Tam-
bién se evidenció que la estrategia de exploración y la entroṕıa de la poĺıtica aprendida son
aspectos cruciales al evaluar el impacto de la inferencia causal en el aprendizaje por refuerzo.
Además, la complejidad del problema y la cantidad de datos disponibles pueden influir en la
efectividad de la inferencia causal en este contexto.

9.6. Generalización de resultados

Aunque los hallazgos de cada experimento tienen el potencial de aplicarse a contextos más
amplios, es importante tener en cuenta las limitaciones espećıficas de cada estudio. La genera-
lización efectiva requiere considerar la variabilidad y la complejidad de los entornos y sistemas
en los que se aplicarán los hallazgos [62], [42], [147] y [148].

Experimento 1

Aplicabilidad: Los resultados de este experimento, que resaltan la importancia de conside-
rar singularidades en los cálculos de iluminancia para una visualización precisa, son relevantes no
solo en simulaciones de iluminación, sino también en cualquier contexto donde la visualización
de datos espaciales sea crucial.

Limitaciones: La simulación se centró en un fenómeno espećıfico (distribución de iluminan-
cia en un espacio 3D) y puede que no sea directamente aplicable a otros fenómenos f́ısicos o
sistemas de datos.

Experimento 2

Aplicabilidad: Los modelos de redes neuronales desarrollados para estimar la iluminancia
pueden ser aplicables en una variedad de contextos donde la estimación de variables espaciales
es necesaria, como la monitorización ambiental o la planificación urbana.

Limitaciones: La precisión y eficacia de los modelos pueden verse afectadas por la comple-
jidad y la variabilidad de los entornos de iluminación, aśı como por la disponibilidad y calidad
de los datos de entrenamiento.
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Experimento 3

Aplicabilidad: El uso de inferencia causal para entender la formación de sombras en imáge-
nes puede ser relevante en campos como la visión por computadora, la robótica y la fotograf́ıa
computacional.

Limitaciones: La efectividad del modelo causal estructural puede depender de la compleji-
dad de las escenas y la disponibilidad de datos para entrenar el modelo. Además, el método de
detección de sombras utilizado puede no ser óptimo en todas las situaciones.

Experimento 4

Aplicabilidad: El enfoque de utilizar inferencia causal para comprender el comportamiento
de agentes inteligentes puede ser útil en sistemas de inteligencia artificial y robótica, aśı como
en la toma de decisiones en entornos dinámicos.

Limitaciones: La generalización del rendimiento del agente basado en inferencia causal
puede depender de la complejidad y la variabilidad de los entornos, aśı como de la disponibilidad
de datos para entrenar el modelo causal.

Experimento 5

Aplicabilidad: La integración de la inferencia causal en el aprendizaje por refuerzo puede
ser relevante en una amplia gama de aplicaciones, desde control de robots hasta optimización de
procesos.

Limitaciones: La efectividad del enfoque puede verse afectada por la complejidad del en-
torno y la tarea, aśı como por la capacidad del modelo de inferencia causal para capturar rela-
ciones causales complejas.

9.7. Análisis comparativo

El análisis entre los resultados obtenidos en los diferentes experimentos realizados se centra
en identificar similitudes y diferencias significativas en los hallazgos de cada experimento, aśı
como en discutir cómo estas variaciones podŕıan relacionarse con las diferencias en los diseños
experimentales. Para facilitar la comprensión y visualización de las comparaciones, se presenta
la Tabla 9.1, que sintetiza los aspectos clave de cada experimento, incluyendo la precisión de los
modelos utilizados, la utilidad de la inferencia causal, la aplicabilidad de los modelos en diferentes
contextos, el rendimiento de los modelos y la complejidad de los fenómenos estudiados. Esta tabla
servirá como referencia para el análisis detallado que se llevará a cabo a continuación.
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Tabla 9.1. Análisis Comparativo de Experimentos

EXPERIMENTOS
Aspecto E1 E2 E3 E4 E5

Precisión de Modelos - Alta - - Alta
Utilidad de la Inferencia
Causal - - Alta Alta -
Aplicabilidad de Modelos - - Visual Comportamental Refuerzo
Rendimiento de Modelos - Ligeramente inferior - - Mejoras
Complejidad del Fenómeno
Estudiado Media Media Baja Alta Alta
Diversidad de Datos
y Entornos Media Media Baja Alta Media

Similitudes en los Hallazgos:

Precisión de Modelos de Redes Neuronales: Tanto en el Experimento 2, en el que se
trabajó con redes feed-forward y redes convolucionales, como en el Experimento 5, en el que el
modelo intervenido fue la Deep Q-Network, se observó una alta precisión en la estimación de
variables (iluminancia en el Experimento 2 y equilibrio del poste en el Experimento 5) utilizando
modelos de redes neuronales.

Utilidad de la Inferencia Causal: En los Experimentos 3 y 4, la aplicación de inferencia
causal demostró ser útil para comprender fenómenos complejos, ya sea la formación de sombras
en imágenes o el comportamiento de agentes inteligentes.

Diferencias en los Hallazgos:

Aplicabilidad de Modelos de Inferencia Causal: Mientras que en el Experimento 3 la
inferencia causal se aplicó con éxito para comprender un fenómeno visual, en el Experimento 4
se utilizó para comprender el comportamiento de agentes inteligentes en un entorno dinámico.

Rendimiento de Modelos de Aprendizaje por Refuerzo: Aunque en el Experimento
5 se observaron mejoras en el rendimiento de la Deep Q-Network con muestreo basado en in-
ferencia causal, este enfoque mostró un rendimiento ligeramente inferior en comparación con el
muestreo aleatorio en algunos modelos.
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Relación con los Diseños Experimentales:

Complejidad del Fenómeno Estudiado: Las diferencias en la complejidad de los fenóme-
nos estudiados pueden haber influido en la efectividad de los enfoques utilizados. Por ejemplo, la
inferencia causal puede ser más efectiva para comprender fenómenos visuales simples que para
modelar comportamientos complejos de agentes inteligentes.

Diversidad de Datos y Entornos: Las variaciones en los diseños experimentales pueden
reflejar diferencias en la diversidad de datos utilizados y en la complejidad de los entornos
simulados, lo que a su vez puede afectar la aplicabilidad y la generalización de los resultados.

9.8. Relación entre los Resultados de los Experimentos y

los Objetivos de la Investigación

En esta sección, se analiza cómo los resultados obtenidos en cada experimento contribuyen
al logro de los objetivos espećıficos de la investigación.

Objetivo 1: Desarrollar un modelo de aprendizaje de máquina para estimar el valor
de iluminancia en un escenario 3D

El Experimento 2 se centró en el desarrollo de modelos de redes neuronales de tipo feed-
forward y convolucionales para estimar la iluminancia en un entorno tridimensional. Los resul-
tados de este experimento demostraron una alta precisión en la estimación de la iluminancia,
lo que cumple con el objetivo de desarrollar un modelo de aprendizaje de máquina para este
propósito espećıfico.

Objetivo 2: Desarrollar un modelo que aplique la inferencia causal para determinar
la causa de un fenómeno de sombra en una imagen

El Experimento 3 se enfocó en el desarrollo de un modelo artificial basado en inferencia
causal para explicar la formación de sombras proyectadas en una imagen. Los resultados de
este experimento proporcionaron una representación coherente de las relaciones causales entre
las variables involucradas, lo que respalda el objetivo de desarrollar un modelo que aplique la
inferencia causal para entender/explicar los fenómenos de sombras en imágenes.

Objetivo 3: Desarrollar un modelo cognitivo basado en inferencia causal para apoyar
la toma de decisiones de un agente en un entorno virtual

El Experimento 4 implicó el desarrollo de un agente inteligente que utilizó la inferencia causal
para comprender las causas detrás de los fallos en la ejecución de una tarea y tomar decisiones
informadas en un entorno virtual. Estos resultados están alineados con el objetivo de desarrollar
un modelo cognitivo basado en inferencia causal para apoyar la toma de decisiones de un agente
en un entorno virtual.
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Objetivo 4: Desarrollar un modelo de aprendizaje de máquina con una Deep Q-
Network que utilice inferencia causal para el proceso de muestreo del replay buffer

El Experimento 5 se centró en el desarrollo de una Deep Q-Network que integró la inferencia
causal en el proceso de muestreo del replay buffer para solucionar un problema de control clásico.
Los resultados de este experimento mostraron mejoras significativas en la capacidad de la Deep
Q-Network para solucionar problemas de control clásico, lo que respalda el objetivo de desarrollar
un modelo de aprendizaje de máquina que utilice inferencia causal para este propósito.
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Capı́tulo 10
Conclusiones

Durante el desarrollo de esta investigación, se ha explorado la integración de la inferencia
causal en procesos de Machine Learning, con el objetivo de mejorar la resolución de problemas
donde la explicabilidad y la comprensión de las relaciones causales son fundamentales. A través
de una serie de experimentos meticulosamente diseñados y ejecutados, se han obtenido resul-
tados significativos que confirman el valor y las implicaciones de esta integración en diversas
aplicaciones del aprendizaje automático.

El primer experimento proporcionó una comprensión detallada de los desaf́ıos asociados con
la visualización de la distribución de iluminancia en un escenario tridimensional. Los hallazgos
destacaron la importancia de considerar factores como la subdivisión del escenario, el uso de
escalas logaŕıtmicas y la anulación de fuentes lumı́nicas para obtener visualizaciones precisas y
significativas. Estas lecciones son fundamentales en el contexto más amplio de esta investigación,
ya que subrayan la necesidad de abordar la complejidad de los datos en el aprendizaje automáti-
co y la importancia de la explicabilidad en la comprensión de los fenómenos estudiados.

El segundo experimento se centró en el desarrollo de modelos de aprendizaje de máquina pa-
ra estimar la iluminancia en escenarios 3D. Aunque la precisión de las estimaciones no alcanzó
el 100%, los resultados demostraron el éxito de la aplicación de técnicas de Deep Learning en
esta tarea, cumpliendo aśı con el objetivo de explorar cómo la integración y complementación
del Machine Learning y la inferencia causal pueden mejorar la resolución de problemas donde
la explicabilidad es fundamental. Por ejemplo, se observó que tanto los modelos de redes neu-
ronales Feed-Forward (FFNN) como Convolutional Neural Networks (CNN) lograron una alta
precisión en la estimación de la iluminancia en un entorno 3D, con tasas de éxito superiores al
95%, respaldando la eficacia de estos modelos para estimar variables ambientales.

En el tercer experimento, se introdujo el uso de la inferencia causal para determinar la causa
de fenómenos de sombra en imágenes. Este enfoque permitió fortalecer hipótesis y mejorar la
comprensión de eventos complejos, cumpliendo con el objetivo de analizar cómo la inferencia
causal puede potenciar diversas aplicaciones de Machine Learning relacionadas con la explica-
bilidad de imágenes. Por ejemplo, se encontró que el modelo basado en inferencia causal pudo
explicar de manera coherente la formación de sombras en una imagen, lo que indica que la infe-
rencia causal puede ser efectiva para entender fenómenos visuales complejos.
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El cuarto experimento exploró la convergencia entre agentes inteligentes e inferencia causal,
revelando el potencial transformador de incorporar el razonamiento causal en la toma de deci-
siones de los agentes. Los resultados obtenidos resaltaron la ventaja significativa de la aplicación
de la inferencia causal en entornos de simulación f́ısica diversos, cumpliendo aśı con el objetivo
de analizar cómo la integración de la inferencia causal puede mejorar la resolución de proble-
mas donde la explicabilidad es fundamental. Por ejemplo, se demostró que el agente inteligente
basado en inferencia causal superó a otros agentes en la ejecución de una tarea compleja en un
entorno virtual, demostrando una comprensión más profunda de las causas subyacentes de los
fallos en la ejecución de la tarea y tomando decisiones informadas para evitarlos.

Finalmente, el quinto experimento evaluó el rendimiento de modelos de Deep Q-Network con
y sin integración de inferencia causal en problemas de control clásico. Los hallazgos demostra-
ron mejoras significativas en el rendimiento al incorporar la inferencia causal en el proceso de
muestreo, destacando la importancia de considerar cuidadosamente el equilibrio entre explora-
ción y explotación en el diseño de algoritmos de aprendizaje por refuerzo. Este cumplimiento
del objetivo de analizar cómo la integración y complementación del Machine Learning y la infe-
rencia causal pueden mejorar la resolución de problemas se refleja en los resultados obtenidos.
Por ejemplo, se encontró que la DQN que integró la inferencia causal en el proceso de muestreo
del replay buffer mostró mejoras significativas en la capacidad de alcanzar recompensas más
altas y completar episodios más largos en comparación con una DQN que utilizaba muestreo
aleatorio, lo que respalda la efectividad de este enfoque para mejorar el aprendizaje por refuerzo.

En conjunto, los resultados obtenidos en esta investigación subrayan el potencial y la rele-
vancia de la integración de la inferencia causal en procesos de Machine Learning. Además de
contribuir al avance teórico en este campo, los hallazgos tienen importantes implicaciones prácti-
cas para diversas aplicaciones del aprendizaje automático, desde la estimación de iluminancia
hasta el aprendizaje por refuerzo en entornos complejos.

Se identifican áreas prometedoras para futuras investigaciones, como la mejora de la inferen-
cia causal en entornos gráficos complejos, la exploración de nuevas estrategias de aprendizaje por
refuerzo basadas en principios de inferencia causal y el desarrollo de modelos adaptativos capa-
ces de manejar variaciones en las configuraciones de iluminación y otras condiciones ambientales.

En śıntesis, este trabajo de tesis proporciona una contribución significativa al entendimiento
y la aplicación de la inferencia causal en el contexto del Machine Learning, cumpliendo con el
objetivo de explorar cómo esta integración puede mejorar la resolución de problemas donde la
explicabilidad es fundamental, y ofreciendo una base sólida para futuras investigaciones y el
desarrollo de aplicaciones prácticas en una variedad de campos.
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Capı́tulo 11
Trabajo futuro

Basado en los resultados y observaciones de los experimentos actuales, se identifican varias
v́ıas para futuras investigaciones y desarrollos. Estas incluyen la mejora de los algoritmos, la
exploración de nuevos entornos y la mejora de la robustez y generalización de las poĺıticas
aprendidas. Espećıficamente, se proponen las siguientes áreas de enfoque:

Mejoras algoŕıtmicas

Estrategias avanzadas de exploración

Implementar técnicas avanzadas de exploración, como Upper Confidence Bound y Mues-
treo de Thompson, podŕıa mejorar el equilibrio entre exploración y explotación, potencialmente
llevando a un aprendizaje más eficiente.

Aprendizaje profundo por refuerzo

Extender el trabajo actual para incorporar técnicas de aprendizaje profundo, como Double
Deep Q-Network o Deep Deterministic Policy Gradient, podŕıa permitir manejar entornos más
complejos con espacios de estado de alta dimensión.

Aprendizaje por refuerzo multi-agente

Explorar escenarios con múltiples agentes interactuando podŕıa proporcionar información
sobre dinámicas colaborativas y competitivas, permitiendo el desarrollo de poĺıticas más sofisti-
cadas y robustas.

Diversidad de Entornos

Espacios de estado y acción continuos

Investigar entornos con espacios de estado y acción continuos, como Pendulum-v1 o LunarLanderContinuous-
v2, podŕıa ayudar a entender la escalabilidad y adaptabilidad de los algoritmos.
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Aplicaciones del mundo real

Aplicar los algoritmos a problemas del mundo real, como el control de robots, la conducción
autónoma o el comercio financiero, podŕıa validar su utilidad práctica y efectividad fuera de
entornos simulados.

Entornos estocásticos y parcialmente observables

Examinar el rendimiento en entornos estocásticos y parcialmente observables, como los Pro-
cesos de Decisión de Markov Parcialmente Observables, podŕıa llevar al desarrollo de poĺıticas
más resilientes.

Optimización de hiperparámetros

Ajuste Automático de Hiperparámetros

Implementar técnicas de optimización automática de hiperparámetros, como la Optimización
Bayesiana o Algoritmos Genéticos, podŕıa identificar configuraciones de parámetros óptimas más
eficientemente y mejorar el rendimiento del aprendizaje.

Tasas de aprendizaje adaptativas

Explorar esquemas de tasas de aprendizaje adaptativas podŕıa mejorar la velocidad de con-
vergencia y la estabilidad de los algoritmos, particularmente en entornos dinámicos y no esta-
cionarios.

Robustez y generalización de poĺıticas

Aprendizaje por transferencia

Investigar enfoques de aprendizaje por transferencia para aplicar el conocimiento adquirido
en un entorno a otro podŕıa mejorar la eficiencia del aprendizaje y la generalización de poĺıticas
a través de diferentes tareas.

Meta-Aprendizaje

Implementar técnicas de meta-aprendizaje para permitir que los algoritmos se adapten rápi-
damente a nuevos entornos o cambios dentro del mismo entorno podŕıa mejorar su flexibilidad
y aplicabilidad.

Robustez ante la incertidumbre

Desarrollar métodos para manejar la incertidumbre y la variabilidad en el entorno, como el
aprendizaje por refuerzo robusto o enfoques sensibles al riesgo, podŕıa mejorar la fiabilidad y
seguridad de las poĺıticas aprendidas.
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Análisis de Desempeño y Comparativas

Análisis comparativos detallados

Realizar comparativas detalladas a través de una gama más amplia de entornos y algoritmos
podŕıa proporcionar una comprensión más detallada de las fortalezas y limitaciones de cada
enfoque.

Evaluación a largo plazo

Realizar evaluaciones a largo plazo para evaluar la estabilidad y persistencia de las poĺıticas
aprendidas durante peŕıodos extendidos podŕıa asegurar su robustez y efectividad en aplicaciones
del mundo real.

Enfoques interdisciplinarios

Incorporar conocimientos espećıficos del dominio

Incorporar conocimiento espećıfico del dominio y heuŕısticas en el proceso de aprendizaje
podŕıa acelerar la convergencia y mejorar el rendimiento en aplicaciones especializadas.

Aprendizaje con Human-in-the-Loop

Desarrollar marcos para el aprendizaje por refuerzo con humanos en el bucle, donde la expe-
riencia humana gúıa el proceso de aprendizaje, podŕıa mejorar la calidad e interpretabilidad de
las poĺıticas aprendidas.

Al seguir estas ĺıneas de acción futuras, se puede mejorar significativamente la robustez,
eficiencia y aplicabilidad de los algoritmos de aprendizaje por refuerzo, allanando el camino para
su adopción e impacto más amplio en diversos dominios.
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Capı́tulo 12
Contribuciones de la investigación

Esta investigación ha demostrado la aplicabilidad exitosa de la inferencia causal en una
variedad de contextos de Machine Learning, incluyendo la estimación de iluminancia, la detección
de sombras, la toma de decisiones de agentes inteligentes y el aprendizaje por refuerzo. Esta
amplia gama de aplicaciones destaca la versatilidad y utilidad de la inferencia causal en diferentes
áreas de estudio.

12.1. Contribuciones metodológicas y emṕıricas

12.1.1. Avance en la Estimación de Iluminancia mediante Aprendi-
zaje Profundo

Esta investigación ha demostrado el éxito de la aplicación de técnicas de Deep Learning
para la estimación de iluminancia en escenarios 3D. Esta contribución sugiere que el aprendizaje
profundo puede ser una herramienta valiosa para resolver problemas de estimación de iluminancia
en diversas configuraciones de iluminación.

12.1.2. Fortalecimiento de la Detección de Sombras a través de la
Inferencia Causal

La incorporación de la inferencia causal ha mejorado la capacidad de determinar la causa de
fenómenos de sombra en imágenes. Esta contribución subraya cómo la inferencia causal puede
fortalecer hipótesis y mejorar la comprensión de eventos complejos en el análisis de imágenes.

12.1.3. Mejora en la Toma de Decisiones de Agentes Inteligentes me-
diante Inferencia Causal

La integración de la inferencia causal ha proporcionado una ventaja significativa en la toma
de decisiones de agentes inteligentes en entornos virtuales. Este hallazgo destaca el potencial
transformador de incorporar el razonamiento causal en la ejecución de tareas complejas por
parte de agentes inteligentes.
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12.1.4. La integración de la inferencia causal en el muestreo de una
Deep Q-Network ha mostrado resultados prometedores rela-
cionados con su rendimiento en problemas de control clásico

Esta contribución resalta la importancia de considerar cuidadosamente el equilibrio entre
exploración y explotación en el diseño de algoritmos de aprendizaje por refuerzo, apoyándose en
un muestreo prioritario, de las experiencias aprendidas por un agente, basándose en la inferencia
causal.

12.2. Contribuciones a la literatura

Las publicaciones derivadas de esta investigación han contribuido significativamente al cuerpo
existente de literatura en el campo del Machine Learning y la inferencia causal, proporcionando
nuevos conocimientos, métodos y perspectivas que avanzan en la comprensión y aplicación de
estas áreas. Estas contribuciones se resumen a continuación:

Exploring Deep Learning Techniques for Illuminance Estimation

En esta publicación, exploramos en detalle el impacto de la integración de la inferencia
causal en la estimación de iluminancia en escenarios 3D. Nuestros hallazgos han demostrado
la viabilidad y eficacia de esta aproximación en la resolución de problemas de estimación de
iluminancia en entornos complejos, lo que ampĺıa el conjunto de herramientas disponibles para
los investigadores y profesionales en el campo de la iluminación arquitectónica y el diseño de
escenarios virtuales.

Journal: Expert Systems

EISSN: 1468-0394

JCR: Q2

DOI: http://doi.org/10.1111/exsy.13559

URL: https://onlinelibrary.wiley.com/doi/10.1111/exsy.13559

Causal Inference Applied to Explaining the Appearance of Shadow Phenomena in
an Image

En esta publicación, presentamos un enfoque novedoso para la detección de sombras en
imágenes mediante el uso de la inferencia causal. Nuestros resultados destacan la importancia
de considerar la causalidad en la comprensión de fenómenos visuales complejos, y proporcionan
nuevas perspectivas sobre cómo abordar este problema fundamental en el procesamiento de
imágenes y la visión por computadora.

Journal: INFORMATICA

EISSN: 1822-8844
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JCR: Q2

DOI https://doi.org/10.15388/23-INFOR526

URL: https://informatica.vu.lt/journal/INFORMATICA/article/1302/info

Approach from Artificial Intelligence to poorly predictive behaviors derived from
artificial cognitive models

En esta publicación, propusimos generar modelos conductuales artificiales para determinar
las condiciones en que estos demuestran comportamientos poco predictivos. El entorno virtual
de pruebas, la arquitectura de los modelos y el desarrollo de software fueron posibles gracias a
la interacción de Pogamut, Unreal Tournament, SOAR y Java. Los modelos conductuales pro-
puestos en el experimento consistieron en máquinas de estados finitos y producciones derivadas
del uso de la arquitectura cognitiva SOAR.

Journal: Tesis Psicológica

EISSN: 2422-0450

PUBLINDEX: Categoŕıa B Equivalente a Q3 según el ı́ndice bibliográfico nacional del Minis-
terio de ciencia, tecnoloǵıa e innovación de la Republica de Colombia.

URL: https://revistas.libertadores.edu.co/index.php/TesisPsicologica/article/view/1101

Intelligent Agents and Causal Inference: Enhancing Decision-Making through Cau-
sal Reasoning

En esta publicación, exploramos el papel de la inferencia causal en la toma de decisiones de
agentes inteligentes en entornos virtuales. Nuestros hallazgos han demostrado que la integración
de la causalidad en los modelos cognitivos de los agentes puede mejorar significativamente su
capacidad para realizar tareas complejas y adaptarse a entornos cambiantes, lo que tiene im-
portantes implicaciones para el diseño de sistemas de inteligencia artificial en una variedad de
aplicaciones prácticas.
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Integration of Causal Inference in the DQN Sampling Process for Classical Control
Problems

En esta publicación, investigamos el impacto de la integración de la inferencia causal en el
aprendizaje por refuerzo mediante el uso de Deep Q-Networks. Nuestros resultados sugieren que
la incorporación de la causalidad en el proceso de muestreo puede mejorar el rendimiento y la
eficacia de los algoritmos de aprendizaje por refuerzo en la resolución de problemas de control
clásico, lo que abre nuevas oportunidades para aplicaciones en robótica, juegos y otras áreas
relacionadas.
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el análisis del lenguaje, como en el caso del trastorno por déficit de atención.
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[26] P. Wawrzyński, “Real-time reinforcement learning by sequential actor–critics and expe-
rience replay,” Neural networks, vol. 22, no. 10, pp. 1484–1497, 2009.

[27] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-
learning,” in Proceedings of the AAAI conference on artificial intelligence, vol. 30, 2016.

[28] A. W. Moore and C. G. Atkeson, “Prioritized sweeping: Reinforcement learning with less
data and less time,” Machine learning, vol. 13, pp. 103–130, 1993.

[29] H. Van Seijen and R. S. Sutton, “Efficient planning in MDPs by small backups,” in Proc.
30th Int. Conf. Mach. Learn, vol. 28, pp. 1–9, 2013.

[30] C. Tessler, S. Givony, T. Zahavy, D. Mankowitz, and S. Mannor, “A deep hierarchical
approach to lifelong learning in minecraft,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 31, 2017.

[31] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.
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dores automáticos: un ejemplo basado en atari breakout.,” in CoSECivi, pp. 77–88, 2016.

[33] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electronic
Markets, vol. 31, no. 3, pp. 685–695, 2021.

[34] P. Bertens, A. Guitart, P. P. Chen, and A. Perianez, “A machine-learning item recommen-
dation system for video games,” in 2018 IEEE Conference on Computational Intelligence
and Games (CIG), pp. 1–4, IEEE, 2018.

[35] B. J. Geisler, An Empirical Study of Machine Learning Algorithms Applied to Modeling
Player Behavior in a”First Person Shooter”Video Game. PhD thesis, Citeseer, 2002.

[36] J.-A. Hitar-Garcia, L. Moran-Fernandez, and V. Bolon-Canedo, “Machine learning
methods for predicting league of legends game outcome,” IEEE Transactions on Games,
2022.

[37] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine learning,”
Feb. 2017.

[38] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzel, “Learning to diagnose with LSTM
recurrent neural networks,” Nov. 2015.

[39] M.-I. Mahraz, L. Benabbou, and A. Berrado, “Machine learning in supply chain mana-
gement: A systematic literature review,” International Journal of Supply and Operations
Management, vol. 9, no. 4, pp. 398–416, 2022.

[40] J. Pearl, Causality. Cambridge university press, 2009.

[41] J. Peters, D. Janzing, and B. Schölkopf, Elements of Causal Inference. 2017.

[42] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

123



[43] R. Xu, D. Wunsch II, and R. Frank, “Inference of genetic regulatory networks with recu-
rrent neural network models using particle swarm optimization,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 4, no. 4, pp. 681–692, 2007.

[44] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human knowledge,”
nature, vol. 550, no. 7676, pp. 354–359, 2017.

[45] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear regression analysis.
John Wiley & Sons, 2021.

[46] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of statistical
learning: data mining, inference, and prediction, vol. 2. Springer, 2009.

[47] M. Praveena and V. Jaiganesh, “A literature review on supervised machine learning algo-
rithms and boosting process,” International Journal of Computer Applications, vol. 169,
no. 8, pp. 32–35, 2017.

[48] P. Domingos, “A few useful things to know about machine learning,” Communications of
the ACM, vol. 55, no. 10, pp. 78–87, 2012.

[49] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[50] K. P. Murphy, Machine Learning: A Probabilistic Perspective, vol. 16. Massachusetts: The
MIT Press, 2012.

[51] K. Hsu, S. Levine, and C. Finn, “Unsupervised learning via meta-learning,” arXiv preprint
arXiv:1810.02334, 2018.

[52] C. C. Aggarwal, “Outlier analysis second edition,” 2016.

[53] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM computing
surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[54] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algorithm,” Pattern
recognition, vol. 36, no. 2, pp. 451–461, 2003.

[55] K. Khan, S. U. Rehman, K. Aziz, S. Fong, and S. Sarasvady, “Dbscan: Past, present and
future,” in The fifth international conference on the applications of digital information and
web technologies (ICADIWT 2014), pp. 232–238, IEEE, 2014.

[56] F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: an overview,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 2, no. 1, pp. 86–97,
2012.

[57] T. Kurita, “Principal component analysis (pca),” Computer Vision: A Reference Guide,
pp. 1–4, 2019.

[58] G. C. Linderman and S. Steinerberger, “Clustering with t-sne, provably,” SIAM journal
on mathematics of data science, vol. 1, no. 2, pp. 313–332, 2019.

124



[59] I. Syarif, A. Prugel-Bennett, and G. Wills, “Unsupervised clustering approach for network
anomaly detection,” in Networked Digital Technologies: 4th International Conference, NDT
2012, Dubai, UAE, April 24-26, 2012. Proceedings, Part I 4, pp. 135–145, Springer, 2012.

[60] F. M. Nafie Ali and A. A. Mohamed Hamed, “Usage apriori and clustering algorithms in
weka tools to mining dataset of traffic accidents,” Journal of Information and Telecommu-
nication, vol. 2, no. 3, pp. 231–245, 2018.

[61] I. Syukra, A. Hidayat, and M. Z. Fauzi, “Implementation of k-medoids and fp-growth
algorithms for grouping and product offering recommendations,” Indonesian Journal of
Artificial Intelligence and Data Mining, vol. 2, no. 2, pp. 107–115, 2019.

[62] C. M. Bishop, “Pattern recognition and machine learning,” Springer google schola, vol. 2,
pp. 645–678, 2006.

[63] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,”
The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274, 2013.

[64] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor
policies,” Journal of Machine Learning Research, vol. 17, no. 39, pp. 1–40, 2016.

[65] B. Zhang, W. Hu, D. Cao, Q. Huang, Z. Chen, and F. Blaabjerg, “Deep reinforcement
learning–based approach for optimizing energy conversion in integrated electrical and
heating system with renewable energy,” Energy conversion and management, vol. 202,
p. 112199, 2019.

[66] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor,” in International conference
on machine learning, pp. 1861–1870, PMLR, 2018.

[67] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp. 279–292, 1992.

[68] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist systems, vol. 37.
University of Cambridge, Department of Engineering Cambridge, UK, 1994.

[69] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinfor-
cement learning,” Machine learning, vol. 8, pp. 229–256, 1992.

[70] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy opti-
mization,” in International conference on machine learning, pp. 1889–1897, PMLR, 2015.

[71] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Ka-
vukcuoglu, “Asynchronous methods for deep reinforcement learning,” in International con-
ference on machine learning, pp. 1928–1937, PMLR, 2016.

[72] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”
Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

[73] T. Heskes, E. Sijben, I. G. Bucur, and T. Claassen, “Causal shapley values: Exploiting
causal knowledge to explain individual predictions of complex models,” Advances in neural
information processing systems, vol. 33, pp. 4778–4789, 2020.

125



[74] B. Van Breugel, T. Kyono, J. Berrevoets, and M. Van der Schaar, “Decaf: Generating fair
synthetic data using causally-aware generative networks,” Advances in Neural Information
Processing Systems, vol. 34, pp. 22221–22233, 2021.

[75] M. A. Hernán and J. M. Robins, Causal Inference: What If. Taylor & Francis Group, i ed.,
2020.

[76] L. Bellia, M. Musto, and G. Spada, “Illuminance measurements through hdr imaging
photometry in scholastic environment,” Energy and buildings, vol. 43, no. 10, pp. 2843–
2849, 2011.

[77] M. Wang and Z. Shang, “Deep separable convolution neural network for illumination
estimation,” in International Conference on Agents and Artificial Intelligence, vol. 11,
pp. 879–886, 2019.

[78] M. A. Gardner, K. Sunkavalli, E. Yumer, X. Shen, E. Gambaretto, C. Gagne, and J. F.
Lalonde, “Learning to predict indoor illumination from a single image,” ACM Transactions
on Graphics, vol. 36, no. 6, 2017.

[79] S. Song and T. Funkhouser, “Neural illumination: Lighting prediction for indoor environ-
ments,” Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2019-June, pp. 6911–6919, 2019.

[80] K. Zhang, X. Li, X. Jin, B. Liu, X. Li, and H. Sun, “Outdoor illumination estimation via
all convolutional neural networks,” Computers and Electrical Engineering, vol. 90, no. 7,
2021.

[81] M. S. El-nasr, “Intellegent lighting for game environments,” Journal of Game Development,
vol. 1, no. 2, pp. 17–50, 2005.

[82] K. Koscevic, M. Subasic, and S. Loncaric, “Deep learning-based illumination estimation
using light source classification,” IEEE Access, vol. 8, no. 1, pp. 84239–84247, 2020.

[83] P. Kan and H. Kafumann, “Deeplight: light source estimation for augmented reality using
deep learning,” The Visual Computer, vol. 35, no. 6-8, pp. 873–883, 2019.

[84] M. Yang, X. Nie, and R. W. Liu, “Coarse-to-fine luminance estimation for low-light image
enhancement in maritime video surveillance,” in 2019 IEEE Intelligent Transportation
Systems Conference, ITSC 2019, pp. 299–304, IEEE, 2019.

[85] S. U.C., S. Aaqib, B. Sachin, K. Thijs W., and O. Tanir, “Lumnet : Learning to estimate
vertical visual field luminance for adaptive lighting control,” ACM Interact. Mob. Wearable
Ubiquitous Technol, vol. 5, no. 2, 2021.

[86] H. Liu, S. Chen, N. Zheng, Y. Wang, J. Ge, K. Ding, Z. Guo, W. Li, and J. Lan, “Ground
pedestrian and vehicle detections using imaging environment perception mechanisms and
deep learning networks,” Electronics (Switzerland), vol. 11, no. 12, 2022.

126



[87] M. Kayakus and K. K. Cevik, “Estimating luminance measurements in road lighting by
deep learning method,” in Artificial Intelligence and Applied Mathematics in Engineering
Problems (D. J. Hemanth and U. Kose, eds.), (Cham), pp. 940–948, Springer International
Publishing, 2020.

[88] H. A. Sial, R. Baldrich, M. Vanrell, and D. Samaras, “Light direction and color estimation
from single image with deep regression,” London Imaging Meeting, vol. 1, no. 1, pp. 139–
143, 2020.

[89] M. Li, J. Guo, X. Cui, R. Pan, Y. Guo, C. Wang, P. Yu, and F. Pan, “Deep spherical
gaussian illumination estimation for indoor scene,” in Proceedings of the ACM Multimedia
Asia, pp. 1–6, 2019.

[90] M. Miki, T. Hiroyasu, K. Imazato, and M. Yonezawa, “Intelligent lighting control using
correlation coefficient between luminance and illuminance,” Proc. IASTED Intelligent Sys-
tems and Control, vol. 497, no. 078, pp. 31–36, 2005.

[91] Y. Xin, N. Tagasovska, F. Perez-Cruz, and M. Raubal, “Vision paper: causal inference
for interpretable and robust machine learning in mobility analysis,” in GIS: Proceedings
of the ACM International Symposium on Advances in Geographic Information Systems,
SIGSPATIAL ’22, (New York, NY, USA), Association for Computing Machinery, 2022.

[92] M. Levoy, “Efficient Ray Tracing of Volume Data,” ACM Transactions on Graphics (TOG),
vol. 9, no. 3, pp. 245–261, 1990.

[93] T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen, “Differentiable monte carlo ray tracing
through edge sampling,” ACM Trans. Graph., vol. 37, dec 2018.

[94] S. Maes, S. Meganck, and B. Manderick, “Inference in multi-agent causal models,” Inter-
national Journal of Approximate Reasoning, vol. 46, no. 2, pp. 274–299, 2007.

[95] T. Chakraborti, A. Kulkarni, S. Sreedharan, D. E. Smith, and S. Kambhampati, “Explica-
bility? legibility? predictability? transparency? privacy? security? The emerging landsca-
pe of interpretable agent behavior,” Proceedings International Conference on Automated
Planning and Scheduling, ICAPS, no. Icaps, pp. 86–96, 2019.

[96] E. Neufeld and S. Kristtorn, “Does non-correlation imply non-causation?,” International
Journal of Approximate Reasoning, vol. 46, no. 2, pp. 257–273, 2007.

[97] G. Jezic, M. Kusek, I. Lovrek, R. J. Howlett, and L. C. Jain, “Preface,” Advances in
Intelligent Systems and Computing, vol. 296, no. ii, pp. 5–6, 2014.

[98] S. Meganck, S. Maes, B. Manderick, and P. Leray, “Distributed learning of multi-agent cau-
sal models,” Proceedings - 2005 IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, IAT’05, vol. 2005, no. 1, pp. 285–288, 2005.

[99] I. Dasgupta, J. Wang, S. Chiappa, J. Mitrovic, P. Ortega, D. Raposo, E. Hughes, P. Bat-
taglia, M. Botvinick, and Z. Kurth-Nelson, “Causal Reasoning from Meta-reinforcement
Learning,” arXiv preprint, 2019.

127



[100] X. Zhang, Y. Liu, W. Li, and C. Gong, “Pruning the communication bandwidth bet-
ween reinforcement learning agents through causal inference: An innovative approach to
designing a smart grid power system,” Sensors, vol. 22, p. 7785, 2022.

[101] C. Miao, A. Goh, Y. Miao, and Z. Yang, “A dynamic inference model for intelligent agents,”
International Journal of Software Engineering and Knowledge Engineering, vol. 11, no. 5,
pp. 509–528, 2001.

[102] H. G. Ceballos and F. J. Cantu, “Modelling intelligent agents through causality theory,”
Proceedings - 2007 6th Mexican International Conference on Artificial Intelligence, Special
Session, MICAI 2007, pp. 201–210, 2007.

[103] V. Mascardi, D. Demergasso, and D. Ancona, “Languages for programming BDI-style
agents: An overview,” WOA 2005 - 6th AI*IA/TABOO Joint Workshop ”From Objects to
Agents”: Simulation and Formal Analysis of Complex Systems, no. L, pp. 9–15, 2005.

[104] D. D. Jensen, “Improving Causal Inference by Increasing Model Expressiveness,” 35th
AAAI Conference on Artificial Intelligence, AAAI 2021, vol. 17A, no. Pearl, pp. 15053–
15057, 2021.

[105] J. Renz, X. Y. Ge, R. Verma, and P. Zhang, “Angry birds as a challenge for artificial
intelligence,” 30th AAAI Conference on Artificial Intelligence, AAAI 2016, pp. 4338–4339,
2016.

[106] N. Tziortziotis, G. Papagiannis, and K. Blekas, “A Bayesian Ensemble Regression Frame-
work on the Angry Birds Game,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 8, no. 2, pp. 104–115, 2016.

[107] C. H. H. Yang, I. T. D. Hung, Y. Ouyang, and P. Y. Chen, “Training a Resilient Q-network
against Observational Interference,” Proceedings of the 36th AAAI Conference on Artificial
Intelligence, AAAI 2022, vol. 36, pp. 8814–8822, 2022.
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Apéndice A
Código Fuente del Software Desarrollado

A.1. Introducción

En este apéndice se proporciona información sobre los códigos fuente del software desarrollado
para esta tesis doctoral. Cada uno de los softwares ha sido registrado en Zenodo y está disponible
a través de un DOI (Digital Object Identifier) para garantizar su accesibilidad y permanencia a
largo plazo.

A.2. Software 1: ML-Atlas

Descripción

El desarrollo de técnicas avanzadas de machine learning ha revolucionado diversas áreas del
conocimiento, incluyendo la f́ısica experimental. Este software ha sido diseñado para experimen-
tar con una amplia gama de técnicas de machine learning con el objetivo de descubrir y formular
leyes f́ısicas a partir de datos experimentales. Al aprovechar la capacidad de procesamiento y
análisis de estas técnicas, es posible identificar patrones complejos y relaciones subyacentes en
los datos que de otro modo podŕıan pasar desapercibidos.

El software implementa una variedad de algoritmos de machine learning, desde métodos
tradicionales como regresión lineal y árboles de decisión, hasta enfoques más sofisticados como
redes neuronales profundas y técnicas de aprendizaje no supervisado. La flexibilidad y el poder
de estas herramientas permiten abordar problemas de diferentes naturalezas y escalas, ofreciendo
una visión integral del proceso experimental.

Repositorio GitHUB

https://github.com/jvelez-dev/ML-Atlas.git

DOI en Zenodo
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A.3. Software 2: DL-Illuminance

Descripción

Este software de redes neuronales está diseñado para predecir los valores de iluminancia en
un escenario 3D configurable con distintas distribuciones de fuentes lumı́nicas, tanto simétricas
como asimétricas. Utilizando modelos avanzados de redes neuronales convolucionales (CNN) y
perceptrones multicapa (MLP), el software analiza y procesa datos complejos para generar pre-
dicciones precisas sobre la distribución de la luz en el espacio. Este enfoque permite a los usuarios
explorar cómo diferentes configuraciones de iluminación afectan la iluminancia del entorno, fa-
cilitando la planificación y optimización de sistemas de iluminación en diversas aplicaciones.

Repositorio GitHUB

https://github.com/jvelez-dev/DL-Illuminance.git

DOI en Zenodo

A.4. Software 3: SR-Illuminance

Descripción

Este software de regresión simbólica utiliza la potencia de cálculo de un clúster de máquinas
para descubrir las ecuaciones que gobiernan conjuntos de datos de iluminancia en un escenario
3D con diversas configuraciones de iluminación, tanto simétricas como asimétricas. A través de
técnicas avanzadas de regresión simbólica, el software analiza y modela la distribución de la luz
en el espacio, identificando patrones y relaciones subyacentes en los datos. Este enfoque permite
una comprensión más profunda y precisa de cómo diferentes configuraciones de iluminación
afectan la iluminancia en el entorno, facilitando aśı la optimización y el diseño de sistemas de
iluminación eficientes y efectivos.

Repositorio GitHUB

https://github.com/jvelez-dev/SR_Illuminance.git

DOI en Zenodo
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A.5. Software 4: CI-Shadow

Descripción

Este software permite la experimentación con técnicas de inferencia causal, con el objetivo
de identificar y analizar la causa de la aparición de una sombra en una imagen. A través de este
enfoque, se busca aplicar métodos avanzados de inferencia causal para determinar las variables
y factores que contribuyen a la presencia de sombras, lo cual permite una comprensión más
profunda de los procesos subyacentes en la formación de imágenes. El experimento no solo se
centra en la detección de sombras, sino también en la identificación de las relaciones causales
entre distintos elementos de la imagen, proporcionando aśı un marco sólido para futuros estudios
y aplicaciones en el campo del procesamiento de imágenes y la visión por computadora. Este
trabajo demuestra cómo la inferencia causal puede ser una herramienta poderosa para mejorar el
análisis y la interpretación de datos visuales, abriendo nuevas posibilidades para la investigación
y el desarrollo en esta área.

Repositorio GitHUB

https://github.com/jvelez-dev/CI-Shadow.git

DOI en Zenodo

A.6. Software 5: CI-Based Behaviour

Descripción

En este repositorio se presenta un experimento en el que un agente inteligente utiliza la
inferencia causal para guiar su comportamiento. El escenario del experimento es un entorno de
videojuego FPS (Unreal Tournament 2004), en el cual se ha diseñado un escenario espećıfico
denominado ”TestEnvironment”. En este entorno, un agente llamado ”GuardBOT”se posiciona
en una ubicación determinada, mientras que otro agente, ÇausalBOT”, tiene la tarea de tomar
la posición del GuardBOT sin ser detectado. Este experimento demuestra cómo la inferencia
causal puede ser aplicada en entornos complejos para mejorar la toma de decisiones de agentes
inteligentes.

Repositorio GitHUB

https://github.com/jvelez-dev/Causal_Inference.git

DOI en Zenodo
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A.7. Software 6: CI-Based Sampling

Descripción

Al incorporar el muestreo basado en inferencia causal en el buffer de repetición de un DQN, se
buscó mejorar la eficiencia y efectividad del aprendizaje en la resolución del problema clásico de
control. Este enfoque permite priorizar experiencias con mayor probabilidad de tener un impacto
causal en el proceso de toma de decisiones del agente, conduciendo a un aprendizaje más enfocado
e informado. En contraste, el muestreo aleatorio tradicional en el buffer de repetición de una
Deep Q-Network carece de esta priorización, lo que puede resultar en una convergencia más lenta
y un rendimiento subóptimo.

Repositorio GitHUB

https://github.com/jvelez-dev/CI-based_Sampling.git

DOI en Zenodo
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Apéndice B
Regresión simbólica para determinar las
ecuaciones que gobiernan los conjuntos de datos
de iluminancia

B.1. Introducción

Durante el desarrollo de modelos predictivos de Deep Learning, espećıficamente redes neuro-
nales convolucionales y feed-forward, surgió un interés por experimentar con la regresión simbóli-
ca para descubrir las ecuaciones subyacentes en los conjuntos de datos utilizados para entrenar
estos modelos. La regresión simbólica, a diferencia de otros métodos de aprendizaje automático,
busca identificar expresiones matemáticas expĺıcitas que describan las relaciones presentes en los
datos, proporcionando aśı una comprensión más intuitiva y directa de los procesos estudiados.

Aprovechando la capacidad de cómputo disponible en el Instituto Universitario de Investiga-
ción en Ingenieŕıa de Aragón (I3A), fue posible procesar grandes volúmenes de datos y realizar
cálculos complejos en paralelo, lo que permitió la generación de dos modelos de regresión simbóli-
ca. Estos modelos lograron identificar con un alto nivel de precisión las ecuaciones que gobiernan
los datos.

El éxito de esta integración no solo demostró la eficacia de la regresión simbólica en la identi-
ficación de patrones y relaciones en datos complejos, sino que también abrió nuevas posibilidades
para el análisis y la interpretación de datos en diversos campos de estudio. Al descubrir las ecua-
ciones subyacentes, se obtiene una visión más profunda de los mecanismos que generan los datos,
lo cual es fundamental para avanzar en la comprensión cient́ıfica y el desarrollo tecnológico. Este
experimento ha establecido un precedente para futuras investigaciones que busquen combinar
técnicas de Deep Learning y regresión simbólica, maximizando aśı el valor de los recursos compu-
tacionales y el conocimiento derivado de los datos.

B.2. Método

B.2.1. Obtención y Preprocesamiento de Datos

Los conjuntos de datos utilizados en este estudio fueron seleccionados de diversas fuentes
relevantes para el análisis de iluminancia en escenarios 3D con diferentes configuraciones de
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iluminación. Estos datos incluyeron medidas de intensidad lumı́nica en diversas posiciones y
condiciones, tanto simétricas como asimétricas. Los datos fueron preprocesados para eliminar
valores at́ıpicos y normalizados para asegurar una coherencia en el entrenamiento de los modelos.

B.2.2. Desarrollo de Modelos Predictivos de Deep Learning

Inicialmente, se desarrollaron modelos predictivos utilizando redes neuronales convoluciona-
les (CNN) y redes feed-forward. Estos modelos fueron entrenados con los conjuntos de datos
preprocesados para identificar patrones y relaciones complejas dentro de los datos. Las arqui-
tecturas de las redes neuronales fueron diseñadas y ajustadas mediante técnicas de validación
cruzada y optimización de hiperparámetros para maximizar la precisión de las predicciones. El
detalle de esta experimentación puede verse en la sección 5 de este documento.

B.2.3. Implementación de la Regresión Simbólica

Una vez que los modelos de Deep Learning demostraron ser efectivos en la predicción de
iluminancia, se procedió a implementar técnicas de regresión simbólica para descubrir las ecua-
ciones subyacentes en los datos. La regresión simbólica se llevó a cabo utilizando herramientas
especializadas que permiten la búsqueda de expresiones matemáticas expĺıcitas que mejor des-
criben las relaciones en los datos.
Parafraseando la explicación proporcionada por [149], el procedimiento comienza definiendo una
población con un conjunto de nodos generados aleatoriamente, formando árboles de diferentes
tamaños y estructuras. Luego, se inicia el proceso de selección, en el cual se evalúa la aptitud
de cada solución en la población comparando su valor de aptitud con el valor esperado. A con-
tinuación, la generación actual evoluciona aplicando operaciones genéticas (cruces, mutaciones
y reproducción) a los individuos. Dependiendo del valor de aptitud de un individuo, será se-
leccionado como progenitor; generalmente, cuanto mayor sea el valor de aptitud, mayor será la
probabilidad de ser seleccionado para la reproducción (supervivencia del más apto). Las opera-
ciones genéticas que se pueden realizar en la evolución son el cruce, la mutación y la reproducción;
la primera toma dos ganadores del proceso de selección como progenitores para reproducir su
descendencia; la segunda toma solo una estructura progenitora y reemplaza aleatoriamente un
subárbol con otra estructura generada aleatoriamente; y la tercera duplica el programa selec-
cionado e inserta directamente su descendencia en la siguiente generación. Los recién nacidos se
añaden a la siguiente generación, y la siguiente generación pasa nuevamente por el proceso de
evaluación de aptitud y selección natural hasta que el valor de aptitud alcance un cierto criterio
o se alcance un número máximo de generaciones; aśı, el resultado será el árbol de expresión
matemática correspondiente a la ecuación [150].

La asignación de los valores paramétricos, al igual que en las redes neuronales, fue expe-
rimental, realizando variaciones en los valores de los parámetros del algoritmo genético para
seleccionar el modelo que presentó la mejor medida de error. La Tabla B.1 muestra el valor de
cada parámetro sujeto a variación en el proceso de ajuste, destacando en este caso, que el número
de trabajos se configuró de manera que el proceso de evolución se ejecutara en paralelo como
una contramedida al tiempo de ejecución implicado por la naturaleza iterativa del algoritmo.
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Tabla B.1. Parametrización del regresor simbólico

Parametro Valor
Tamaño población 1000
Generaciones 500
Criterio de parada 0.01
Conjunto de funciones ’add’,’mul’,’sub’,’div’,’sqrt’
Número de trabajos -1
Métrica RMSE

Integración con la Capacidad de Cómputo del I3A

Aprovechando la capacidad de cómputo avanzada del Instituto Universitario de Investiga-
ción en Ingenieŕıa de Aragón (I3A), se implementó un entorno de procesamiento paralelo. Es-
to permitió manejar grandes volúmenes de datos y realizar cálculos complejos eficientemen-
te. Los recursos computacionales del I3A fueron esenciales para la generación y evaluación de
múltiples modelos de regresión simbólica en paralelo. El código fuente reposa en el repositorio
https://github.com/jvelez-dev/SR_Illuminance.git.

Se generaron dos modelos de regresión simbólica que fueron evaluados en términos de preci-
sión y capacidad para identificar las ecuaciones subyacentes en los datos. La evaluación se realizó
mediante métricas estándar de precisión y validación cruzada para asegurar la robustez y gene-
ralización de los modelos. Se compararon los resultados obtenidos con los modelos de regresión
simbólica contra las predicciones realizadas por los modelos de Deep Learning para verificar la
consistencia y exactitud de las ecuaciones descubiertas.

B.3. Resultados

Los modelos de regresión simbólica lograron identificar las ecuaciones con un alto nivel de
precisión. Se realizó un análisis detallado de las ecuaciones descubiertas para interpretar las
relaciones y patrones presentes en los datos. Este análisis no solo confirmó la eficacia de la
regresión simbólica en la identificación de patrones complejos, sino que también proporcionó una
comprensión más profunda de los mecanismos subyacentes en los datos de iluminancia. La Tabla
B.2 muestra la precisión de cada modelo, en la cual el coeficiente de correlación R2 es superior
al 90% cuando se trabaja con la configuración asimétrica en la iluminación y, en los casos donde
la configuración fue simétrica, sorprendentemente la precisión es casi del 100%

Tabla B.2. Precisión de los modelos para cada conjunto de datos

Conjunto de datos R2

1 Simétrico 0.9998
3 Asimétrico 0.9147

B.3.1. Ecuaciones obtenidas

Para la interpretación de cada ecuación, es necesario, primero, conocer cuáles son los com-
ponentes de las ecuaciones. La Tabla B.3 muestra la descripción de cada uno de ellos.
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Tabla B.3. Descripción de las componentes de las ecuaciones generadas por el proceso de
Regresión Simbólica.

Etiquetas de las caracteŕısticas
Variable Descripción

Fx coordenada x de la fuente lumı́nica
Fy coordenada y de la fuente lumı́nica
Fz coordenada z de la fuente lumı́nica
FI Intensidad de la fuente lumı́nica
Px coordenada x de la fuente lumı́nica del punto iluminado
Py coordenada y de la fuente lumı́nica del punto iluminado
Pz coordenada z de la fuente lumı́nica del punto iluminado
D Distancia de la fuente lumı́nica al punto iluminado
EH Valor de iluminancia horizontal
EV Valor de iluminancia vertical
F1x coordenada x de la primera fuente lumı́nica
F1y coordenada y de la primera fuente lumı́nica
F1z coordenada z de la primera fuente lumı́nica
F1I Intensidad de la primera fuente lumı́nica
F2x coordenada x de la segunda fuente lumı́nica
F2y coordenada y de la segunda fuente lumı́nica
F2z coordenada z de la segunda fuente lumı́nica
F2I Intensidad de la segunda fuente lumı́nica
EP Iluminancia en el punto P

Ecuación que gobierna los datos del escenario con iluminación simétrica y todos los
componentes

EP = − E0,5
H + EH +

(
EV Fx

EH + DPz−EH

Fz0,5

)
+

2EV

Fy
+

EV

Fx
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[
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)0,5]0,5
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(B.1)
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Ecuación que gobierna los datos del escenario con iluminación asimétrica y todos
los componentes
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B.4. Conclusiones

Con este experimento se demostró cómo, utilizando regresión simbólica, es posible enfren-
tar el desaf́ıo de encontrar la relación matemática que puede describir un conjunto de datos
experimentales, lo que llevó a identificar dos ecuaciones que gobiernan los conjuntos de datos
de iluminancia. Sorprendentemente, aunque están lejos de las ecuaciones utilizadas para gene-
rar los datos, las ecuaciones para los conjuntos de datos con iluminación simétrica (completa y
parsimoniosa) muestran una precisión de casi el 100%.

Sin duda, contar con un volumen considerable de datos en el conjunto de datos de apren-
dizaje y ajustar los parámetros del algoritmo de regresión simbólica, fueron condiciones que
garantizaron la precisión en las ecuaciones que gobiernan los conjuntos de datos de aprendizaje.
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Implicaciones y Futuras Investigaciones

El éxito de esta integración de Deep Learning y regresión simbólica abre nuevas posibilidades
para el análisis de datos en diversos campos. Las técnicas desarrolladas en este experimento
establecen un precedente para futuras investigaciones que busquen combinar estas metodoloǵıas,
maximizando aśı el valor de los recursos computacionales y el conocimiento derivado de los datos.
Este enfoque promete avances en la comprensión cient́ıfica a través de la identificación precisa
de relaciones matemáticas subyacentes en conjuntos de datos complejos.
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