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Resumen

La tesis doctoral se enfoca en la integracién de la inferencia causal dentro del aprendizaje
de maquina para mejorar la explicabilidad y comprensién de fenémenos complejos en diversas
aplicaciones. Para alcanzar este objetivo, se ha desarrollado un marco metodolégico que abarca
desde una revisién exhaustiva de la literatura hasta la presentacién de los resultados y conclu-
siones. Este marco se basa en una planificacion detallada, la ejecucion de experimentos y un
analisis riguroso de los resultados.

La metodologia empleada se estructura en torno a la definicién de un marco conceptual claro,
la formulacién de objetivos especificos, el disenio experimental, la configuracién de escenarios de
prueba, la generacién de datos y el analisis de resultados. Se destaca la importancia de cada
paso para garantizar la calidad y fiabilidad de los resultados obtenidos.

Se destacan cinco experimentos clave que exploran diferentes aspectos de la integracion de
la inferencia causal en el aprendizaje de maquina. Estos experimentos abordan la estimacién de
iluminancia en escenarios 3D, la determinacion de causas de fenémenos de sombra en imagenes,
el modelado cognitivo de agentes en entornos virtuales y la mejora del aprendizaje por refuerzo
mediante inferencia causal.

Los resultados obtenidos en cada experimento son analizados detalladamente, considerando
tanto sus implicaciones tedricas como practicas. Se resalta el valor de la inferencia causal en la
comprension de fendmenos complejos y en la mejora del rendimiento de algoritmos de aprendi-
zaje de maquina en diversas aplicaciones.

Finalmente, se presentan conclusiones significativas que subrayan el potencial y relevancia
de la integracién de la inferencia causal en procesos de aprendizaje de maquina. Se identifican
areas prometedoras para futuras investigaciones y se destaca la contribucién de la tesis al avance
tedrico y practico en este campo. En conjunto, la tesis ofrece una vision integral de cémo la
inferencia causal puede potenciar el aprendizaje de maquina y mejorar la explicabilidad en una
variedad de aplicaciones.



Abstract

This doctoral thesis focuses on the integration of causal inference within machine learning
to enhance the explainability and understanding of complex phenomena in various applications.
To achieve this objective, a methodological framework has been developed that encompasses a
comprehensive literature review to the presentation of results and conclusions. This framework
is based on detailed planning, the execution of experiments, and rigorous analysis of the results.

The methodology employed is structured around the definition of a clear conceptual frame-
work, the formulation of specific objectives, experimental design, configuration of test scenarios,
data generation, and result analysis. The importance of each step is highlighted to ensure the
quality and reliability of the results obtained.

Five key experiments are highlighted, exploring different aspects of integrating causal infe-
rence into machine learning. These experiments address illuminance estimation in 3D scenarios,
the determination of causes of shadow phenomena in images, the cognitive modeling of agents
in virtual environments, and the enhancement of reinforcement learning through causal inference.

The results obtained in each experiment are analyzed in detail, considering both their theo-
retical and practical implications. The value of causal inference in understanding complex phe-
nomena and improving the performance of machine learning algorithms in various applications
is emphasized.

Finally, significant conclusions are presented that underline the potential and relevance of
integrating causal inference into machine learning processes. Promising areas for future research
are identified, and the thesis’s contribution to theoretical and practical advancements in this
field is highlighted. Overall, the thesis offers a comprehensive view of how causal inference can
enhance machine learning and improve explainability in a variety of applications.
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Capitulo

Introducciéon

En el ambito del aprendizaje de maquina, la inferencia causal desempena un papel fundamen-
tal en una amplia gama de aplicaciones. Este trabajo se propone brindar una vision abarcativa
de cémo la inferencia causal puede potenciar diversas aplicaciones de aprendizaje de maquina.
Estas aplicaciones fueron seleccionadas meticulosamente basadas en el criterio proporcionado
por la revision de literatura, evaluando aspectos como la popularidad, la vigencia, la aplicabili-
dad y la alta complejidad de cada area. Particularmente, el énfasis experimental se centro en el
calculo de iluminancia, el aprendizaje por refuerzo, los modelos cognitivos de agentes en entornos
virtuales y la explicabilidad de imégenes. Estas areas fueron elegidas debido a su relevancia y
potencial para avanzar en el campo del aprendizaje de maquina.

Aunque se reconoce que existen otras técnicas que podrian verse impactadas con la inclu-
sion de la inferencia causal, estas fueron priorizadas por su importancia y su capacidad para
proporcionar una comprension mas profunda y 1til en diferentes contextos de aplicacion.

La aplicacién de la inferencia causal en el calculo de la iluminancia permite una comprension
mas detallada de como diferentes factores influyen en la distribucion de la luz en un entorno
especifico, abriendo la puerta a ajustes precisos y adaptativos en configuraciones de iluminacion
del mundo real. Los hallazgos subrayan el potencial del aprendizaje profundo en la estimacién
de la iluminancia y senalan la importancia de abordar desafios relacionados con la variacién del
niumero de fuentes de luz, lo que presenta un area interesante para la investigacién futura.

La integracién de la inferencia causal en el aprendizaje por refuerzo mejora el rendimiento de
los modelos en problemas de control cldsicos, permitiendo soluciones més flexibles y resilientes
a problemas complejos del mundo real. Estos hallazgos proporcionan una comprensiéon maés
profunda de la capacidad de los modelos para ajustarse y aplicarse a diversas circunstancias,
lo que presenta oportunidades para futuras mejoras en algoritmos de aprendizaje por refuerzo
mediante Deep Learning.

La aplicacién de la inferencia causal en agentes inteligentes ofrece una ventaja significativa
sobre metodologias alternativas, facilitando la toma de decisiones mas acertadas en entornos
diversos. Ademads, la representacion visual de un modelo causal mejora la comprensién del pro-
blema y los roles de los eventos en su resolucion, aunque se requiere un conjunto de datos con
una estructura mas intrincada para su aplicacion.
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Objetivos de la investigacion

El objetivo general de esta investigacion es explorar y analizar cémo la integracion y com-
plementacion del aprendizaje de maquina y la inferencia causal pueden mejorar la resolucion de
problemas en los que la explicabilidad es fundamental para aportar valor a su solucién. Para
conseguir este propésito precisamos especificamente:

= Desarrollar un modelo de aprendizaje de maquina que, mediante redes neuronales FFNN
y CNN, estime el valor de iluminancia de un escenario 3D con distintas caracteristicas de
iluminacion.

= Desarrollar un modelo que aplique la inferencia causal para determinar la causa de un
fenémeno de sombra captado en una imégen.

= Desarrollar un modelo cognitivo, basado en inferencia causal, que apoye el proceso de toma
de decisiones de un agente que debe cumplir una tarea compleja en un entorno virtual.

= Desarrollar un modelo de aprendizaje de maquina que, mediante una Deep Q-Network,
aprenda a solucionar un problema de control clasico usando inferencia causal para el pro-
ceso de muestreo del replay buffer.

Inferencia causal como potenciador de algunas aplicaciones de apren-
dizaje de maquina

Luminotecnia

Es esencial comprender que aunque la inferencia causal es crucial en muchas aplicaciones de
aprendizaje de maquina, no siempre es aplicable en todas las situaciones. Un ejemplo claro de
esta limitacion se encuentra en el calculo de iluminancia, donde la ecuacion utilizada es simétrica,
y por lo tanto, la causalidad no se aplica directamente. Sin embargo, es importante reconocer
que la comprensién de la naturaleza de la inferencia causal y sus aplicaciones en otras areas
sigue siendo esencial. La interaccién entre la luz y la materia es un fenémeno crucial en diversos
campos, como la fotografia, la luminotecnia, el diseno de iluminacién y la cinematografia [1]. La
luminotecnia se centra en el control de la luz artificial, abarcando la iluminacién y la iluminancia.
La iluminacion se refiere al brillo percibido de una superficie, mientras que la iluminancia mide
la luz incidente sobre una superficie [I]. Conseguir configuraciones de iluminacién adecuadas
para una escena es un complejo proceso iterativo que implica ajustes en varias caracteristicas,
incluida la iluminancia [2].

Explicabilidad

La explicabilidad de los modelos de aprendizaje de maquina, particularmente en el ambito de
las imagenes, estd adquiriendo una importancia cada vez mayor en aplicaciones del mundo real.
La inferencia causal proporciona una comprensién mas profunda de cémo los modelos toman
decisiones, lo que facilita la interpretacién de los resultados y la identificacion de posibles sesgos
o errores. Al considerar cualquier imagen, mas alla de verla como un contenedor de objetos,
entre otras cosas, es natural que un ser humano le otorgue un significado o infiera la explica-
cién de algun evento de interés plasmado en ella, pero jcémo se puede llegar a tal inferencia a
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través de la inteligencia artificial? La inferencia causal puede aplicarse en muchas areas de la
ciencia y la tecnologia, como la economia, la epidemiologia, el procesamiento de iméagenes o la
conduccién auténoma, ambitos en los que es crucial tomar decisiones precisas. En la actualidad,
existen métodos ampliamente estudiados que, a través de la correlacion, reconocen y clasifican
objetos utilizando conjuntos de datos como [3] que tiene el tamano y la informacién suficientes
para garantizar una alta precisién en dichas tareas [4]. Sin embargo, en la ultima década, como
senalan [5], se ha propuesto la IA explicable (XAI) para responder a la necesidad planteada por
importantes contribuciones en inteligencia artificial, que han llevado a una creciente complejidad
de los algoritmos y falta de transparencia de los modelos, y para avanzar en la adopcion de la IA
en dominios criticos. Entonces, para obtener la explicacién que buscamos sobre un evento captu-
rado en una imagen, tendriamos que considerar relaciones causales que bien pueden ser inferidas
a través del conocimiento experto [6] o bien intervenir dichos conjuntos de datos a través de
laexperimentacién como se indica en [7] teniendo en cuenta que, en lenguaje probabilistico, no
tener una forma de distinguir entre dar valor a una variable y observarla, impide modelar rela-
ciones causa-efecto [§]. Asi, tomando el modelado como un paso esencial para lograr la inferencia
causal, [9] discuten el papel de la inferencia causal para mejorar la interpretabilidad y robustez
de los métodos de aprendizaje automatico, y destacan las oportunidades en el desarrollo de mo-
delos de aprendizaje automatico con capacidad causal adaptados para el andlisis de la movilidad
considerando imégenes o datos secuenciales. En el caso puntual, sobre inferencia causal aplicada
a imégenes, [10] proponen utilizar coeficientes neuronales de causalidad (NCCs) que se calculan
aplicando redes neuronales convolucionales (CNNs) a los pixeles de una imagen, de forma que
la aparicién de causalidad entre variables sugiere que existe un vinculo causal entre las propias
entidades del mundo real, [I1] han propuesto un enfoque estadistico -entropia de transferencia-
para descubrir y cuantificar la relaciéon entre el movimiento de la camara y el movimiento de
un objeto rastreado para predecir la ubicacién del objeto rastreado, [12] presentaron un modelo
de gramatica bayesiana (C-AOG) para las relaciones causales percibidas por el ser humano que
se pueden aprender de un video, y [I3] utilizan el método de causalidad, complementado con
técnicas de vision por ordenador y aprendizaje automatico, para determinar si un video se esta
reproduciendo hacia delante o hacia atras observando la "flecha del tiempo.®® una secuencia
temporal.

Modelos cognitivos para agentes inteligentes

Los agentes inteligentes, impulsados por la inteligencia artificial y el aprendizaje automaético,
son cada vez mas frecuentes en diversas tareas de toma de decisiones en campos como los
videojuegos [14], la conduccién auténoma [I5] y los sistemas IoT [16], entre otros. Un agente
inteligente percibe su entorno, emprende acciones autéonomas para alcanzar objetivos y puede
mejorar su rendimiento mediante el aprendizaje y la adquisicién de conocimientos [17]. Estén
disenados para aprender de los datos recopilados, adaptarse a su entorno y tomar decisiones
informadas para llevar a cabo las tareas.

En el advenimiento de la cuarta revolucién industrial, la falta de transparencia de los sistemas
basados en la inteligencia artificial representa un obstaculo fundamental para su uso, lo que ha
llevado a la aplicacién de la IA explicable (XAI) [I8] a estos sistemas. Por ejemplo, los agentes
inteligentes convencionales se entrenan para realizar tareas sin tener en cuenta las relaciones
causales inherentes que subyacen al problema que deben resolver. Este es un problema que debe
abordarse.
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Aprendizaje por refuerzo

En el contexto del aprendizaje por refuerzo y los modelos cognitivos de agentes en video-
juegos, la inferencia causal juega un papel crucial. Al analizar las relaciones causales entre las
acciones y sus consecuencias, los algoritmos de aprendizaje por refuerzo pueden tomar decisio-
nes mas informadas y mejorar su rendimiento, especialmente en entornos complejos como los
videojuegos. El aprendizaje profundo por refuerzo (Deep Reinforcement Learning) se ha conver-
tido en una poderosa disciplina dentro de los campos de la inteligencia artificial y el aprendizaje
automatico. Su importancia radica en su capacidad para entrenar a las maquinas para que apren-
dan y tomen decisiones autéonomas en entornos complejos y dindmicos. Los avances en esta area
han encontrado diversas aplicaciones, como por ejemplo en la robética [19], la automatizacién
industrial [20], los videojuegos [21] y la sanidad [22]. En consecuencia, el aprendizaje por refuerzo
implica que los agentes adquieran representaciones eficientes del entorno a partir de entradas
sensoriales de alta dimension y las utilicen para generalizar experiencias pasadas a situaciones
nuevas como lo afirman [23] y [24]. En este contexto, la Deep Q-Network introducida por [25]
se ha convertido en un punto de referencia fundamental para gran parte de la investigacion en
aprendizaje profundo por refuerzo.

El enfoque de replay memory, o replay buffer, es una parte importante de la mejora del
aprendizaje por refuerzo. Este método, que implica el almacenamiento y posterior utilizacion de
experiencias previas, ha demostrado ser fundamental para aumentar la velocidad y la estabilidad
del proceso de aprendizaje en multiples situaciones y algoritmos. Por ejemplo, en el caso de los
algoritmos basados en Deep Q-Network, como se analiza en [25], el uso de la replay memory ha
permitido un entrenamiento mas eficaz en entornos muy complejos. Del mismo modo, la replay
memory ha surgido como una herramienta importante para abordar problemas en situaciones
dindmicas y no estacionarias en sistemas actor-critic [26]. Ademas, la esta estructura es funda-
mental para limitar la sobreestimacion de los valores de las acciones en el marco del Double Deep
Q-Learning [27]. Esto demuestra la relevancia y adaptabilidad de la técnica de replay memory
en una amplia gama de algoritmos y aplicaciones de aprendizaje por refuerzo.

En el campo del aprendizaje por refuerzo, la priorizacién de experiencias ha sido un tema de
investigacion crucial para mejorar la eficiencia y la capacidad de aprendizaje de los algoritmos
de aprendizaje por refuerzo. Uno de los trabajos pioneros en este ambito priorizé los métodos de
muestreo para estos algoritmos [28]. El principio subyacente de estos métodos es proporcionar a
la experiencia una mayor probabilidad de seleccién cuando el error de diferencia temporal indica
un mayor cambio de valor. Como se muestra en [29], una serie de experimentos han demostrado
que este método funciona, mostrando que la priorizaciéon puede acelerar en gran medida el pro-
ceso de aprendizaje en entornos de este tipo de aprendizaje.

En la literatura también se han investigado métodos alternativos de ponderacion de expe-
riencias en algoritmos de aprendizaje por refuerzo. Por ejemplo, algunos estudios han examinado
la posibilidad de priorizar las experiencias en funcién de las recompensas adquiridas en lugar de
los errores de diferencia temporal, como se muestra en [30]. Estos estudios han demostrado que
la eleccién precisa de las medidas de priorizacién puede influir en la eficacia de los algoritmos de
aprendizaje por refuerzo para diversas tareas.
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Por otra parte, uno de los retos centrales del aprendizaje por refuerzo reside en la toma de
decisiones auténoma dentro de entornos complejos y dindmicos. En este contexto, el concepto
de inferencia causal ha surgido como un componente prometedor para mejorar la eficacia de
los algoritmos de aprendizaje por refuerzo. Segun [31], la inferencia causal puede abordar el
reto fundamental de la generalizacién en el aprendizaje por refuerzo. Esta capacidad permite a
los agentes comprender las relaciones causa-efecto en su entorno, lo que es crucial para tomar
decisiones informadas. Un agente debe ser capaz de discernir cuales de sus acciones pasadas, o
lecciones aprendidas, contribuyeron a los resultados observados. Al incorporar la inferencia causal
a los algoritmos de aprendizaje por refuerzo, los agentes pueden generalizar més eficazmente sus
conocimientos a nuevas situaciones, lo que se traduce en una toma de decisiones mas precisa.

Estructura de la Tesis

Este documento se compone de tres partes:

Primera parte (Introduccién): Se explica la motivacién para realizar esta investigacion, se
formulan los objetivos, se expone la causalidad desde el punto de vista de la ciencia compu-
tacional, se explican las consideraciones metodologicas, se detalla el desarrollo de cada uno
de los experimentos realizados y se presenta el marco conceptual en relacién con el aprendi-
zaje de maquina y la inferencia causal, aportando una revision de la literatura relacionada
con la aplicacién de la inferencia causal y el descubrimiento causal en el ambito compu-
tacional.

Segunda parte (Experimentacién): Compuesta por cinco capitulos, cada uno de ellos desti-
nado al desarrollo de un experimento en particular. Cada capitulo documenta el propésito,
el método, los resultados con su respectiva discusion y las conclusiones obtenidas.

Tercera parte (Conclusiones): Se presentan los resultados generales de la tesis, se formulan
las conclusiones de esta investigacion y se proponen trabajos futuros derivados. Ademas, se
destacan las contribuciones metodoldgicas, empiricas y tedricas a la literatura resultantes
de este estudio.
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Capitulo

Metodologia general

Para llevar a cabo esta investigacion, se implementé una metodologia sélidamente fundamen-
tada en diversas fuentes académicas relevantes en el ambito del aprendizaje automatico (ML) y
disciplinas afines. Nos basamos en los enfoques metodolégicos presentados en estudios previos,
como los realizados por [32], [33], [34], [35], [36], entre otros. Estos estudios abordan una amplia
gama de aplicaciones del ML, desde el aprendizaje por refuerzo en videojuegos hasta el analisis
de imagenes médicas y la prediccién de resultados deportivos, entre otros. La figura detalla
graficamente el proceso metodologico que se adoptd para cada experimento.

Revision de literatura y definicion del
marco conceplual
Formulacion de ebjetivos de
experimentacion
Disefio experimental
Configuracion del escenario de
pruebas
Generacion de datos
Desarrollo del experimento
Analisis de resultados y conclusiones

Andlisis de resultados y conclusiones
A
\ )
-

Figura 2.1. Proceso metodoldgico para cada experimento.

Este procese

por cada

La metodologia de esta investigacion se estructurd en torno a la planificacion, ejecucién y
analisis detallado de una serie de experimentos disenados para abordar el objetivo general del
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estudio. Este enfoque potencié un marco de trabajo coherente y robusto que aseguro la calidad y
fiabilidad de los resultados obtenidos. A continuacién, se detalla la metodologia general empleada
en la realizacion de cada uno de los experimentos:

2.1. Definicion del marco conceptual

Se elaboré un marco conceptual que delineé los conceptos fundamentales y las teorias per-
tinentes que respaldan la presente investigacion. Esto implicé una revision exhaustiva de la
literatura relacionada con el tema de estudio, con el fin de comprender el estado actual del
conocimiento, identificar posibles brechas y establecer una base tedrica sdlida.

2.2. Formulacién de los objetivos de la experimentacion

La documentacién detallada de cada experimento se inicia con la definicion detallada de sus
objetivos, los cuales actian como directrices fundamentales para orientar tanto el disenio como
la ejecucién de cada fase experimental. Estos objetivos fueron concebidos de manera cuidadosa
con el fin de abordar con precision las preguntas de investigacién planteadas, asegurando asi
la consecucion del propdsito general planteado en este estudio. La claridad y la precisién en la
definicién de estos objetivos no solo garantizan una alineacién coherente con los lineamientos
del proyecto, sino que también facilitan una evaluacién efectiva de los resultados obtenidos en
relacién con los objetivos establecidos.

2.3. Diseno experimental

Se elaboraron experimentos detallados con el propodsito de indagar en aspectos especificos
del problema de investigacion. Este proceso incluyé la identificacién de variables relevantes, la
seleccién meticulosa de métodos de recoleccién de datos y la planificacion de los procedimien-
tos experimentales. Especificamente, los experimentos llevados a cabo abordaron los siguientes
aspectos:

» Simulacion del fenémeno interacciéon luz-materia

Estimaciéon de valores de iluminancia mediante Deep Learning

Inferencia causal para determinar la causa de un fenémeno de sombra en una imagen

Inferencia causal para el modelo de comportamiento de un agente inteligente

Incorporacién de la inferencia causal en el procedimiento de muestreo de una Deep Q-
Network para resolver problemas de control clédsico

2.4. Configuracion del escenario de pruebas

Se cre6 un entorno de pruebas acorde al propédsito de cada experimento, de manera que
asegurara coherencia y que hiciera que cada experimento fuera realizable y reproducible. Este
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proceso implico definir las dimensiones, caracteristicas y condiciones de cada entorno experimen-
tal. Por ejemplo, se incluyeron entornos virtuales y modelos de escenarios en 3D para garantizar
la fidelidad y la adecuacién de los entornos de prueba a las necesidades especificas de cada
experimento.

2.5. Generacion de datos

Se procedié a la recopilacién de datos empleando técnicas y herramientas adecuadas pa-
ra cada experimento. Este proceso involucrd la generacién de muestras de datos siguiendo los
procedimientos experimentales previamente establecidos. Especificamente, en los primeros tres
experimentos (capitulos 4, 5, 6), los datos fueron generados sintéticamente. Por otro lado, en
los dos ultimos experimentos (capitulos 7 y 8), los datos se obtuvieron mediante un proceso de
muestreo del conjunto de datos generado durante el entrenamiento de un agente.

2.6. Resultados y conclusiones

En el marco de cada experimento, se procedié a la presentacion detallada y andlisis de sus

resultados. Su interpretacién se dio en relacion con el marco conceptual previamente establecido,
considerando tanto sus implicaciones tedricas como practicas. A través de este analisis, fue posible
alcanzar conclusiones fundamentadas y proporcionar aportes significativos al campo de estudio
abordado.
Ademas, se llevé a cabo una comparacion entre los resultados obtenidos en los experimentos
y teorias existentes, lo que contribuyé a una comprensién mas profunda y diferenciada del
fenémeno bajo estudio, y proporcioné una base sélida para futuras investigaciones y desarrollos
en el area.

2.7. Documentacion y presentacion

Una parte esencial del proceso de investigacién fue la documentacién exhaustiva de todos
los aspectos relevantes del estudio, que abarcan desde la metodologia hasta los resultados y las
conclusiones obtenidas. Esta documentacion se realizé siguiendo estandares rigurosos para ga-
rantizar la claridad y la precisién de la informacion recopilada.

La metodologia utilizada, junto con sus fundamentos tedéricos y practicos, se describi6é deta-
lladamente, permitiendo asi una comprension completa de los procedimientos llevados a cabo
en la investigacion. Ademas, se incluyeron detalles sobre la seleccién de técnicas, herramientas
y metodologias especificas empleadas en cada etapa del experimento.

En cuanto a los resultados obtenidos, se detallaron los hallazgos més relevantes y las tenden-
cias observadas durante el andlisis de los datos. Se incluyeron tablas, gréficos y otros elementos

visuales pertinentes para facilitar la comprension y la interpretacién de los resultados.

Por ultimo, se llevo a cabo una divulgacion cientifica de los hallazgos de la investigacién
en varios journals especializados, con el objetivo de comunicar los resultados a audiencias tanto
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especializadas como no especializadas. Estas publicaciones se seleccionaron cuidadosamente para
asegurar que los hallazgos alcanzaran la mayor visibilidad y relevancia dentro de la comunidad
académica y cientifica.
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Capitulo

Marco conceptual

En esta seccién, se explora la conexién entre la inferencia causal y el machine learning, dos
campos cruciales en la ciencia de datos contemporanea. Se inicia revisando la importancia del
machine learning en diversas aplicaciones, desde la medicina hasta las finanzas y la industria
[37, 38, 139].

A continuacion, se adentra en el concepto de inferencia causal y su importancia dentro del
ambito del machine learning. A diferencia del enfoque del machine learning en la prediccion
basada en correlaciones detectadas en los datos, la inferencia causal facilita la comprensiéon de
las relaciones causa-efecto subyacentes. Al incorporar la inferencia causal en los modelos de
machine learning, se aumenta la capacidad de interpretar los resultados y se reducen los sesgos
no deseados [40, [41].

Se indaga en investigaciones pertinentes que examinan cémo la inferencia causal ha sido em-
pleada para mejorar los modelos de machine learning, abordando aspectos como la interpretacion
de modelos y la toma de decisiones en condiciones de incertidumbre.

Con esta revisiéon de literatura, se busca proporcionar una comprension profunda de la inter-
accion entre la inferencia causal y el machine learning, asi como su importancia en la investigacion
actual en ciencia de datos y sus aplicaciones practicas.

3.1. Machine Learning: Fundamentos y aplicaciones

El campo del machine learning se basa en tres paradigmas principales: el aprendizaje su-
pervisado, el aprendizaje no supervisado y el aprendizaje por refuerzo. De acuerdo a [42] el
aprendizaje supervisado es fundamental en numerosas aplicaciones del mundo real, como reco-
nocimiento de voz, diagnéstico médico, y deteccién de fraudes, ya que permite entrenar modelos
para hacer predicciones precisas basadas en datos histéricos. Por otra parte [43] sostiene que
el aprendizaje no supervisado desempena un papel crucial en la exploraciéon y comprension de
conjuntos de datos complejos, facilitando tareas como la segmentacion de clientes, la deteccion
de anomalias y la reduccién de la dimensionalidad. En cuanto al aprendizaje por refuerzo, [44]
y [23] concuerdan en que es esencial en areas como la robética, los juegos y la optimizacién de
procesos, ya que permite que los agentes aprendan a tomar decisiones secuenciales en entornos
dinamicos para lograr objetivos especificos. Inscritos en estos tipos de aprendizaje, existen dos
clases de modelos: los modelos de regresion, son herramientas estadisticas empleadas para en-
tender la relacién entre una variable dependiente y una o més variables independientes. Estos
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modelos buscan establecer la relacién entre las variables mediante una funcién matemaética que
pueda predecir el valor de la variable dependiente en funcion de los valores de las variables inde-
pendientes [45] y, por otra parte, los modelos de clasificacién, que son herramientas en el campo
del aprendizaje automatico y la estadistica que se utilizan para predecir la clase o categoria a la
que pertenecen los datos. Estos modelos se entrenan utilizando ejemplos de datos previamente
etiquetados con su clase correspondiente y luego se emplean para predecir la clase de nuevos
datos no etiquetados [46].

3.1.1. Aprendizaje supervisado

El aprendizaje automatico supervisado implica la tarea de extraer significado de datos de
entrenamiento etiquetados, los cuales consisten en un conjunto de ejemplos de entrenamiento
[47]. El objetivo es que el modelo aprenda a predecir la salida correcta para nuevas entradas
basadas en ejemplos previamente etiquetados.

Aplicaciones comunes del aprendizaje supervisado

El aprendizaje supervisado tiene una amplia gama de aplicaciones en la practica en diversas
industrias. Entre otros autores, [42] y [48] consideran que algunas de las aplicaciones mas comunes
incluyen:

» Reconocimiento de voz y procesamiento de lenguaje natural: Utilizado en sistemas de
reconocimiento de voz como Siri de Apple, asistentes virtuales como Alexa de Amazon y
en el procesamiento de lenguaje natural para la traduccion automéatica y la generacion de
resumenes de texto.

= Vision por computadora: Empleado en aplicaciones como reconocimiento facial, deteccién
de objetos y segmentacion de imagenes en campos que van desde la seguridad hasta la
medicina.

= Diagnostico médico: Aplicado en la deteccion temprana de enfermedades mediante el anali-
sis de imagenes médicas, datos genéticos y registros de salud electronicos.

Principales modelos del aprendizaje supervisado

1. Regresién lineal: Un modelo simple pero efectivo para problemas de regresién que busca
establecer una relacion lineal entre las caracteristicas de entrada y la variable de salida.

2. Regresion logistica: Utilizado para problemas de clasificacion binaria, la regresion logisti-
ca estima la probabilidad de que una instancia pertenezca a una clase particular.

3. Random Forest: Un algoritmo de ensemble que combina multiples arboles de decisién
para realizar predicciones mas precisas. Es robusto frente al sobreajuste y capaz de manejar
conjuntos de datos grandes con alta dimensionalidad.

4. Redes Neuronales de propagacién hacia adelante (FFNN): son modelos en los que
la informacion se mueve en una sola direccion, de la entrada a través de las capas ocultas
hacia la salida. Son utilizadas para una variedad de tareas de aprendizaje automaético,
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incluyendo la clasificacién, la regresion, el reconocimiento de patrones y la generacion de
secuencias, entre otras.

5. Redes Neuronales Convolucionales (CNN): Especialmente eficaces en problemas de
vision por computadora, las CNN son capaces de aprender automaticamente caracteristicas
jerarquicas de las imagenes, como bordes, formas y texturas.

6. Redes Neuronales Recurrentes (RINN): Utilizadas en tareas de procesamiento de
secuencias, como el procesamiento de lenguaje natural y la traduccion automatica, las
RNN pueden manejar entradas de longitud variable y capturar dependencias temporales
en los datos.

7. Support Vector Machines (SVM) kernelizados: Una extensién de las SVM que utiliza
funciones kernel para mapear los datos en un espacio de mayor dimensionalidad, permi-
tiendo la separacion de clases no linealmente separables.

8. K-Nearest Neighbors (KNN): Un algoritmo simple pero poderoso que clasifica nuevas
instancias segtin la mayoria de las etiquetas de las k instancias mas cercanas en el espacio
de caracteristicas.

Ventajas y desventajas del aprendizaje supervisado

Varios autores como [49] y [50], han identificado tanto ventajas como desventajas del apren-
dizaje supervisado. Entre las ventajas, destacan las predicciones altamente precisas que estos
modelos pueden realizar, basadas en datos de entrenamiento. Ademas, los resultados del modelo
son interpretables, lo que facilita la comprension de las relaciones entre las caracteristicas y las
salidas. En muchos casos, también es posible acceder a grandes conjuntos de datos etiquetados
para el entrenamiento del modelo.

Por otro lado, se consideran algunas limitaciones. Estos modelos requieren grandes cantidades
de datos etiquetados para su entrenamiento efectivo, lo que puede conducir al sobreajuste a los
datos de entrenamiento y a una generalizacion deficiente a nuevos datos. Ademas, existe la
dificultad inherente para capturar relaciones complejas y no lineales entre las caracteristicas y
las salidas.

3.1.2. Aprendizaje no supervisado

Este tipo de aprendizaje permite obtener representaciones a partir de datos sin etiquetar o
experiencias que puedan ser empleadas para un aprendizaje mas efectivo de tareas posteriores,
incluso con cantidades modestas de datos etiquetados [51]. El objetivo es explorar la estructura
oculta de los datos y generar conocimiento 1til a partir de ellos.

Aplicaciones comunes del aprendizaje no supervisado

El aprendizaje no supervisado tiene una amplia gama de aplicaciones en diversas areas.
Una de las aplicaciones més comunes es el clustering, que implica agrupar automaticamente
datos similares en grupos o clisteres. Este enfoque se utiliza ampliamente en la segmentacion
de clientes para estrategias de marketing, asi como en el agrupamiento de documentos para
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la organizacién eficiente y la busqueda de informacion relevante [46] y [43]. Otra aplicacién
importante es la reduccién de dimensionalidad, que consiste en disminuir el nimero de variables
o caracteristicas en un conjunto de datos mientras se conserva la mayor cantidad posible de
informacion. Esta técnica se aplica en el analisis de datos de alta dimensionalidad, como imagenes
o datos gendémicos, asi como en la visualizacién de datos para comprender la estructura y las
relaciones entre variables [46] y [50]. Ademads, el aprendizaje no supervisado se utiliza en la
deteccion de anomalias, que implica identificar instancias inusuales o atipicas en un conjunto
de datos. Esta aplicacion es fundamental en la deteccion de fraudes en transacciones financieras
y en la monitorizacion de sistemas para la deteccién de fallos o intrusiones [52] y [53]. Estas
aplicaciones son solo algunas de las muchas formas en que el aprendizaje no supervisado se aplica
en la practica para extraer informacion 1util y descubrir patrones en los datos sin la necesidad de
etiquetas explicitas.

Principales modelos del aprendizaje no supervisado

1. Clustering: Los algoritmos de clustering, como K-Means [54], DBSCAN [55] y Hierar-
chical Clustering [50], agrupan autométicamente datos similares en grupos o clisteres sin
la necesidad de etiquetas previas. Estos algoritmos son ampliamente utilizados en la seg-

mentacién de datos y la exploracién de patrones en conjuntos de datos no etiquetados
[46].

2. Reduccién de dimensionalidad: Estos modelos, como PCA (Anélisis de Componen-
tes Principales)[57] y t-SNE (t-Distributed Stochastic Neighbor Embedding) [58], reducen
la dimensionalidad de un conjunto de datos conservando la mayor cantidad posible de
informacion. Son utiles para visualizar datos de alta dimensionalidad y para encontrar
representaciones mas compactas de los datos.

3. Deteccion de anomalias: Los modelos de deteccion de anomalias identifican instancias
inusuales o atipicas en un conjunto de datos [59]. Algunos algoritmos comunes incluyen el
método de deteccion de outliers basado en la desviacién estandar, el algoritmo de bosques
aleatorios y los modelos de mezclas gaussianas [53].

4. Asociacién: Estos modelos, como Apriori [60] y FP-Growth [61], identifican patrones de
asociacion entre diferentes variables en un conjunto de datos. Son utilizados en la mineria de
datos para descubrir reglas de asociacién entre elementos en bases de datos transaccionales

50).

Ventajas y desventajas del aprendizaje no supervisado

El aprendizaje no supervisado ofrece varias ventajas significativas en el andlisis de datos.
Una de las principales ventajas es su capacidad para explorar y descubrir patrones en conjuntos
de datos sin la necesidad de etiquetas previas, lo que facilita la exploracién inicial de datos
y la identificacion de estructuras subyacentes [46]. Ademds, el aprendizaje no supervisado es
altamente flexible y adaptable a una amplia variedad de problemas y tipos de datos, ya que
no requiere etiquetas de salida especificas [62]. Esto lo hace especialmente 1til en situaciones
donde no se dispone de datos etiquetados o donde la naturaleza de los datos es desconocida.
Otra ventaja importante es su capacidad para descubrir conocimiento oculto en los datos, lo
que puede llevar a una mejor comprension de los datos y a nuevas ideas o descubrimientos [50].
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Sin embargo, el aprendizaje no supervisado también presenta desventajas. Por ejemplo, es dificil
evaluar la calidad y el rendimiento de los modelos de aprendizaje no supervisado, ya que no hay
una medida clara de éxito como en el aprendizaje supervisado [46]. Ademads, la interpretacién de
los resultados puede ser complicada y subjetiva, ya que los patrones descubiertos pueden carecer
de un significado claro o ser dificiles de interpretar sin el contexto adecuado [62]. Existe también
el riesgo de sobreajuste, donde los algoritmos pueden extraer patrones espurios o irrelevantes,
especialmente en conjuntos de datos grandes y complejos [50].

3.1.3. Aprendizaje por refuerzo

El aprendizaje por refuerzo es un paradigma de aprendizaje automatico donde un agente
aprende a tomar decisiones secuenciales con el fin de maximizar una recompensa acumulativa.
En este enfoque, el agente interactiia con un entorno, observa su estado actual, selecciona una
accién y recibe una recompensa (o castigo) como resultado de esa accién. El objetivo del agente es
aprender una politica 6ptima, es decir, una estrategia que maximice la recompensa acumulativa a
lo largo del tiempo [31]. El objetivo es aprender una politica 6ptima que maximice la recompensa
acumulada a lo largo del tiempo.

Aplicaciones comunes del aprendizaje por refuerzo

El aprendizaje por refuerzo se ha destacado en diversas aplicaciones, respaldado por inves-
tigaciones significativas en la literatura. En el ambito de los juegos y estrategias, el trabajo
seminal de [44] sobre el dominio del Go mediante redes neuronales profundas y busqueda de
arboles marcé un hito en la capacidad de los agentes de aprendizaje automatico para enfrentar
desafios complejos. Asimismo, [23] demostraron el potencial del aprendizaje profundo en el con-
trol humano-nivel en juegos de Atari. En robdtica, el aprendizaje por refuerzo ha permitido el
desarrollo de agentes autonomos capaces de aprender tareas complejas, como la navegacion en
entornos desconocidos o la manipulacién de objetos [63] y [64]. Ademads, en sistemas de reco-
mendacion y personalizacion, el aprendizaje por refuerzo se utiliza para adaptar y mejorar las
recomendaciones de productos o contenido para usuarios individuales [31] y [25]. Por tltimo, en
la gestién de recursos y planificacion, [65] han investigado el uso del aprendizaje por refuerzo en
la administracién eficiente de energia en edificios inteligentes, mientras que [66] han propuesto
algoritmos de aprendizaje profundo para la asignacion éptima de recursos en redes de comuni-
cacion. Estas investigaciones destacan el potencial del aprendizaje por refuerzo en una variedad
de aplicaciones practicas, desde juegos y robdtica hasta sistemas de recomendacion y gestion de
recursos.

Principales modelos del aprendizaje por refuerzo

1. Q-Learning: Este algoritmo es uno de los més basicos y ampliamente utilizados en apren-
dizaje por refuerzo. A través de la actualizacion de una funcién de valor llamada Q-valor,
el agente aprende a tomar decisiones éptimas en un entorno desconocido [67].

2. SARSA (State-Action-Reward-State-Action): Similar a Q-learning, SARSA es otro
algoritmo fundamental en aprendizaje por refuerzo. A diferencia de Q-learning, SARSA
actualiza el valor Q utilizando la accién tomada por el agente, lo que lo convierte en un
método de aprendizaje on-policy [68].
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3. Deep Q-Networks (DQN): Introducido por [23], DQN es un método que combina el
aprendizaje profundo con Q-learning para aprender a jugar videojuegos de Atari direc-
tamente desde pixeles en bruto. Utiliza una red neuronal convolucional profunda para
aproximar la funcién Q.

4. Policy Gradient Methods: Estos métodos, como REINFORCE [69] y TRPO (Trust
Region Policy Optimization) [70], aprenden directamente la politica 6ptima de un agente
mediante el calculo de gradientes de rendimiento con respecto a los parametros de la
politica.

5. Actor-Critic Methods: Estos métodos combinan elementos de los métodos de gradiente
de politicas y los métodos de funcién de valor. Un ejemplo es A3C (Asynchronous Ad-
vantage Actor-Critic) [71], que utiliza una red neuronal profunda para aproximar tanto la
politica del agente como la funcién de valor.

Ventajas y desventajas del aprendizaje por refuerzo

El aprendizaje por refuerzo ofrece una serie de ventajas significativas en el ambito del aprendi-
zaje automatico. Una de las principales ventajas es su capacidad para aprender de la interacciéon
directa con el entorno, lo que lo hace adecuado para problemas donde los datos son escasos o
costosos de obtener [31]. Ademas, el aprendizaje por refuerzo puede generalizarse a una amplia
gama de problemas, desde juegos y robdtica hasta gestién de recursos y planificacién [72]. Otra
ventaja importante es su capacidad para aprender politicas éptimas de comportamiento a través
de la maximizacion de una senal de recompensa, lo que lo hace adecuado para problemas de
toma de decisiones secuenciales [31]. Sin embargo, el aprendizaje por refuerzo también tiene al-
gunas limitaciones. Por ejemplo, puede requerir una cantidad significativa de tiempo y recursos
computacionales para entrenar agentes que puedan desempenarse bien en entornos complejos
[72]. Ademas, la estimacién de las sefiales de recompensa puede ser dificil en algunos problemas
del mundo real, lo que puede llevar a un aprendizaje subéptimo o a comportamientos inesperados
del agente [31].

3.2. Inferencia causal en Machine Learning

Aunque las estructuras causales estan implicitas en los modelos de probabilidad, abarcan
informacion adicional que esta ausente en estos tltimos. El proceso de obtener conclusiones a
partir de un modelo causal se denomina razonamiento causal, que es analogo a cémo la teoria
de la probabilidad nos permite razonar sobre los resultados de experimentos aleatorios. Por otro
lado, el razonamiento causal es mas efectivo que el razonamiento probabilistico debido a que
los modelos causales contienen més informacién que los modelos probabilisticos. Esto se debe a
que el razonamiento causal nos permite examinar el impacto de intervenciones o cambios en la
distribucién [41]. La inferencia causal desempenia un papel crucial en el fortalecimiento de los
modelos de machine learning al ofrecer un sélido marco tedrico para comprender las relaciones
subyacentes de causa y efecto en los datos. Segun [40)], estos métodos pueden ayudar a identificar
variables confusoras y mitigar sesgos en los modelos de machine learning, mejorando asi la pre-
cision y la capacidad de generalizacion de los resultados. Ademas, la integracion de la inferencia
causal en estos modelos puede potenciar la interpretacion de los resultados al proporcionar una
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comprensién mas profunda de las relaciones entre las caracteristicas y las salidas, como sugiere
[10].

Aplicaciones de la Inferencia Causal en Machine Learning

La inferencia causal ha emergido como una herramienta poderosa en el campo del machine
learning, ofreciendo una forma de comprender y manipular las relaciones causa-efecto en los
datos. En la interpretaciéon de modelos, la inferencia causal puede ayudar a identificar relacio-
nes causales subyacentes que no son evidentes mediante técnicas puramente correlativas. Por
ejemplo, en un estudio reciente, [73] utilizaron métodos de inferencia causal para desentranar las
relaciones entre las caracteristicas de un modelo de machine learning y sus predicciones, propor-
cionando una comprensién mas profunda de cémo y por qué el modelo toma ciertas decisiones.
Este enfoque no solo mejora la interpretabilidad del modelo, sino que también puede ayudar a
identificar posibles sesgos o efectos indeseados.

En cuanto a la generacion de datos sintéticos, la inferencia causal puede utilizarse para si-
mular datos realistas y controlados que reflejen las relaciones causales en el mundo real. Por
ejemplo, [74] integracién de la inferencia causal y el machine learning se evidencia en enfoques
innovadores como el uso de generative adversarial networks (GANs) para generar datos sintéticos
justos y libres de sesgos. Este enfoque incorpora explicitamente el modelo causal estructural en
el proceso de generacion de datos, lo que permite reconstruir cada variable condicionada a sus
padres causales. Al hacerlo, no solo se asegura la reduccién del sesgo en la generacion de datos,
sino que también se demuestra como la comprension de las relaciones causa-efecto subyacentes
puede mejorar significativamente la calidad de los modelos de machine learning. Esta capacidad
para generar datos sintéticos basados en relaciones causales subyacentes puede ser invaluable en
situaciones donde los datos reales son escasos o costosos de obtener.

Ademas, en la toma de decisiones bajo incertidumbre, la inferencia causal puede proporcionar
un marco teorico sélido para evaluar y mitigar riesgos potenciales. Por ejemplo, en un contexto
de salud publica, [75] utilizaron métodos de inferencia causal para evaluar el impacto causal de
diferentes intervenciones en la propagacién de una enfermedad infecciosa, lo que ayudé a informar
decisiones de politica publica. Al considerar las relaciones causales subyacentes, los investigadores
pueden tomar decisiones mas informadas y efectivas en entornos complejos y dinamicos.

Técnicas y enfoques para aplicar la inferencia causal

1. Modelos de Ecuaciones Estructurales: Estos modelos representan relaciones causales
entre variables observadas y no observadas utilizando ecuaciones simultdneas. Se utilizan
principalmente en estudios longitudinales y de panel.

2. Métodos de Propensity Score Matching: Estos métodos se utilizan para reducir el
sesgo de seleccidn en estudios observacionales mediante la creacién de grupos comparables
basados en la probabilidad de pertenencia a un tratamiento.

3. Analisis de Instrumentos: Esta técnica se utiliza para estimar el efecto causal de una
variable de interés en presencia de endogeneidad utilizando variables instrumentales que
estan relacionadas con la variable de tratamiento pero no con el resultado.
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4. Estudio de Regresion Discontinua: Se utiliza cuando la asignacién a un tratamiento
estd determinada por una regla de asignacion basada en un umbral, lo que permite estimar
el efecto causal del tratamiento cerca de este umbral.

5. Disenos Experimentales: Los disenos experimentales, como los ensayos clinicos aleato-
rizados en medicina, son considerados el mejor método para establecer relaciones causales,
ya que permiten controlar los sesgos mediante la asignacién aleatoria de tratamientos.

6. Modelos de Grafos Causales: Estos modelos representan las relaciones causales entre
variables como un grafo dirigido aciclico, lo que permite visualizar y analizar las relaciones
de causa y efecto de manera explicita.

Ventajas y desventajas de la inferencia causal aplicada al machine learning

La aplicacion de la inferencia causal en el campo del machine learning presenta una serie de
ventajas y desventajas que han sido ampliamente discutidas en la literatura. En cuanto a las
ventajas, [40] enuncia que la inferencia causal proporciona un marco tedrico sélido para compren-
der y modelar las relaciones de causa y efecto entre las variables en los datos. Esta comprension
profunda de las relaciones causales subyacentes permite una mejor interpretacion de los modelos
de machine learning y facilita la toma de decisiones informadas en entornos complejos. Ademas,
la inferencia causal puede ayudar a mitigar el sesgo y mejorar la generalizacion de los modelos al
controlar variables confusoras y eliminar la contaminacién causada por relaciones espurias. Sin
embargo, también existen desventajas en la aplicacion de la inferencia causal en el machine lear-
ning. Por ejemplo, [75] sostienen que la identificacién y especificacién adecuada de las relaciones
causales puede ser un desafio en muchos casos, especialmente cuando las relaciones son complejas
o no lineales. Ademas, la inferencia causal puede requerir datos adicionales o informacién sobre
el mecanismo causal subyacente, lo que puede ser dificil o costoso de obtener en la practica. A
pesar de estas limitaciones, como se vera en la siguiente seccién, la integracién de la inferencia
causal en el machine learning sigue siendo un area de investigacion activa y prometedora que tie-
ne el potencial de mejorar significativamente la calidad y la ética de los modelos de aprendizaje
automatico.

3.3. Trabajos relacionados

3.3.1. Estimacion de la iluminancia

Estimar la iluminancia representa un desafio significativo en este campo, ya que es una me-
dida fotométrica crucial para evaluar la calidad de la iluminacién [76]. Hasta donde se sabe,
investigaciones anteriores no han explorado la aplicacién del aprendizaje profundo en la estima-
cion de la iluminancia y su integracion en el proceso de configuracion de la iluminacién. Hay
diversos enfoques para este problema. Por ejemplo, en [77] los autores proponen una red neu-
ronal convolucional que estima la iluminacién en una escena mediante aprendizaje supervisado,
considerando la limitacién de requerir una gran cantidad de datos de entrenamiento. Gardner et
al. [78] presentan un método automatico que utiliza una red neuronal convolucional para inferir
la iluminacion a partir de una unica fotografia y un campo de vision limitado en una escena
interior. En [79] los autores abordan la estimacion de la luz que llega desde todas las direcciones
a un punto 3D en una imagen descomponiendo la prediccion de la iluminacién en estimacion
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de geometria, completado de escena y estimacion de rango dinamico de baja a alta. Zhang et
al. [80] proponen un método de aprendizaje basado en el canal de luminancia de la regién del
cielo y una red neuronal convolucional con mejoras en el rendimiento. En cuanto a la luminancia
aplicada a la industria de los videojuegos, en [81] el autor desarrollé un sistema de iluminacién
dindmica en tiempo real llamado ELE (Expressive Lighting Engine) para establecer una confi-
guracién de iluminacién 6ptima. Otros estudios, como [82] [83], 84, 85], 86, 87, [88, 89, [00], también
han explorado diferentes técnicas para la estimacion de la iluminancia utilizando aprendizaje
profundo o métodos relacionados.

3.3.2. Inferencia causal para la explicaciéon de eventos captados en
imagenes

Al considerar cualquier imagen, més alla de verla simplemente como un conjunto de objetos,
es natural para un ser humano atribuirle significado o inferir la explicacién de algin evento de
interés capturado en ella. Sin embargo, ;cémo puede alcanzar tal inferencia la inteligencia arti-
ficial? La inferencia causal puede aplicarse en diversas areas de la ciencia y la tecnologia, como
la economia, la epidemiologia, el procesamiento de imagenes y la conduccién auténoma, donde
es crucial tomar decisiones precisas.

Actualmente, existen métodos ampliamente estudiados que, a través de la correlacién, per-
miten reconocer y clasificar objetos utilizando conjuntos de datos robustos, como se presenta en
[3], que proporcionan informacién suficiente para garantizar una alta precisién en estas tareas
[4]. Sin embargo, en la tltima década, como senala [5], la inteligencia artificial explicativa (XAI)
ha surgido como respuesta a la complejidad creciente de los algoritmos y la falta de transparen-
cia de los modelos, lo que ha llevado a la necesidad de hacer que los sistemas de TA sean més
interpretables y comprensibles, especialmente en dominios criticos.

Entonces, ;jcémo pueden obtenerse explicaciones sobre eventos capturados en imagenes me-
diante inteligencia artificial? Para lograrlo, se deben considerar relaciones causales que pueden
inferirse a través del conocimiento experto [6] o mediante intervenciones en los conjuntos de
datos, como se describe en [7]. Sin embargo, es importante tener en cuenta que, en el lenguaje
probabilistico, la incapacidad para distinguir entre dar valor a una variable y observarla puede
dificultar la modelizacién de las relaciones causa-efecto [§].

Por lo tanto, el modelado juega un papel crucial en la inferencia causal. [91] discute cémo la
inferencia causal puede mejorar la interpretabilidad y la robustez de los métodos de aprendizaje
automatico, destacando oportunidades en el desarrollo de modelos de aprendizaje automatico
con capacidad causal adaptada para el andlisis de la movilidad a partir de imagenes o datos
secuenciales.

En el &mbito especifico de la inferencia causal aplicada a imagenes, existen diversas aproxima-
ciones. Por ejemplo, [10] proponen el uso de coeficientes de causalidad neural (NCC) calculados
mediante redes neuronales convolucionales (CNN) aplicadas a los pixeles de una imagen. Otros,
como [I1], han desarrollado un enfoque estadistico basado en la transferencia de entropia para
descubrir y cuantificar la relacién entre el movimiento de la cdmara y el de un objeto rastrea-
do, mientras que [I2] han presentado un modelo gramatical bayesiano (C-AOG) para relaciones
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causales percibidas por humanos en videos. Asimismo, [I3] utilizan el método de causalidad,
junto con técnicas de vision por computadora y aprendizaje automatico, para determinar si un
video se reproduce hacia adelante o hacia atras mediante la observacién de la flecha del tiempo
en una secuencia temporal. Tomando en consideracion las causas subyacentes de la formacion
de sombras, la inferencia causal puede brindar predicciones més precisas y mejorar el realismo
general de los entornos virtuales. Por lo cual, dada la relevancia de este tema y la necesidad
de experimentacion en casos especificos que podrian ser contribuyentes a campos en evoluciéon
como los graficos 3D, donde la detecciéon de sombras representa un area en la que la inferencia
causal puede aplicarse para mejorar la precisién y eficiencia en este proceso, en contraposicion
a técnicas tradicionales como el trazado de rayos, que resulta computacionalmente costoso en
términos de manejo de escenas complejas con miltiples objetos [92]. Este desafio es reconocido
igualmente en soluciones innovadoras como la propuesta por [93], quien calcula derivadas de
funciones escalares en una imagen renderizada con respecto a parametros arbitrarios de la esce-
na, como la ubicacion de la camara, la geometria de la escena, los materiales y los parametros
de iluminacién, utilizando un algoritmo de muestreo de bordes. Nuestro estudio proporciona un
punto de referencia para abordar un aspecto de este problema mediante el uso de la inferencia
causal para detectar y deducir la causa de una sombra proyectada sobre la superficie de una
escena 3D.

3.3.3. Inferencia causal para determinar el comportamiento de un
agente inteligente

Los agentes inteligentes, impulsados por la inteligencia artificial y el aprendizaje automaético,
han adquirido una creciente presencia en diversas tareas de toma de decisiones en campos como
los videojuegos [14], la conduccién auténoma [15], y los sistemas [oT [16], entre otros. Un agente
inteligente percibe su entorno, toma acciones autonomas para alcanzar objetivos y puede mejorar
su desempenio mediante el aprendizaje y la adquisicién de conocimientos [17]. Estan disenados
para aprender de los datos recopilados, adaptarse a su entorno y tomar decisiones informadas
para realizar tareas.

En el contexto de la cuarta revolucion industrial, la falta de transparencia en los sistemas ba-
sados en inteligencia artificial representa un obstaculo crucial para su adopcion, lo que ha llevado
a la aplicacion de la inteligencia artificial explicativa (XAI) [I8] a estos sistemas. Por ejemplo,
los agentes inteligentes convencionales estan entrenados para realizar tareas sin considerar las
relaciones causales subyacentes que fundamentan el problema que deben resolver. Este es un pro-
blema que debe abordarse. Sin embargo, como senal6 [94], incorporar la inferencia causal en los
agentes inteligentes es un desafio debido a las numerosas variables ocultas dentro del modelo. No
obstante, ha habido un reciente aumento del interés en el desarrollo de algoritmos que generan
comportamiento de agente interpretable con respecto a objetivos, planes o recompensas, como
se discute en [95]. Esto ha allanado el camino para investigaciones, como las de [96], [97], y [98],
que demuestran la viabilidad de integrar el razonamiento probabilistico y los mapas causales en
la 16gica de los agentes inteligentes. Al adoptar el razonamiento causal, los agentes inteligentes
pueden ir mas alla de simplemente identificar correlaciones y discernir las causas fundamentales
de los eventos, facilitando procesos de toma de decisiones mas sélidos, fiables e interpretables.
Por ejemplo, [99] han utilizado el .2prendizaje meta-reforzado” para generar un agente capaz de
ejecutar tareas mediante inferencias causales, incluso sin conocimiento explicito de la causalidad.
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De manera similar, en relacién con el diseno de un sistema de energia de red inteligente,
[100] propone un modelo de comunicacién de inferencia causal (CICM) para garantizar un fun-
cionamiento eficiente del sistema y reducir el ancho de banda de comunicacion. La eficacia de
su algoritmo se demostré en experimentos utilizando tareas de navegacion en el mundo virtual
de StarCraft II, un videojuego. [I0I] ha presentado un agente de inferencia dindmica que utiliza
representaciones numéricas en lugar de representaciones simbélicas para modelar, inferir y tomar
decisiones.

Ademas, [102] han sugerido un método de diseno y una arquitectura de agente que se basan
en el marco de Creencias, Deseos e Intenciones (BDI) que [103] describieron para crear agentes
inteligentes. Resaltando la dificultad de modelar con precision la estructura causal de un agente,
[T04] ha enfatizado este desafio utilizando la Competiciéon Angry Birds Al como ejemplo, don-
de los agentes deben analizar niveles y predecir las consecuencias fisicas de sus acciones para
obtener altas puntuaciones, como se describe en [I05]. En respuesta a esta competencia, [106]
han desarrollado una arquitectura de agente que emplea inferencia bayesiana para mejorar las
habilidades de toma de decisiones.

Aunque algunos estudios han abordado el desarrollo de agentes inteligentes que incorporan
inferencia causal en su aprendizaje, se necesita mas experimentacion en este tema, lo que indica
la necesidad de més estudios empiricos para obtener una comprensiéon mas profunda de cémo la
inferencia causal puede mejorar las capacidades de toma de decisiones de los agentes inteligentes.

Esta investigacién examinard a fondo la interseccién entre agentes inteligentes e inferencia
causal para explorar como la incorporacién del razonamiento causal puede mejorar significati-
vamente las habilidades de toma de decisiones y la ejecucion de tareas, proporcionando a estos
agentes una ventaja distintiva sobre otros sistemas. El propdsito principal de esta investigacion
es contribuir al creciente cuerpo de conocimiento en los campos de sistemas de agentes inteligen-
tes e inferencia causal, arrojando luz sobre el potencial prometedor de fusionar estas areas para
crear sistemas de toma de decisiones mas informados y transparentes.

3.3.4. Inferencia causal para el muestreo priorizado en modelos de
aprendizaje por refuerzo

El aprendizaje profundo por refuerzo (DRL) se ha convertido en una disciplina poderosa
dentro de los campos de la inteligencia artificial y el aprendizaje automéatico. Su prominencia
radica en su capacidad para entrenar maquinas para aprender y tomar decisiones auténomas en
entornos complejos y dinamicos. Los avances en DRL han encontrado aplicaciones en diversos
campos, incluyendo la robética [19], la automatizaciéon industrial [20], los videojuegos [21], y
la atencién médica [22]. En consecuencia, el aprendizaje por refuerzo implica que los agentes
adquieran representaciones eficientes del entorno a partir de entradas sensoriales de alta dimen-
sién y las utilicen para generalizar experiencias pasadas a nuevas situaciones [23],[24]. En este
contexto, la Deep Q-Network introducida por [25] se ha convertido en un punto de referencia
fundamental para gran parte de la investigacién en aprendizaje profundo por refuerzo.

El enfoque de memoria de repeticion (Replay Buffer) es una parte importante para mejorar
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el aprendizaje por refuerzo. Este método, que implica almacenar y luego utilizar experiencias
previas, se ha demostrado que es fundamental para aumentar la velocidad y la estabilidad del
proceso de aprendizaje en multiples situaciones y algoritmos. Por ejemplo, en el caso de algorit-
mos basados en Deep Q-Network, como se exploré en [25], el uso de la memoria de repeticién ha
permitido un entrenamiento més efectivo en entornos altamente complejos. De manera similar,
la memoria de repeticién ha surgido como una herramienta significativa para abordar problemas
en situaciones dindmicas y no estacionarias en sistemas actor-critic [26]. Ademds, la memoria
de repeticion es critica para limitar la sobreestimaciéon de los valores de accion en el contexto
del doble Q-Learning [27]. Esto demuestra la relevancia y la adaptabilidad de la técnica de me-
moria de repeticion en una amplia gama de algoritmos y aplicaciones de aprendizaje por refuerzo.

En el campo del aprendizaje por refuerzo (RL), la priorizacién de la experiencia ha sido un
tema de investigacién crucial destinado a mejorar la eficiencia y la capacidad de aprendizaje
de los algoritmos de RL. Uno de los trabajos pioneros en este ambito priorizé los métodos de
muestreo para algoritmos de RL [2§]. El principio subyacente de estos métodos es proporcionar
experiencia con una mayor probabilidad de seleccién cuando el error de diferencia temporal (TD)
indica un mayor cambio en el valor. Como se muestra en [29], una serie de experimentos han
demostrado que este método funciona, mostrando que la priorizacion puede acelerar el proceso
de aprendizaje en entornos de RL en gran medida.

También se han investigado métodos alternativos de ponderacién de experiencias en algo-
ritmos de RL en la literatura. Por ejemplo, ciertos estudios han examinado la posibilidad de
priorizar experiencias segun las recompensas adquiridas en lugar de los errores TD, como se
demuestra en [30]. Estos estudios han demostrado que la eleccion meticulosa de medidas de
priorizacién puede influir en la eficacia de los algoritmos de aprendizaje por refuerzo para diver-
sas tareas.

Por otro lado, uno de los desafios centrales en el aprendizaje por refuerzo radica en la toma
de decisiones auténoma dentro de entornos complejos y dindmicos. En este contexto, el con-
cepto de inferencia causal ha surgido como un componente esencial para mejorar la eficiencia
y efectividad de los algoritmos de RL. Segun [31], la inferencia causal puede abordar el desafio
fundamental de la generalizacion en RL. Esta capacidad permite que los agentes de RL com-
prendan las relaciones de causa y efecto en su entorno, lo cual es crucial para tomar decisiones
informadas. Un agente debe ser capaz de discernir qué acciones pasadas contribuyeron a los
resultados observados. Al incorporar la inferencia causal en los algoritmos de RL, los agentes
pueden generalizar mas efectivamente su conocimiento a nuevas situaciones, lo que resulta en
una toma de decisiones mas precisa. En [107], se propone un algoritmo basado en DQN arraigado
en la inferencia causal, denominado Causal Inference Q-Network (CIQ)”. La evaluacién del ren-
dimiento de CIQ en diversos entornos de referencia de Redes Q Profundas con diferentes tipos
de interferencias como etiquetas auxiliares demuestra que el método propuesto podria lograr un
mejor rendimiento y una mayor resistencia contra interferencias observacionales. Ademds, [108§]
profundiza en cémo la inferencia causal puede aprovecharse para entender el comportamiento de
sistemas de aprendizaje altamente complejos que interactiian con sus entornos. Ademas, enfati-
za céomo las predicciones basadas en la inferencia causal pueden ser beneficiosas tanto para los
humanos como para los algoritmos al seleccionar cambios que podrian mejorar potencialmente el
rendimiento del sistema. Este enfoque proporciona un marco general para aplicar el razonamien-
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to contrafictico y la inferencia causal a sistemas de aprendizaje, allanando el camino para un
enfoque mas sélido y preciso para optimizar sistemas complejos en el contexto del aprendizaje
por refuerzo.

Segun [109], los autores exploraron el uso de tareas auxiliares no supervisadas en el aprendi-
zaje por refuerzo. Los investigadores crearon un agente de aprendizaje por refuerzo que maximiza
multiples funciones de pseudo-recompensa y dirige la recompensa acumulativa. La representacion
compartida de las tareas auxiliares evoluciona sin recompensas externas, como el aprendizaje no
supervisado. También introdujeron una nueva forma de centrarse en las recompensas externas,
lo que ayuda a los agentes a comprender rapidamente los puntos clave de la tarea. El agente
utilizado superé al anterior mejor rendimiento en Atari en un 880 % en comparacién con el ren-
dimiento humano experto. Ademads, superd a los humanos expertos en tareas de laberinto en
primera persona y tridimensionales dificiles, con un aumento promedio de velocidad de apren-
dizaje de 10x y un rendimiento promedio del 87 %. El estudio de [110] aborda el desafio de
entrenar agentes generalistas para una adaptacién eficiente a nuevas tareas en el aprendizaje
profundo por refuerzo (DRL). Ademds investigaron el pre-entrenamiento no supervisado con re-
compensas intrinsecas autosupervisadas para la adaptacion. El Banco de Pruebas de Aprendizaje
por Refuerzo No Supervisado (URLB) facilita comparaciones justas y un desarrollo posterior.
URLB tiene pre-entrenamiento sin recompensas y adaptacion de tareas basadas en recompensas
extrinsecas. Prueban sus habilidades con doce tareas de control continuo en tres dominios utili-
zando la Suite de Control DeepMind. Ofrecen versiones de cédigo abierto de ocho de los mejores
métodos de RL no supervisados. Aunque se han logrado avances, las lineas de base no resuelven
URLB, lo que resalta la necesidad de mas investigacion.

A pesar de que ha habido mejoras en como el aprendizaje por refuerzo prioriza la experiencia,
todavia existe una brecha en la literatura sobre cémo agregar inferencia causal al proceso de
muestreo priorizado de una Deep Q-Network. Esta investigacién aborda esta brecha explorando
cémo la inferencia causal puede complementar y mejorar las técnicas de priorizacién existentes
en el contexto del aprendizaje profundo por refuerzo.

3.4. Conclusiones

En esta seccién, se exploraron diversos aspectos relacionados con la aplicacién de la infe-
rencia causal en el campo del machine learning. Se discutieron diferentes enfoques, técnicas y
aplicaciones de la inferencia causal, asi como su relevancia para mejorar la interpretabilidad, la
precision y la capacidad de generalizacion de los modelos de machine learning.

La inferencia causal desempena un papel crucial en el fortalecimiento de los modelos de
machine learning al proporcionar un marco teérico sélido para comprender las relaciones sub-
yacentes de causa y efecto en los datos. Se destacé que los modelos de machine learning que
integran la inferencia causal pueden identificar variables confusoras, mitigar sesgos y mejorar la
interpretacion de los resultados. Ademas, se resalté la importancia de la inferencia causal en la
generacion de datos sintéticos realistas y controlados, asi como en la toma de decisiones bajo
incertidumbre en contextos como la salud publica.
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La integracién de la inferencia causal en el machine learning sigue siendo un area de inves-
tigacion activa y prometedora. Se sugiere que futuras investigaciones se centren en desarrollar
métodos y técnicas mas avanzados para la inferencia causal en machine learning, especialmente
en entornos donde los datos son escasos o costosos de obtener. Ademas, se anima a explorar
aplicaciones especificas de la inferencia causal en areas como la interpretacion de modelos de
deep learning, el diseno de experimentos y la optimizacion de politicas en sistemas de toma de
decisiones auténomas.

En sintesis, la inferencia causal tiene el potencial de impulsar el avance del machine learning
al proporcionar una comprension mas profunda y sélida de las relaciones causa-efecto en los
datos, lo que puede conducir a modelos mas robustos, interpretables y éticos. Su aplicacion
adecuada y continuada en el ambito del machine learning promete abrir nuevas oportunidades
y desafios emocionantes en la investigacién y la préactica.
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Parte 11

Experimentacion
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Capitulo

Simulacion y visualizacion del fendmeno
interaccion luz-materia

4.1. Objetivo

El objetivo de este experimento fue simular la distribucién del valor de iluminancia (E), una
magnitud asociada a un fenémeno fisico de interacciéon luz-materia, en un dominio espacial 3D
vacio con distintas configuraciones de iluminacion, para generar los conjuntos de datos utilizados
en los experimentos posteriores y establecer una linea base para la visualizacion de resultados.

4.2. Meétodo

Diseno y configuraciéon del escenario de pruebas

La forma y tamano definidos para el escenario fue un cubo de 11m por lado, este ocupa un
volumen de 1331m?3; el cual se consideré como un volumen razonable para la experimentacién.
Para definir puntos de interés dentro del escenario, este se dividié en dos mallas regulares de
11211211 y 12121212121 para obtener un célculo méas denso de la iluminancia por m? del escena-
rio. Cada punto de las mallas se caracterizé por su posicién (XY, Z) en el espacio tridimensional
y el valor de su iluminancia (E).

La iluminacion del escenario se configuré posicionando fuentes luminicas en lugares especificos
del espacio. Cada fuente luminica estaba determinada por su posicién (X,Y,Z) en el espacio
tridimensional y su flujo luminoso en lux. Con el fin de inspeccionar la variacién de iluminancia
dentro del escenario, definimos nueve cortes, como lo ilustra la figura [4.T} uno por cada cara del
cubo que representa al escenario y tres que cortan por la mitad cada eje coordenado.
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Figura 4.1. Cortes definidos en un plano

Calculo de la Iluminancia (E)

La iluminancia (E) es una unidad de medida expresada como F = %, lo que corresponde al
flujo luminoso por unidad de area [2]. Sin embargo, dadas las caracteristicas del escenario definido
para la experimentacién, se estimé necesario tener en cuenta el angulo que forma la direccién de la
luz con la superficie sobre la cual incide. La figura muestra las dos componentes -Iluminancia
horizontal (Ey) e Illuminancia vertical (Ey)- que incorporé el cdlculo de la iluminancia en este
experimento aplicando el razonamiento que se muestra en las ecuaciones [4.1], y siendo
(I) la intensidad de cada fuente luminica, (d) la distancia entre el punto y las fuentes luminicas,
(h) la altura del punto, (hp) el segmento de recta entre el punto de corte de (h) con el plano
horizontal y el punto (P) y («) el dngulo.

L
: LJ
. I :
H 4 .
e ”
d -
- - -
EH *
(a) Iluminancia horizontal (b) Iluminancia vertical

Figura 4.2. Iluminancia horizontal (Ey) y vertical (Ey ) para el cdculo de E.
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Generacién de la data

Para la generacion de la data se definié una muestra uniforme de 1728 puntos del escenario, a
cada uno de los cuales se le calculé el valor de iluminancia correspondiente aplicando la ecuacion
. Se generaron dos (2) conjuntos de datos cuya estructura se compone de la posicién (z,y, 2)
de cada fuente, la intensidad (1) de cada fuente, la posicién (x,y, z) de cada punto, la distancia
(d) desde entre cada una de las fuentes luminicas y el punto y la altura (h) de cada punto.

Visualizacion

La visualizacién fue el instrumento de validacion del calculo de iluminancia para los puntos
definidos en la malla. Para este proceso se consideraron dos configuraciones del escenario. En la
primera, el escenario estaba iluminado con una sola fuente luminica de 6522 Ix de intensidad,
ubicada de manera centrada sobre la cara superior del cubo que representa el escenario para
garantizar simetria en la iluminacién. En la segunda, el escenario se iluminé con tres fuentes
luminicas, la primera ubicada en el centro de la cara superior, la segunda ubicada en la cara
lateral derecha y la tercera ubicada en la cara posterior; la intensidad luminica de la tres fuentes
fue 6522 Ix, 3261 Ix y 3261 Ix respectivamente. Con cada configuracién se hicieron tres ejercicios
de visualizacién, en el primer ejercicio se consideraron el célculo de la iluminancia (CI) y su
visualizacién en escala real (VER), en el segundo se anul6 la fuente luminica (AF) pero se consi-
deré su visualizacién en escala real (VAF) y, en el tercero, se tomaron en cuenta los célculos del
primer ejercicio (CI) pero la visualizacién del segundo (VAF). La tabla [4.1] muestra la casuistica
de los ejercicios de visualizacion.

Tabla 4.1. Casuistica de los ejercicios de visualizacién

Posicién Intensidad Visualizacién y
Escenario No Fuentes de la fuente resultados

X Y z uminica (IxX)  ypp o yAFR  AF

X X
1 1 5.5 5.5 10.5 6522 X X
X X
5.5 5.5 10.5 6522 X X
2 3 5.5 10.5 5.5 3261 X X
10.5 5.5 5.5 3261 X X
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4.3. Resultados

Primera configuracién:

En el primer ejercicio de visualizacion era de esperarse la visualizacion de una distribucién
uniforme de la luz como lo muestra la figura [4.3; sin embargo, la escala consideraba saltos muy
grandes entre los rangos, lo que significa que quedaban detalles por apreciarse a pesar de usar
curvas de nivel para intentar detectarlos. Esto sucedié porque al considerar la ubicacion de la
fuente luminica para el calculo de la iluminancia, se presentaba una singularidad.
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(c) (d)

Figura 4.3. Distribucién uniforme a escala real:(a) y (b) corresponden a un corte transversal
por la cara superior del escenario debajo de donde se encuentra la fuente de luz. (c) y (d)
corresponden a un corte perpendicular por el centro del escenario.

En el segundo ejercicio de visualizacion, para controlar la singularidad detectada, en el célculo
de la iluminancia no se incluyeron los puntos cuya distancia a la ubicacién de la fuente luminica
estuviera en el rango [0, 1]. Asi, al haberse evitado la singularidad, se pudo observar con mejor
detalle la propagacion de la luz en zonas més alejadas de la fuente luminica como lo muestra la

figura
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Figura 4.4. Distribucién uniforme a escala real evitando la singularidad: (a) y (b) corresponden
a un corte transversal por la cara superior del escenario debajo de donde se encuentra la fuente
de luz. (¢) y (d) corresponden a un corte perpendicular por el centro del escenario.

Finalmente, con el fin de evitar la singularidad en la visualizacién pero si conservar los
calculos reales de la iluminancia, en el tercer ejercicio de visualizacion, se consideré el calculo de
la iluminancia y la visualizacion del primer y segundo ejercicio de visualizacion respectivamente.
Sin embargo, aunque en este ejercicio se visualizaron mejores detalles y los calculos reales, No
fue suficiente para mostrar la cobertura total del area de corte, por lo cual se utilizo la técnica
del falso color [IT1] para la visualizacién y asi poder apreciar con mayor claridad las transiciones
que hay entre los rangos de la escala, como se aprecia en la figura
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Figura 4.5. Distribucién uniforme a escala logaritmica evitando singularidad: (a) y (b)
corresponden a un corte transversal por la cara superior del escenario debajo de donde se
encuentra la fuente de luz. (¢) y (d) corresponden a un corte perpendicular por el centro del
escenario.

Segunda configuracién:

El propédsito de definir mas de una fuente luminica fue romper con la simetria observada en
los ejercicios de visualizacién para un escenario iluminado con una sola fuente luminica (primera
configuracién) y asi validar que la distribucién de los valores de iluminancia fuera la esperada.
En la figura puede verse la distribucion asimétrica de la iluminancia en escala logaritmica.
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Figura 4.6. Distribucién no uniforme a escala logaritmica evitando singularidad: (a) y (b)
corresponden a un corte transversal por la cara superior del escenario debajo de donde se
encuentra la fuente de luz. (¢) y (d) corresponden a un corte perpendicular por el centro del
escenario.

4.4. Conclusiones

Se logré un mejor detalle de la visualizacion cuando las subdivisiones son de once por cada
metro cubico, aunque el tiempo de calculo aumenté casi nueve veces mas que el de los escenarios
subdivididos en uno por cada metro cubico.

La escala logaritmica fue determinante para visualizar con mejor detalle los cambios de ilu-
minancia en el escenario, esto permitié comprender la exactitud del cédlculo de iluminancia y
validarlo. La anulacion de la fuente luminica, en las visualizaciones, hizo posible enfocarse en
los cambios de iluminancia tras descartar la singularidad que se presentaba en el calculo de
iluminancia en los puntos cuya distancia a la fuente luminica es menor o igual a uno.
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El espaciado entre curvas de nivel fue 1til para validar que, en la escala real, la visualizacién
debia considerar ajustes para no excluir de la visualizacion algunos rangos de iluminancia.
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Capitulo

Estimacion de valores de iluminancia mediante
Deep Learning

5.1. Objetivo

El objetivo de este experimento fue desarrollar modelos de redes neuronales capaces de esti-
mar el valor de iluminancia (E) en un punto dentro de un espacio tridimensional vacio, teniendo
en cuenta una configuraciéon precisa de fuentes de luz. Esta estimacion se integraria en el proceso
estandar utilizado para calcular la luminancia en una imagen, ofreciendo un método comple-
mentario para mejorar la precision y la fidelidad visual de las representaciones generadas. Este
enfoque busca aprovechar el poder de las redes neuronales para proporcionar una estimacion
mas precisa y detallada de la iluminancia.

5.2. Método

Para obtener los modelos, el enfoque de este experimento implicé dos pasos principales:
en primer lugar, se cre6 un entorno virtual utilizando Unreal Engine [112, [113], lo que hizo
posible manipular la configuracién de iluminacién para la generacién de datos. Posteriormente,
utilizando Keras [I14] y TensorFlow [115], se disenaron dos redes neuronales (una feed-forward y
una convolucional). La Figura proporciona una representacion visual del proceso involucrado
en la obtencién de cada modelo. Cada red neuronal pasé por un proceso iterativo de refinamiento,
donde -aplicando la ecuacién se compararon los errores obtenidos en su fase de aprendizaje
hasta lograr dos modelos de precision satisfactoria para la estimacion de la iluminacién en cada
tipo de red.

1
" ;(y Yi) (5.1)
Generacion de la data

Para la generacion de la data, se siguié el mismo método que se aplico para la simulacion del
fenémeno interaccién luz-materia. Se simul6 un escenario en 3D para configurar la iluminacion
especificando la posicion, intensidad y nimero de fuentes de luz. Por ejemplo, la Figura
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Figura 5.1. Proceso de adquisicion del modelo.

ilustra dos escenarios potenciales: el primero con una sola fuente de luz para garantizar simetria
en la iluminacién, y el segundo con dos fuentes de luz para introducir asimetria.
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(a) Escenario simétricamente iluminado

(b) Escenario asimétricamente iluminado

Figura 5.2. Escenarios con distintas configuraciones de iluminacion.

Luego, se generé una muestra uniforme de 1728 puntos dentro del escenario. A cada uno
de estos puntos, se aplicé la ley del coseno cuadrado de Lambert (ec. [2], considerando la
intensidad (I) de cada fuente de luz, la distancia (d) de cada fuente de luz al punto y la altura

(h) del punto.
e (5) (5 ) 5

El Algoritmo [I| describe el método para crear el conjunto de datos. Antes de su ejecucién,
el algoritmo requiere una colecciéon de puntos que definen la escena y una configuracién que
contiene informacion sobre las fuentes de luz que iluminan la escena. Para cada fuente de luz, se
recopilé la informacién sobre su posicién e intensidad luminosa (lineas 3 a 5). Luego, se deter-
minaron la altura y la distancia de cada punto en el escenario dado con respecto a la fuente de
luz (lineas 6 a 9). Si la distancia cae dentro del rango [0, 1], la intensidad del punto se establece
igual a la de la fuente de luz para evitar una singularidad (lineas 10 y 11). De lo contrario, se
calcula la iluminacion horizontal y vertical y estas se suman al valor de intensidad general del
punto (lineas 13 a 18). Luego, se retorné el conjunto de datos, habiendo agregado previamente la
informacion de la fuente de luz, la informacion del punto y los valores de iluminacién horizontal
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y vertical (Iineas 20 a 23).

Algorithm 1: Generacién de Datos
Input: Ist_lights, Ist_points
Output: dataset

1 dataset < [J;

2 foreach light in Ist_lights do

3 light <« Ist_lights[f].p;

4 | T+« Istlights]f].I;

5 foreach p in Ilst_points do

6 h < | light.z - p.z [;

7 p-h < h;

8 dist « /(light.x — p.z)2 + (light.y — p.y)? + (light.z — p.2)?;
9 if dist > 0 and dist < I then

10 ‘ pI<+ I

11 end

12 else

13 EH < (I x h) / (dist?);

14 EV « (I x y/(dist?) — (h?)) / (dist?);

15 pl+ pl+ (EH?) + (EV?);

16 if p = light then

17 ‘ pl <« I

18 end

19 end

20 dataset.append([light.x, light.y, light.z, I, p.x, p.y, p.z, dist, h, EH, EV, p.I]);
21 end
22 end

23 return dataset;

Las Figuras y muestran tres secciones transversales a lo largo de los ejes x, y, v z
para evaluar la distribucion de luz en el escenario, lo que proporciona informacién valiosa sobre
las diversas condiciones de iluminacién que surgen de diferentes configuraciones, facilitando la
comprension de los impactos sutiles de los arreglos de iluminacién en la distribucién general de
brillo dentro del escenario. La Figura representa una escena con iluminacién simétrica, con
una unica fuente de luz ubicada en el centro del lado superior de la escena. La fuente de luz
tiene una intensidad de 6522 Ix y, como se puede observar, proporciona una distribucién de luz
consistente en todo el escenario.
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Figura 5.3. Representacion detallada de la distribucién de la luz en un escenario con una unica
fuente de luz

La Figura representa un arreglo de iluminacién asimétrico con dos fuentes de luz inde-
pendientes. La fuente inicial, que tiene una intensidad luminosa de 4000 lx, se encuentra en el
centro superior de la escena. En contraste, la segunda fuente, con una intensidad de 2522 Ix, estd
ubicada en la esquina superior derecha de la escena. Esta configuracién produce una dispersion
de luz variada, resaltando las variaciones en el brillo a lo largo del rango espacial del escenario.
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Figura 5.4. Representacion detallada de la distribuciéon de la luz en un escenario con dos
fuentes de luz

Preprocesamiento de la data

Para garantizar que las caracteristicas estan en la misma escala, lo que se sabe que mejora el
rendimiento de los algoritmos de optimizacién y aprendizaje automatico [I16], se normalizaron
los datos del conjunto de datos. Esto se hizo mediante la aplicacion de la ecuacion 5.3], teniendo
en cuenta la amplia gama de valores cubiertos por el conjunto de datos.

Xnorm = % (53)
max — “Ymin

A continuacién, el conjunto de datos se dividié en tres partes: el 80 % de los datos se asigné
aleatoriamente a la fase de entrenamiento, mientras que el 20 % restante se repartié equitativa-
mente entre las fases de validacién y prueba.

Enfoque de redes neuronales Feed-Forward

Mediante experimentacion, se ajustaron iterativamente los valores paramétricos de dos redes,
como la tasa de aprendizaje y el niimero de neuronas en la capa oculta. Asi, la tabla 5.1 muestra
diferentes modelos experimentales que cambiaron tanto el nimero de neuronas como la tasa
de aprendizaje para estimar los valores de iluminaciéon en un entorno con iluminacién simétrica.
Como puede observarse, el Modelo 6 (FFNN-1) demostrd una precisién superior en la estimacion.
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Tabla 5.1. Ajuste éptimo de pardametros para una red feed-forward en una configuracién de
iluminacion simétrica.

Modelo Tasa de aprendizaje Neuronas Mean Squared Error
1 0.01 70 0.000076
2 0.01 80 0.000083
3 0.01 90 0.000007
4 0.001 70 0.000057
5 0.001 80 0.000032
6 (FFNN-1) 0.001 90 0.000002
7 0.0001 70 0.000015
8 0.0001 80 0.000023
9 0.0001 90 0.000006

La Tabla presenta varios modelos experimentales que varian en el nimero de neuronas
y la tasa de aprendizaje. Estos modelos se utilizaron para estimar los valores de iluminacién en
un entorno con iluminacién asimétrica. En esta instancia, el Modelo 8 (FFNN-2) exhibié una
precision superior en sus estimaciones.

Tabla 5.2. ajuste éptimo de pardmetros para una red feed-forward en una configuracién de
iluminacion asimétrica.

Modelo Tasa de aprendizaje Neuronas Mean Squared Error
1 0.01 70 0.009691

2 0.01 80 0.006986

3 0.01 90 0.000108

4 0.001 70 0.00012

5 0.001 80 0.000158

6 0.001 90 0.000182

7 0.0001 70 0.000098

8 (FFNN-2) 0.0001 80 0.000094

9 0.0001 90 0.000141

Este proceso condujo a la identificacién de una arquitectura de red éptima, como se muestra
en la Figura [5.5] mientras que la Figura [5.6) representa las curvas de aprendizaje asociadas con
cada uno de esos modelos.
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Figura 5.6. Graficos de aprendizaje de FFNN para diferentes configuraciones de iluminacion.

Enfoque de redes neuronales convolucionales

Se disenaron dos redes convolucionales (CNN-1 y CNN-2), y sus valores de pardmetros se
obtuvieron mediante un proceso iterativo similar al utilizado para las redes feed-forward. En estos
modelos experimentales, el inico parametro que experimenté variacion fue la tasa de aprendizaje.
El Modelo 9 (CNN-1) se muestra como el mds preciso en la tabla[5.3 para estimar los valores de
iluminaciéon en un espacio con iluminacién uniforme.
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Tabla 5.3. Ajuste éptimo de pardmetros para una red neuronal convolucional en una
configuracion de iluminacion simétrica.

Modelo Tasa de aprendizaje Mean Squared Error
1 10 15748180.0
2 1 28.7261524
3 0.5 0.8346124
4 0.1 0.0336059
5 0.05 0.0320606
6 0.01 0.0000985
7 0.005 0.0000695
8 0.001 0.0001140
9 (CNN-1) 0.0005 0.0000921
10 0.0001 0.0004632
11 0.00005 0.0009414
12 0.00001 0.0047176
13 0.000005 0.0049788
14 0.000001 0.0277012

De igual manera, el Modelo 7 (CNN-2) en la tabla fue el mas preciso para predecir la
cantidad de luz en una situacion con simetria en la configuracién de las fuentes luminica.

Tabla 5.4. Ajuste 6ptimo de parametros para una red neuronal convolucional en una
configuracion de iluminacion asimétrica.

Modelo Tasa de aprendizaje Mean Squared Error
1 10 76042736.0
2 1 145.2624359
3 0.5 0.791321397
4 0.1 0.030259281
5 0.05 0.005472712
6 0.01 0.000259001
7 (CNN-2) 0.005 0.000128485
8 0.001 0.000164776
9 0.0005 0.000246788
10 0.0001 0.00067971
11 0.00005 0.0016336
12 0.00001 0.005003111
13 0.000005 0.010371411
14 0.000001 0.022327378

La arquitectura de estas redes convolucionales se ilustra en la figura 5.7, y la figura [5.8
muestra las curvas de aprendizaje para cada modelo.
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Figura 5.8. Graficos de aprendizaje de redes neuronales convolucionales para diferentes
configuraciones de iluminacion.

Estimacién de la luminancia (L) de una imigen mediante los modelos

Para este ejercicio, fue crucial comprender la distincién entre dos conceptos fundamentales: la
luminancia (L) y la iluminancia (E). Segun [117], la luminancia (L) se refiere al brillo percibido de
una superficie, mientras que la iluminancia (E) cuantifica la cantidad de luz incidente sobre dicha
superficie. Asi entonces se gener6 un total de dieciocho escenarios de prueba, que comprendian
seis escenas iluminadas con una unica fuente de luz, seis escenas iluminadas con dos fuentes
de luz y seis escenas iluminadas con tres fuentes de luz. Posteriormente, empleando el método
descrito en [I1§], se usé la ecuacién para calcular la luminancia de cada escena mediante
un calculo de suma ponderada. Finalmente, se compararon estos resultados con las estimaciones
proporcionadas por las redes convolucionales para cada escena respectiva.
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R(z,y)
I(z,y) = [0,2989 0,5870 0,1140] | G(z,y)
)

| MoiN-
= — I
MN (@

z=0 y=0

,_.
—_

Donde:

» [(z,y): Representa la funcién que hace la conversién de un pixel a escala de grises basada
en sus coordenadas x e y.

= M, N: Representan el ancho y el alto de la imagen, respectivamente.

El Algoritmo [2] muestra el calculo del brillo de la imagen, requiriendo la recuperacion de
todos los datos de pixeles y las dimensiones de la imagen (lineas 2-4). La imagen se convierte a
escala de grises y se rota de manera lineal multiplicando el componente RGB de cada pixel por
su valor correspondiente en la secuencia [0.2989, 0.5870, 0.1140]. Finalmente, el valor total se
divide por el tamano de la imagen (lineas 5-10).

Algorithm 2: Algoritmo para el calculo de luminancia

Input : Image img
Output: Luminance L

[uny

pixels < img.load();
L <« 0;
S « img.size();
for x in 1 to S/0] do
for y in 1 to S/1]/ do
| L L+ (img[][y] x [0.2089, 0.5870, 0.1140]);
end

w N

®w N o Gk

end

return((L x 1/(S[0] x S[1])));

©

5.3. Resultados

Enfoque de redes neuronales Feed-Forward

Cuando solo habia una fuente de luz, el modelo logré determinar con gran precision el brillo
de los objetos, con una tasa de éxito del 98.8 %. De manera mads general, al considerar situaciones
con dos fuentes de luz, el modelo mostré un alto nivel de precisién, con una tasa de precision del
96.0 %. Los valores de iluminancia obtenidos a partir de los calculos para ambos escenarios se
representan visualmente en la figura[5.9] La imagen muestra los valores esperados para la ilumi-
nacién en una configuracién con una sola fuente de luz (figura ), las proyecciones realizadas
por la red neuronal feed-forward (figura ), y la diferencia entre los valores esperados y pre-
dichos (figura ) Ademas, el diagrama presenta los niveles anticipados de luminosidad para
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una configuracién que incluye dos fuentes de luz (figura ), los valores calculados derivados
de la red neuronal feed-forward (figura[5.9E), y la disparidad entre ambos (figura [5.9F).
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Figura 5.9. Estimacion de la red Feed-Forward (FFNN). Los valores esperados para dos
escenarios iluminados por una y dos fuentes de luz se muestran en las subfiguras A y D. Las
predicciones de iluminancia de FFNN para ambos escenarios se encuentran en las subfiguras B
y E. Las subfiguras C y F muestran las discrepancias entre los valores esperados de cada
escenario y las proyecciones realizadas.

Enfoque de las redes Convolucionales

En situaciones donde solo habia una fuente de luz, el modelo demostré un alto nivel de
precision en sus estimaciones, logrando una tasa de precision del 99.2%. En casos donde el
escenario estaba iluminado por dos fuentes de luz, el nivel de precisién observado se redujo
ligeramente al 96.4 %. Los valores de iluminancia estimados para ambos tipos de escenarios se
presentan en la figura[5.10} La figura [5.I0]A ilustra los valores de iluminancia predichos para una
configuracion con una tnica fuente de luz. Por otro lado, la figura muestra la estimaciéon
comparable derivada del modelo de Red Neuronal Convolucional (CNN). Finalmente, la figura
[.10C exhibe la disparidad entre estas dos representaciones. La figura [5.10D muestra los valores
de iluminancia predichos cuando se consideraban dos fuentes de luz. La estimacién de la CNN
se ilustra en la figura [5.10E, mientras que la figura presenta la disparidad entre ambas.

Redes Neuronales Feed-Forward Vs Redes Neuronales Convolucionales

La superioridad de uno u otro tipo de modelo, FFNN o CNN, dependié del contexto especifico
y de las caracteristicas del problema en cuestion. Los distintos escenarios mostraron diferentes
niveles de precision para cada tipo de modelo. En este caso, los modelos CNN superaron a los
modelos FFNN con un ligero margen. En la Tabla [5.5] se comparan las estimaciones obtenidas
con los modelos.
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Figura 5.10. Estimaciones de la red neuronal convolucional (CNN). Se muestran los valores
esperados para dos escenarios iluminados por una y dos fuentes de luz en las subfiguras A y D.
Las predicciones de iluminancia de la CNN para ambos escenarios se presentan en las
subfiguras B y E. Las subfiguras C y F ilustran las discrepancias entre los valores esperados de
cada escenario y las predicciones.

Tabla 5.5. Comparacion entre los modelos FFNN y CNN

Configuracion luminica Modelo Precisiéon

FFNN-1 98.8 %
CNN-1 99.2 %

FFNN-2 96.0 %
CNN-2 96.4 %

Una fuente luminica

Dos fuentes luminicas

Comparacién de las estimaciones basadas en CNN con el método tradicional en
distintas condiciones de iluminacién

En las escenas en las que la iluminacion se ajusté a los datos de entrenamiento de las CNN,
concretamente los escenarios con una y dos fuentes de luz, las estimaciones proporcionadas por
estas coincidieron estrechamente con las calculadas por el método tradicional. Sin embargo, en
el caso de la tercera escena, en la que intervinieron tres fuentes de luz, la discrepancia entre los
calculos y las estimaciones se hizo mas pronunciada, lo que indica que hubo una disminucién
de la precision del modelo. La figura presenta los resultados obtenidos, contrastando las
estimaciones basadas en CNN con los resultados derivados de aplicar el método tradicional en
escenarios con una, dos y tres fuentes de luz.
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Inferencia causal en el cdlculo de la iluminancia

La inferencia causal se refiere a la comprension de las relaciones de causa y efecto entre
diferentes variables en un sistema [119]. En el contexto de la ecuacién para calcular la ilumi-

nancia F = \/ (En)? + (Ey)?, es posible aplicar la inferencia causal para entender cémo varios
factores afectan la iluminancia en un entorno determinado. Como fue indicado anteriormente,
E representa la iluminancia total, Ey y Ey son las componentes horizontales y verticales de
la iluminancia, respectivamente; de manera que es posible considerar que estas componentes
representan diferentes fuentes de luz o diferentes caracteristicas de la iluminacién en un entorno
determinado. Aplicando la inferencia causal, fue posible examinar cémo varios factores afec-
tan las componentes horizontales y verticales de la iluminancia, lo que a su vez influye en la
iluminancia total F. Algunos factores que podrian influir en estas componentes podrian ser:

= Orientacion de las fuentes de luz: La orientacion de las fuentes de luz podria afectar tanto
a la componente horizontal como a la vertical de la iluminancia. Por ejemplo, una fuente
de luz situada en un angulo particular podria tener un impacto mas significativo en la
iluminancia horizontal que en la vertical, o viceversa. Asi, es posible modelar la influencia
de la orientacién de las fuentes de luz () en las componentes horizontales y verticales
de la iluminancia por medio de las siguientes ecuaciones estructurales: EFy = (0, Z1),
Ey = ¢(0,7Z,), donde Z; y Z5 son variables latentes que representan otros factores no
observados que pueden influir en la iluminancia.

= Distribucion espacial de las fuentes de luz: La manera en que estan distribuidas las fuentes
de luz en el entorno también podria influir en las componentes horizontales y verticales
de la iluminancia. Por ejemplo, una distribucién mas concentrada de fuentes de luz podria
generar una mayor iluminancia en ciertas direcciones, afectando asi las componentes ho-
rizontal y vertical. Asi, es factible modelar la influencia de la distribucién espacial de las
fuentes de luz (D) en las componentes horizontales y verticales de la iluminancia por medio
de las siguientes ecuaciones estructurales: Fy = h(D, Z3), By = i(D, Z,), donde Z3 y Z,
son variables latentes adicionales.

= Reflectividad de las superficies: La reflectividad de las superficies en el entorno puede in-
fluir en cémo se distribuye la luz, afectando asi las componentes horizontal y vertical de la
iluminancia. Por ejemplo, superficies altamente reflectantes pueden aumentar la iluminan-
cia horizontal en comparacién con la vertical. Asi, la reflectividad (R) puede influir en la
iluminancia, lo cual puede ser modelado a través de las siguientes ecuaciones estructurales:
Ey = j(R,Z5), Ev = k(R, Zg), donde Zs y Zg son variables latentes relacioandas con la
reflectividad.

= Obstrucciones y sombras: La presencia de obstrucciones o sombras en el entorno puede
afectar la distribucién de la luz y, por lo tanto, las componentes horizontal y vertical
de la iluminancia. Asi, La presencia de obstrucciones o sombras (O) puede influir en las
componentes de iluminancia de la siguiente manera: Ey = (O, Z;), Ey = m(O, Zg), donde
Z7 'y Zg son variables latentes asociadas con las obstrucciones y sombras.

Utilizando la regla de la cadena de Pearl [120], es posible calcular cémo cada uno de estos
factores afecta la iluminancia total E, de manera que para cada uno de estos factores, es necesario
calcular las derivadas parciales correspondientes de las componentes horizontales y verticales de
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la iluminancia con respecto a los factores causales relevantes. No obstante, para realizar un anali-
sis causal mas concreto, se haria necesario contar con datos especificos sobre como cada factor
afecta la iluminancia en un entorno real. Dado que el conjunto de datos generado no cuenta con
esos datos especificos, se usaron valores hipotéticos para ilustrar el proceso de analisis causal asi:

Orientacién de las fuentes de luz (0)

Incrementar la orientacion de las fuentes de luz en 10 grados (f) aumenta la iluminancia hori-
zontal (Fy) en 100 lux y la iluminancia vertical (Fy) en 50 lux.

OE _ JE JEy N OF OFy
00  OEy 00  OE, 00

o)) oOFE OFy OEy
D . —=1, —=1, — =100lux/°, — =50lux/°
ado que BT " 3By ' a9 00 lux/*, 50 50 lux/
E
Entonces: 88—0 = (1 x 100) + (1 x 50) = 150 lux/°

Distribucién espacial de las fuentes de luz (D)

Agregar una luz adicional en el techo (D) aumenta la iluminancia horizontal (Ey) en 150 lux y
la iluminancia vertical (Ey) en 100 lux.

OE  JE JEy N OF OF\
oD  OEy 0D  OEy 9D
aEH aE‘V

Dado que: D - 150 lux/luz, D - 50 lux/luz
oE
Entonces: 3D (1 x 150) + (1 x 50) = 200 lux/luz

Reflectividad de las superficies (R)

Pintar las paredes con pintura reflectante (R) aumenta la iluminancia horizontal (Ey) en 80 lux
y la iluminancia vertical (Ey ) en 40 lux.

OE  OF OEy  OFE OBy

OR ~ 0FEy OR +8Ev OR

OF OF

Dado que: 8—; = 80 lux/reflectividad, 8_1%/ = 40 lux/reflectividad
OF

Entonces: B (1 x 80) + (1 x 40) = 120 lux/reflectividad

Obstrucciones y sombras (O)

Eliminar una particién en la oficina (O) aumenta la iluminancia horizontal (Ey) en 120 lux y la
iluminancia vertical (Ey) en 60 lux

OE _ JE JEy N OF OFy
00  OEy 00  OEy 00

OFE OFE
Dado que: 8_OH = 120 lux/particién, 8_OV
oFE
Entonces: 0 = (1 x 120) 4 (1 x 60) = 180 lux/particién

= 60 lux/particién
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Al entender como estos factores afectan las componentes horizontales y verticales de la iluminan-
cia, es posible tener una comprension mas completa de cémo se determina la iluminancia total
en un entorno dado. Esto permite tomar decisiones informadas sobre como disenar o ajustar la
iluminacion para cumplir con ciertos requisitos o necesidades especificas. Por ejemplo, en cuanto
a la orientacién de las fuentes de luz, es posible observar que un aumento en la orientacion de
las fuentes de luz puede aumentar significativamente la iluminancia total en el escenario.

En cuanto a la distribucion espacial de las fuentes de luz, la instalacion de luces adicionales
podria aumentar atin mas la iluminancia total en el escenario. Por lo tanto, una posible decision
podria ser agregar mas luces en areas especificas. en cuanto a la reflectividad de las superficies,
pintar las paredes de un color reflectante podria ser una decisién efectiva para aumentar la ilu-
minancia total en la oficina, pues al aumentar la reflectividad de las superficies, se incrementaria
la cantidad de luz reflejada en el espacio, lo que resultaria en una mayor iluminancia horizontal
y vertical en todo el escenario.

En cuanto a las obstrucciones y sombras, eliminar o reubicar elementos que creen sombras
podria mejorar la iluminancia total en el escenario, pues al eliminar obstaculos que bloqueen la
luz, se permitiria una distribuciéon mas uniforme de la iluminancia en todo el escenario, lo que
resultaria en una mejora en la iluminacién general.

5.4. Conclusiones

Este experimento demostro el éxito de la aplicacién de técnicas de Deep Learning para esti-
mar valores de iluminancia en diversas configuraciones de iluminacién. Aprovechando un volumen
considerable de datos y ajustando cuidadosamente los parametros de las redes neuronales, se lo-
graron estimaciones con niveles aceptables de precision.

Aunque la precisién de las estimaciones de las redes neuronales no alcanzé el 100 %, es consi-
derable aducir que la precisién conseguida es suficientemente fiable para incorporar el aprendizaje
profundo a la tarea de estimacién de la iluminancia. Sin embargo, fue evidente que la precisién de
la estimacién disminuyé significativamente cuando el entrenamiento de los modelos no tuvo en
cuenta el nimero de fuentes de luz presentes en la escena. Esta observacion pone de manifiesto la
necesidad de disenar modelos adaptables a las variaciones en las configuraciones de iluminacion.

Los hallazgos de este experimento subrayan el potencial del aprendizaje profundo como una
herramienta valiosa para la estimacion de la iluminancia, al tiempo que destacan la importancia
de abordar los desafios relacionados con la variacién del nimero de fuentes de luz. El desarrollo
de modelos adaptativos capaces de estimar con precision la iluminancia bajo diversas configura-
ciones de iluminacién presenta un area interesante para la investigacién futura.

El uso de la inferencia causal en el célculo de la iluminancia ofrece una visién mas detallada
sobre cémo diferentes factores inciden en la distribucion de la luz en un entorno especifico. Se
identificaron diversos elementos influyentes, como la orientacién y distribucién de las fuentes de
luz, la reflectividad de las superficies y la presencia de obstaculos o sombras. Estos factores tienen
un impacto notable en la iluminancia total del area, afectando tanto su componente horizontal
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como vertical y, por ende, la calidad general de la iluminacion.

En general, este experimento aporté evidencias sélidas de la aplicabilidad del aprendizaje pro-
fundo en la estimacién de la iluminancia, sentando las bases para nuevos avances en este campo
y allanando el camino para modelos mas precisos y adaptables en escenarios de iluminaciéon del
mundo real.

61



Capitulo

Inferencia causal para determinar la causa de un
fenomeno de sombra en una imagen

6.1. Objetivo

El objetivo de este experimento fue desarrollar un modelo artificial que utilizara la inferencia
causal para explicar la formaciéon de una sombra proyectada sobre la superficie inferior de un
escenario tridimensional. En este entorno, ademas de la iluminacion, se incluyé la presencia de
un objeto esférico. Al aplicar la explicabilidad en inteligencia artificial (XAI) a este contexto, se
buscé comprender cémo el modelo interpreta y analiza los datos de entrada, especialmente en
relacién con la formacion de la sombra captada en una imagen. Esto permitié una comprension
mas profunda de como el modelo utiliza la informacion causal para generar predicciones y explicar
fenémenos visuales complejos.

6.2. Método

Generacion de la data

Para la generacion de la data produjimos sintéticamente cuatro posibles escenas en las que,
a pesar de haber muchas mas como el color y la posiciéon de los objetos, entre otros, definimos
cuatro caracteristicas observables. En la primera escena se observan la luz, la esfera, la superficie
y la sombra, en la segunda escena solo se observan la luz y la esfera, en la tercera escena se
perciben la luz y la superficie, y en la cuarta escena ninguna caracteristica se percibe. La figura
muestra las cuatro posibles escenas.
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(a)

(b)
(c) ()

Figura 6.1. Posibles escenas para generacién de datos.

Asi, se creé un conjunto de datos sintético de 1210° registros de observaciones basados en
un escenario hipotético similar al usado por [120] para demostrar la importancia de las proba-
bilidades. E1 99 % de los registros todas las caracteristicas se observaron, mientras que del 1%
restante, en el 70 % de los registros se observaron la iluminacion y la esfera, pero no superficie
ni sombra, del 30 % restante, en la mitad de las imdgenes ninguna caracteristica fue observada,
mientras que, en la segunda mitad, solo se percibieron la iluminacién y la superficie, mas no la
esfera ni la sombra. El algoritmo [3|ilustra el proceso para la construccién del conjunto de datos
y la tabla muestra las proporciones de cada muestra y da una idea clara de la representacion
de cada observacion.
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Algorithm 3: Proceso para la generacién del conjunto de datos.
DS < createDataset() ;

DS.columns < [[A') B')C'Y'] ;

DS.size < 1000000 ;

idz AllColumnsSample < DS.sample(990000) ;

foreach idz in ideAllColumnsSample do

[ N

6 foreach col in DS.columns do
t DS[idx][col] + 1;

8 Filter < DS[A] =0 & DS[B]=0& DS[C] =0 & DS[Y] = 0;
9o sublistLightSphere < DS.sublist(Filter);
10 idxLightSphereColumnsSample < sublist LightSphere.sample(7000);
11 foreach idz in idxLightSphereColumnsSample do
12 | Dslidz][A] + 1;
13 Dslidz][B] « 1,
14 Filter <~ DS[A] =0 & ds[B] =0 & ds[c] = 0 & dsy] = 0;
15 sublistLightSur face <— DS.sublist(F'ilter);
16 idx LightSur faceColumnsSample < sublist LightSur face.sample(1500);
17 foreach idz in idxLightSurfaceColumnsSample do
DS[idz][A] «+ 1;
DSTidz][C] + 1;

K

1
1

© @

Tabla 6.1. Proporciones de cada escena en el conjunto de datos

A (Luz) B (Esfera) C (Superficie) D (Sombra) Cantidad

1 1 1 1 990000
1 1 0 0 7000
1 0 1 0 1500
0 0 0 0 1500

Modelo Causal Estructural (SCM)

Segin [119], un modelo causal estructural es una forma de describir las caracteristicas rele-
vantes del mundo y como interactian entre si. Especificamente, este modelo describe como la
naturaleza asigna valores a las variables de interés. La inferencia causal generalmente requiere
conocimientos especializados e hipotesis no comprobables sobre la red causal que vincula el tra-
tamiento, el resultado y otras variables.

Al resumir el conocimiento y las hipétesis de manera intuitiva, los grafos ayudan a aclarar
problemas conceptuales y mejorar la comunicacién entre investigadores [75]. En consecuencia,
se diseno un modelo causal estructural en el que cada nodo corresponde a una caracteristica
observable y todas las aristas apuntan a un tnico nodo colisionador, "Y”. La Figura 2 muestra
el modelo causal estructural y la independencia de las variables que lo componen.
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SCM Variable

. independencies

(C LB, A)
(CLA|B)
(CLB|A)
(B L A, C)
(BLA|C)
(BLC|A)
(A LB, C)
(ALB|C)
(A L C|B)

Figura 6.2. Modelo causal estructural e independencia de variables.

Inferencia causal

Una vez que se construye el modelo, se calcularon las distribuciones de probabilidad condicio-
nal, las cuales estaban definidas para un conjunto de variables aleatorias discretas y mutuamente
dependientes para mostrar las probabilidades condicionales de una variable tinica con respecto a
las demas [50]. Estas se calcularon aplicando la regla de la cadena, como se ilustra en la ecuacién
(1), donde X; es un evento y N es el niimero de eventos considerados en el modelo, por lo tanto,
0<i<N.

P(xy,) = P(x1)P(x2|v1) P(23]|T1, 72) . . . P(@p|®1, 22, T3 . .. B(5-1)) (6.1)

Como se muestra en la Figura[6.3] se debe calcular la probabilidad de cada valor posible de cada
variable conociendo los valores tomados por las otras variables.
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B(0) |0.003
B(1) | 0.997

C(0) | 0.0085 A(0) | 0.0015
C(1) ]0.9915 A(1) |0.9985

v

Y

A) [A@Q) |AQQ) | A0) [A(1) | A1) [A() | A1)
B(Q) |B(O) |B(1) | B(1) |B(0) | BO) [B(1) |B(1)
CO) |Cm [CO | ¢y GO | € |CO) | C()
Y(0) [1.0 05 [05 0.5 0.5 1.0 1.0 0.0
Y(1) 0.0 05 [05 0.5 05 [ 00 0.0 1.0

Om|>

Figura 6.3. Distribucién de probabilidad condicional para cada variable del modelo.

Luego, para fortalecer la hipétesis formulada, se consulté al modelo sobre qué sucederia si no
se hubiera detectado ninguna esfera, es decir, se hizo una intervencién al modelo debido a la no
deteccién de la esfera para obtener la probabilidad de detectar la sombra. Para aclarar qué papel
desempenan las variables del modelo causal estructural en el proceso de inferencia causal que se
sigui6, entre otros, [121], [122] y [123], quienes explican que un proceso de inferencia causal estd
determinado por un tratamiento, un conjunto de factores de confusion y un resultado, la tabla
6.2 muestra el papel de cada variable del modelo en el proceso de inferencia causal.

Tabla 6.2. Papel de las variables del modelo estructural en el proceso de inferencia causal.

Etiqueta Variable
Tratamiento B
Factores de confusién  [A,C]
Resultado Y

Posteriormente, considerando esta intervencion, para todo el conjunto de casos (N) se calculé
el efecto del tratamiento para medir la diferencia promedio entre los casos en los que se aplicé
el tratamiento (Y1) y los casos de control (Y2) mediante la aplicacién de [6.2}

N
1 . .
ATE = + ;1 (Y1(4) — Yo(2)) (6.2)
Finalmente, para contrastar los resultados del tratamiento y asi obtener la estimacién de qué

tan lejos estaba la hipotesis de ser nula, es decir, que no hubiera relaciéon entre la esfera y la
sombra, para un intervalo de confianza del 95 %, se generd una tabla de puntuaciones z aplicando
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(3), donde X; es cada resultado, u es la media y o es la desviacién estdndar, y luego se calculd
el valor p de cola bilateral y un nivel de significancia o = 0,05.

Xi—p
o

7 —

(6.3)

Asi, se tom6 una muestra de control de 3000 escenas y una muestra de tratamiento de 997000
escenas para intervenir el modelo con dos consultas de tipo "what if”:

1. ;Qué pasaria si no hubiera habido sombra?

2. (Qué pasaria si no hubiera habido luz?

Deteccion de la sombra

Dentro del ambito de la deteccién de sombras en imagenes, se destacan métodos prominen-
tes como el umbral adaptativo, la segmentacion por umbral [124], y la segmentacién basada en
agrupamiento (Felzenszwalb) [125]. Este ultimo método se complementé integrandole un médulo
de inferencia causal, lo cual no solo facilité la deteccién de sombras, sino que también permitio
la identificacién de sus causas fundamentales dentro de escenarios especificos. Este enfoque de-
mand6 parametros que abarcaran un registro completo de elementos perceptibles dentro de la
imagen, como la luz, la esfera, la superficie y la sombra, junto con el modelo de inferencia causal.

Para ilustrar este proceso, el Algoritmo |4 detalla la intrincada interaccion entre la deteccién
de sombras y la inferencia causal dentro del fenomeno de las sombras.

Algorithm 4: Algoritmo para la deteccion de sombra y su explicacién mediante infe-

rencia causal

Data: Image, scale, sigma, min_size, light, sphere, shadow, surface, CI_model

Result: Segmented regions

Initialize an empty image segment map segments;

Initialize an empty priority queue pq for merging;

for each pixel p in Image do

‘ Create a new segment for p and add it to pg;

end

while pq is not empty do

Merge the two smallest segments from pg;

if merge does not violate min_size constraint then
Add the merged segment to segments;
Add the merged segment to pg;

© 000 N O O W N =

Jun
o

end

[y
-

end
return Cl_model.estimates(light, sphere, shadow, surface)

-
w N
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6.3. Resultados

Modelo causal

El modelo causal estructural fue disenado basado en el conocimiento experto como senal6 [75],
pero validado en dos intentos mediante el uso del método de descubrimiento causal NOTEARS.
En el primer intento, el algoritmo tom¢ casi 5 minutos para generar el modelo mostrado en la
figura[6.4h, lo cual se considerd bastante largo para el tamano del conjunto de datos, resultando en
un modelo que no fue muy coherente segiin el conocimiento experto. Por otro lado, en el segundo
intento, se agregd una restriccién al algoritmo para considerar que A, B y C son independientes.
El algoritmo, como se puede observar en la figura [6.4p, gener6é el modelo con la coherencia
esperada y en muy corto tiempo (menos de un minuto).

(b)
Figura 6.4. Modelos descubiertos por el algoritmo NOTEARS.



Inferencia causal

A partir de la distribucién de probabilidad condicional, fue posible consultar el modelo bajo
la hipotesis formulada. En la Tabla se puede observar que, al eliminar la esfera, habria
una probabilidad del 99.5% de que no se proyectara ninguna sombra; ademads, se puede ver
que la hipdtesis adquiere fuerza al obtener un valor de p menor que 0.05 (el valor de umbral
predeterminado), lo que indica que la hipdtesis nula es falsa, y un valor de efecto promedio de
tratamiento positivo (ATE) sugiere que P(Y|B) > P(Y), lo que indica que la presencia de la
esfera aumenta la probabilidad de detectar una sombra proyectada en la superficie o, en otras
palabras, fue posible inferir que la esfera es la causa mas probable de la sombra proyectada en
la superficie.

Tabla 6.3. Inferencia causal de la intervencién P(Y — do(B = 0))

Resultado Probabilidad ATE z P > |z| Intervalo de confianza

Y (0) 0.995
Y(1) 0.005

0.993 11874 0.00001 95 %

Inferencia causal y deteccion de sombras

Para establecer un contraste, se utilizo una imagen idéntica y se introdujo un elemento de
confusion al alinear el color de fondo con la tonalidad de la sombra proyectada sobre la superficie.
La ejecucién posterior abarco el método de Felzenszwalb integrado con el médulo de inferencia
causal, asi como las técnicas de umbral adaptativo y segmentacion de umbral. Los resultados de
esta aproximacion se visualizan en la Figura [6.5]

(a) Felzenszwalb con inferencia (b) Segmentacién de umbral (c¢) Umbral adaptativo
causal

Figura 6.5. Resultados de la detecciéon de sombras.

En el contexto de la deteccién de sombras, los resultados son evidentes. Entre los enfoques,
la combinacién del método de Felzenszwalb con inferencia causal (Figura [6.5h) mostrd los resul-
tados mds prometedores. Logré una precision aceptable en la deteccién de sombras del 51,5 %.
Siguiendo de cerca, el método de umbral adaptativo alcanzé una precisién del 51,7 % (Figura
), mientras que el método de segmentacién de umbrales alcanzé una precisiéon del 55,9 %

(Figura[6.5b).

Es importante destacar que la presencia de factores de confusién influyd significativamente
en la precision de los resultados de deteccién. Sin embargo, al considerar la determinacion de
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la causalidad de la sombra, el impacto de los factores de confusion se volvid insignificante.
Especialmente, solo el método de Felzenszwalb (Figura [6.5h) arrojé un resultado sustancial en
este sentido.

6.4. Conclusiones

Se demostrd como emplear la inferencia causal para fortalecer una hipétesis y, como resul-
tado, deducir la causa de un fenémeno de sombra con alta certeza. Esto se logré utilizando
intervenciones e investigaciones dentro del modelo causal.

Se comenzd con un conjunto de imagenes de un escenario 3D en el que se examinaron cuatro
eventos como parte de un modelo causal estructural validado con el algoritmo NOTEARS para
deteccién causal. Al contrastar su desempeno, también se demostrd que agregar un médulo de
inferencia causal a un enfoque de deteccién de sombras es factible y ventajoso.

Esto abre la puerta a conexiones similares en otras formas diversas y complejas.

La representacion visual de un modelo causal mejora la comprension del problema y los roles
que desempenan los eventos en su resolucién. A pesar de probar el modelo causal con el algoritmo
NOTEARS, se encontro cierta preocupacion sobre la necesidad de establecer limites basados en
el conocimiento experto.

Se requiere un conjunto de datos con una estructura mas intrincada para la aplicacién de la
inferencia causal, en comparacion con los conjuntos de datos tipicos utilizados para aplicaciones

de aprendizaje automatico, en los que predomina la correlacién entre las caracteristicas.

Los factores de confusiéon tuvieron un impacto considerable en la precisiéon del método de
deteccién, pero no en el modelo de inferencia causal.
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Capitulo

Inferencia causal para el modelo de
comportamiento de un agente inteligente

7.1. Objetivo

El objetivo de este experimento fue desarrollar un agente inteligente que empleara la infe-
rencia causal para comprender las causas detras de los fallos de otros agentes al completar una
tarea. Esta comprension permitiria al agente identificar los factores clave que llevan al fracaso
y, en consecuencia, mejorar su capacidad para abordar la tarea de manera mas efectiva. Luego,
este agente fue disenado para ejecutar la tarea tomando decisiones informadas basadas en la
inferencia causal, utilizando esta comprension para anticipar posibles obstdculos y tomar medi-
das correctivas apropiadas. El objetivo final era aumentar la probabilidad de completar la tarea
con éxito al minimizar los errores y maximizar la eficiencia del agente durante la ejecucion de la
tarea.

7.2. Método

Diseno de la tarea

La tarea implicaba que un agente inteligente navegara a través de un entorno virtual, con
el objetivo de alcanzar la posicion ocupada por otro agente dentro del mismo entorno sin ser
detectado. Las etapas del experimento incluyeron el diseno y configuracion del entorno virtual,
el desarrollo de los agentes explorador (EBOT) y guardidan (GBOT), la recoleccién de datos y
la implementacién del agente causal (CBOT).

Diseno del escenario y configuracion del entorno virtual

Para los experimentos, se utiliz6 Unreal Tournament, un videojuego de tipo First-Person
Shooter que permite a los desarrolladores configurar entornos y programar la légica de los bots
antes de desplegarlos en el mundo virtual. En Unreal Editor [126] se disené el escenario de
pruebas, que consiste en una serie de corredores interconectados, como se muestra en la figura
[7.1] para garantizar el acceso a cualquier punto de interés en el mapa a través de siete rutas
distintas:
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» Path: S-A-C-E-H-K-T

= Path: S-B-D-E-H-K-T

» Path: S-A-C-F-H-K-T

» Path: S-B-D-G-H-K-T

s Path: S-A-C-F-I-K-T

» Path: S-B-D-G-J-K-T

» Path: S-B-D-G-J-M-N-T

Estas rutas fueron cuidadosamente disenadas para garantizar el acceso a varias dreas de interés
en el entorno virtual.

Figura 7.1. Rutas configuradas en el entorno virtual.

Pogamut es un componente crucial que garantiza una interaccién fluida entre los agentes
dentro del entorno virtual. Sirve como una interfaz intermedia que permite controlar a los agen-
tes virtuales en diferentes motores de juego y entornos. Este proporciona una API de Java para
generar y gestionar agentes virtuales, y una interfaz grafica facil de usar para facilitar la depura-
cién [127]. El modelo arquitecténico que soporta la integraciéon del CBOT con el entorno virtual
a través de Pogamut se ilustra en la Figura[7.2]
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Unreal GameBots
Tournament

TCP-IP

Pogamut
Agent Gavialib

JAVA - Plugin €---------- Python

Figura 7.2. Modelo Arquitectonico para la ejecucion del CBOT.

Después de instalar el middleware, se configué el script para lanzar el servidor DeathMatch
y cargar el escenario de prueba disenado especificamente para la tarea. Luego, para desarrollar
los modelos de comportamiento del agente, se utilizé la herramienta Eclipse IDE y la plantilla
EmptyBot predefinida gestionada a través de un repositorio Maven. El proceso de ejecucién de
una partida se muestra en la Figura [7.3]
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"1[ ) Press Fira to View a different Player

)

Ready Press Fire to View a different Player
SPECTATE  JOIN  REFRESH ci £ L

Press Fire to View a different Player

Figura 7.3. Proceso de ejecucién de una partida. (a) Consola. (b) Servidor. (c) Escenario vacio.
(d) Vista GBOT. (e) Vista CBOT.

La secuencia de acciones durante la ejecucion de la partida se resumié en los siguientes pa-
sos: primero, se ejecutd el servidor responsable de cargar el entorno de prueba designado (Figura
). Luego, UT2004 se conect6 a este servidor (Figura ), lo que resulté en la aparicién
del escenario de prueba vacio (Figura ) Posteriormente, desde Eclipse, se lanzaron ambos
agentes (GBOT y EBOT) en el entorno virtual. Las figuras y muestran el punto de
vista de cada agente, respectivamente.

Utilizando Pogamut versién 3.7.0 y Eclipse® versién 4.29.0 (Build 20230907-1323), se de-
sarroll6 una plataforma para disenar, probar e implementar los comportamientos de cada uno
de los agentes y su interaccion con el entorno. Estas herramientas fueron fundamentales para
la ejecucion y prueba de agentes inteligentes dentro de un entorno experimental controlado y
reproducible.
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Desarrollo de los agentes explorador (EBOT) y guardidn (GBOT)

Las caracteristicas de los agentes fueron heredadas de los avatares que interactiian en el
videojuego Unreal Tournament [128]. Sin embargo, se programaron completamente sus modelos
de comportamiento utilizando la API de Pogamut.

Agente guardian (GBOT)

La tarea principal del agente Guardian era eliminar cualquier otro agente que identificara
acercandose a su posicion, siguiendo una alerta del sistema de mensajeria global del entorno
virtual.

Modelo de comportamiento

El agente Guardian fue disenado para mantener una posicion fija en el entorno, con la po-
sibilidad de activar o desactivar sus sensores visual y auditivo. Cuando el sensor visual estaba
activo, y un agente enemigo entraba en su campo de visién, el agente guardian lo identificaba
con éxito. Por otro lado, si el sensor visual estaba inactivo, pero el sensor auditivo estaba activo,
el agente detectaba los pasos que se acercaban y giraba en direccion a la fuente del sonido, pero
no identificaba al agente que producia el sonido. Es decir, detectaba pero no identificaba. Sin
embargo, cuando ambos sensores estaban activos, el agente Guardian detectaba e identificaba
eficazmente al agente que se acercaba, sin importar la direccion. La logica del GBOT se ilustra
claramente en el Algoritmo 5]

Algorithm 5: Modelo de comportamiento del GBOT
Input : agent’s configuration parameters: canSee, canListen
Output: None
1 while true do
if canSee then
player < game.players.getNearestPlayer();
if player is not null then
sendMessage(player, zou've been identified.” );
game.kick(player);

o oA W N

if canListen then
if isHearingNoise then
9 L turnTo(getNoiseSource());

w
ot

Agente Explorador (EBOT)

El objetivo principal del agente explorador consistiéo en navegar por una ruta que lo llevara
a tomar la posiciéon ocupada por el agente GBOT. El entorno ofrecia diversas rutas, lo que
permitia al agente Explorador acercarse al agente GBOT desde diferentes direcciones, ya sea
desde el frente, por ambos costados o desde la parte trasera.
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Modelo de comportamiento

Se crearon dos versiones de este agente. La primera versién, que se utiliz6 para generar el
conjunto de datos, empleé un algoritmo de busqueda no informada. Este agente agente siempre
comenzaba en un punto fijo y elegia aleatoriamente una de las rutas disponibles que lo llevaria a
la ubicaciéon del agente guardian. La segunda versién, que se utilizé para evaluar el rendimiento
del agente causal, utilizaba el algoritmo de busqueda informada A* por su utilidad inherente para
solucionar problemas de busqueda de rutas. La ejecucién del agente terminaba de dos maneras:
si el agente GBOT identificaba al agente explorador o si el agente explorador tomaba con éxito
la ubicacion del agente GBOT. Antes de concluir su ejecucién, el agente explorador registraba
sus datos de rendimiento, que se muestran en la tabla [7.1] Tanto el EBOT de bisqueda no
informada como el EBOT de busqueda informada siguen la 16gica descrita en los algoritmos [6] y
[7, respectivamente.

Tabla 7.1. Estructura del conjunto de datos.

Etiqueta Valor Descripcién

BOT [0...1199] Nimero consecutivo que identifica a cada EBOT
C 1...7] Camino elegido por el EBOT

T Nodes  [1...path length] Longitud del camino

T _Visited [1... path_length] Cantidad de nodos visitados por EBOT

Can_see [0,1] JEl GBOT puede ver?

Can_listen [0,1] . El GBOT puede escuchar?

Outcome  [0,1] . El EBOT completé la tarea?
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Algorithm 6: EBOT- Busqueda no informada

Input : Map of the game: game.map
Output: None
1 g < generateGraph(game.map);

2 IstPaths < getAllPaths(g,S,T);
3 (path, pathld) < choose RandomPath(lstPaths);
4 while true do
5 visited < 0;
6 foreach node in path do
7 agent.moveT o(node);
8 visited < visited + 1;
9 if getMessage() is #ou’ve been identified.” then
10 1d = game.agentld;
11 pathld = pathld,
12 length = path.length;
13 canListen = game.GBOT.canListen();
14 canSee = game.GBOT .canSee();
15 saveData(id, pathld, length, visited, canListen, canSee, 1);
16 return;
17 if node is T then
18 1d = game.agentld;
19 pathld = pathld,
20 length = path.length;
21 canListen = game.GBOT .canListen();
22 canSee = game.GBOT.canSee();
23 saveData(id, pathld,length,visited, canListen, canSee,0);
24 return;
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Algorithm 7: EBOT - Busqueda informada
Data: start, goal
Result: Camino mas corto desde start hasta goal
1 Function Astar(start, goal):

2 openSet < {start};

3 cameFrom < un mapa vacio;

4 | gScore[start] < 0;

5 fScore[start] <— Heuristic (start, goal);

6 while openSet no estd vacio do

7 current < el nodo en openSet con el valor de fScore mas bajo;
8 if current es goal then

9 ‘ return ReconstructPath (cameFrom, current);

10 end

11 openSet.remove(current);

12 foreach neighbor de current do

13 tentativeGScore < gScore[current| + Distance (current, neighbor);
14 if tentativeGScore < gScore[neighbor] then

15 cameFrom|[neighbor| < current;

16 gScore[neighbor| < tentativeGScore;

17 fScore[neighbor] < gScore[neighbor] + Heuristic (neighbor, goal);
18 if neighbor not in openSet then

19 | openSet.add(neighbor);

20 end

21 end

22 end

23 end

24 return emptySet
25 Function Heuristic(node, goal):

N
=}

‘ return | node.x — goal.x | + | node.y — goal.y | +penalty;

La complejidad temporal del algoritmo A* depende tanto de la heuristica elegida como de la
estructura subyacente del grafo. El mejor escenario, definido por una heuristica consistente, tiene
una complejidad computacional de O(d), donde d es la longitud del camino mds corto, mientras
que la naturaleza exponencial del peor escenario puede atribuirse a la presencia de heuristicas
ineficaces o grafos complejos. La complejidad espacial de un grafo se determina por su tamano,
asi como por el nimero de nodos abiertos y cerrados. En circunstancias desfavorables, el costo
computacional también puede ser sustancial debido al espacio de almacenamiento necesario para
retener datos sobre los nodos recorridos.

Recoleccion de los datos

Para recopilar los datos necesarios, Se realizaron 1200 partidas en el entorno de prueba, te-
niendo en cuenta la complejidad de las tareas asignadas a los agentes GBOT y EBOT. Cada
partida siguio la secuencia de lanzar primero el agente GBOT, seguido por el EBOT. Al final de
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cada partida, el agente EBOT registré y almacené los datos relevantes.

La figura[7.4h muestra las posiciones iniciales de los agentes en el entorno virtual al comienzo
de una partida, y la figura proporciona una instantanea del conjunto de datos generado
durante una de estas partidas.

BOT Cc T-Nodes T-Visited Can See Can_Listen Outcome
0 5 25 12 1 0 0
1 5 25 25 0 1 1|
2 2 27 13 1 0 0
3 2 27 13 1 0 0o |
4 4 25 16 1 0 0 |
1195 3 24 24 0 1 1
1196 7 30 30 0 1 1|
1197 2 27 13 1 0 0
1198 3 24 21 1 1 0o |
1199 7 30 26 1 1 0

(b)

Figura 7.4. Ejemplo de una partida y los datos generados.(a) Ubicacién inicial de los agentes.
(b) Dataset generado con las variables de una partida.

Implementacién del agente causal (CBOT)

El papel del agente CBOT es idéntico al del agente EBOT, pero su proceso esta guiado por
inferencia causal antes de entrar al entorno virtual.
Inferencia Causal

El proceso de inferencia causal comenzé cargando los datos de las 1200 partidas. Se uti-
liz6 un modelo causal estructural para estimar la distribucién conjunta del conjunto de datos
[129]. Posteriormente, disenamos el modelo causal, ilustrado en la figura , para proporcionar
informacion adicional en la toma de decisiones del agente CBOT durante su ejecucién.
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Figura 7.5. Modelo causal estructural.

En este modelo, se consideraron dos variables explicativas: la del sensor visual (S) y la del
sensor auditivo (L). El resultado (Y) se determiné en funcién del estado de estos dos sensores, sin
descartar que inicialmente el CBOT tenia formulada la hipotesis de que la activacion de uno de
estos sentidos influia en el éxito de la tarea. Para probar la validez de esta creencia, al consultar
el modelo se predijo el efecto de intervenciones especificas en las relaciones causales, siguiendo
el enfoque propuesto por [120].

Distribucién de Probabilidad Condicional

Una distribucién de probabilidad condicional es una tabla que muestra las probabilidades de
una variable con respecto a otras [50]. Segin [130], estas estructuras permiten realizar consultas
al modelo y razonar sobre los contrafacticos utilizando la ecuacion

P(A|B)=P(ANB)/P(B) (7.1)
Donde:

» P(A| B): Representa la probabilidad de que ocurra el evento A dado que el evento B ya
ha ocurrido.

» P(AN B): Es la probabilidad de que ocurran simultaneamente los eventos A y B.
» P(B): Es la probabilidad de que ocurra el evento B, sin condiciones adicionales.

Se utiliz6 el paquete pgmpy [I31] para generar la distribucién de probabilidad condicional
correspondiente y se realizaron las siguientes consultas:

= ; Qué sucederia si el GBOT pudiera ver y escuchar al mismo tiempo?
= ; Qué sucederia si el GBOT pudiera ver pero no escuchar?

= ; Qué sucederia si el GBOT pudiera escuchar pero no ver?

Para validar los resultados de estas consultas “qué pasaria si” [75], se dividié la muestra
en un grupo de control y un grupo de tratamiento utilizando el paquete causalnex [132]. Esto
permitiéo medir el impacto de cada intervencién, como activar o desactivar un sensor, a través
del efecto promedio del tratamiento (Average Treatment Effect, ecuacién . Al analizar esta

80



medida, pudimos determinar la precision de la creencia del CBOT en su proceso de toma de
decisiones.

KR S 10) B 3 10) (7.2
=1 =1

Resultado total con tratamiento Resultado total sin tratamiento

Donde:

s N: Numero de muestras.

Yo(7): Resultado sin tratamiento para la muestra 7.

Y1(7): Resultado con tratamiento para la muestra i.

1: Indice que representa muestras individuales.

Modelo de comportamiento

Después de llevar a cabo el proceso de inferencia causal, el CBOT obtuvo una comprension
de la causa subyacente del fracaso basada en su creencia sobre el logro de la tarea. Siguiendo un
proceso logico similar al del EBOT, donde el camino se elige al azar, el CBOT ejecuta la ruta
con la mayor probabilidad de éxito.

7.3. Resultados

En el contexto de este experimento, se examiné la evaluaciéon del rendimiento de agentes
en un entorno virtual donde el objetivo principal era que los agentes EBOT se desplazaran
desde un punto inicial hasta la posicién ocupada por un agente guardian GBOT sin ser detecta-
dos por este, cuyo sentido de vision y audicién pueden estar activados o desactivados a demanda.

Dado que esta configuracion tnica no ha sido ampliamente explorada en la literatura académi-
ca consultada, las comparaciones directas con estudios anteriores han resultado dificiles debido
a la falta de estudios completamente andlogos. Como resultado, para situar nuestros hallazgos
en el contexto mas amplio de los métodos de toma de decisiones, llevamos a cabo una evaluacion
considerando métricas clave como la tasa de éxito de la tarea, el consumo de energia de los
agentes y la relacion entre el consumo de energia de estos y sus tasas de éxito y fracaso. Si bien
estudios anteriores se han centrado en diferentes enfoques y contextos, el analisis comparativo
que se realizé hizo posible discutir las implicaciones de estos hallazgos en el contexto de la toma
de decisiones mediada por la inteligencia artificial.

Inferencia causal

Al calcular la distribucién de probabilidad condicional, como se muestra en la tabla [7.2]
fue posible consultar el modelo causal para responder preguntas contraficticas. Esto permitié
determinar la probabilidad de éxito (Y = 1) o fracaso (Y = 0) para cada combinacién de estados
o posibles valores de las variables explicativas (L, .S).
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Tabla 7.2. Distribucion de probabilidad condicional del modelo causal estructural.

L L(0) L(0) L(1) L(1)
S S(0) S(1) S(0) S(1)

Y (0) 0.5 0.8204 0.0 1.0

Y(1) 0.5 0.1795 1.0 0.0

El CBOT creia que el éxito en la ejecucion de la tarea estaba determinado por uno de los
sensores del GBOT, lo que requeria intervenciones en ambos sensores para reforzar esta creencia.
La Figura[7.6|ilustra los efectos de las intervenciones resultantes de las consultas al modelo, con
el objetivo de deducir la causa del fracaso en la tarea.

0.2

0.0

Average Treatment Effect (ATE)

T T
L=0,5=1 L=1,5=0
Interventions

Figura 7.6. Efecto de las intervenciones.

Si el GBOT podia ver y escuchar (S = 1, L = 1), la probabilidad de fracaso (Y = 0) expre-
sada como P(Y =0|S =1,L = 1) = 1,0 fue absoluta, lo que implicaba que no habia posibilidad
de lograr la tarea. A pesar de reforzar la creencia del CBOT, no fue posible identificar qué sensor
determiné el éxito de la tarea.

Por otro lado, si el GBOT podia ver pero no escuchar (S = 1, L = 0), la probabilidad de
fracaso (Y = 0) expresada como P(Y = 1|S = 1,L = 0) = 0,8204 fue del 82 % independiente-
mente de la ruta tomada, de manera que activar el sensor de visién (S = 1) tuvo un impacto
desfavorable en la variable de interés (Y') con un efecto de ATE = —0,888. La creencia del
CBOT se reforzo, lo que permitié hacer una primera inferencia con considerable certeza sobre
qué sensor determiné el éxito de la tarea.

Finalmente, si el GBOT no podia ver pero podia escuchar (S = 0,L = 1), la probabilidad

de fracaso (Y = 0) expresada como P(Y =1|S =0,L = 1) = 0,0 fue nula, independientemente
de la ruta tomada, de manera que, en este caso, activar el sensor auditivo (L = 1) tuvo un
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impacto favorable en la variable de interés (Y') con un efecto de AT E = 0,304, siempre y cuando
el sensor de vision permaneciera inactivo (S = 0). Esto reforzé la creencia de que el sensor de
visién determiné el éxito de la tarea.

Evaluacién del rendimiento de CBOT

El rendimiento de CBOT se comparé con dos EBOTs: uno que utiliza un algoritmo de
busqueda a ciegas (sin informacién) y otro un algoritmo de bisqueda informada (A*). La Tabla
[7.3] presenta los resultados de 250 partidas en el mismo escenario de prueba.

Tabla 7.3. Resultado de evaluacién del desempeno.

Agente Légica Aciertos Fallos Tasa de acierto Tasa de fallos Energia
EBOT-US* Random search 75 175 30 70 76.39
EBOT-ISP A* 198 52 79.2 20.8 37.7
CBOT Causal inference 205 45 82 18 35.4

2 EBOT con biisqueda no informada. ® EBOT con biisqueda informada.

Como se esperaba, el EBOT con el algoritmo de busqueda ciega tuvo un rendimiento defi-
ciente en comparacion con los demas en la Figura El CBOT super6 por poco al EBOT con
A*, principalmente porque el cdlculo heuristico de este tltimo incluia una penalizacién por ser
detectado mientras calculaba la ruta, considerandolo un fracaso. Sin embargo, el comportamiento
de este EBOT se basé en un cédlculo heuristico que no tenia en cuenta elementos causales.

Success

2007 Failure

175 4

150 4

125 4

100 4

Success Vs. Failure

759

50 A

25 1

T T T
EBOT - Uninformed search EBOT - A* CBOT - Causal inference
Agent

Figura 7.7. Resultados de validacién.

La Figura [7.8 muestra un analisis de la tasa de éxito de los agentes en relacién con el estado
del sensor de vision del GBOT. Se observa una diferencia significativa entre los casos en los que
el sensor de visién esta activado y los casos en los que estd desactivado. La capacidad de evadir
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la deteccion es considerablemente mas efectiva cuando el agente enemigo no puede utilizar su
sentido de la vista para rastrearlos, lo cual sucede cuando el sensor de visién esta desactivado.

100

80 1

60 7

40

Success Rate (%)

204

(‘4
%
O

Figura 7.8. Tasa de éxito segtn el estado del sensor de vista.

La figura [7.9) presenta un andlisis de la relacién entre el consumo de energia de los agentes
y el estado del sensor de vision del agente enemigo. Es evidente que los agentes que operan
en un entorno donde el sensor de vision estd desactivado consumen menos energia que aquellos
que operan en entornos donde el sensor de vision esta activado. Este hallazgo ilustra cémo la

capacidad de evadir la deteccién visual puede afectar la eficiencia con la que los agentes utilizan
sus recursos energéticos.

80

70 4

60

50

40 -

Energy

30 A

20 A

10 4

T T T
E-BOT Usearch E-BOT Isearch CBOT
Agent

Figura 7.9. Consumo de energia segun el estado del sensor de vista.
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La figura ilustra la relacién entre el consumo de energia y la deteccion por parte de
GBOT. Como se puede observar, el consumo de energia generalmente es menor en los casos
en los que los agentes no son detectados. Sin embargo, esta relaciéon presenta algunos valores
atipicos que sugieren cierto grado de variacion. Por lo tanto, aunque existe una correlacion entre
la deteccion y el consumo de energia, otros factores, como la presencia de un sensor de escucha,
también podrian afectar este factor.

Unidentified

Detection

Identified

T T T T T
0 25 50 75 100 125 150 175
Consumption Energy

Figura 7.10. Consumo de energia Vs. Identificacion de los EBOT.

7.4. Conclusiones

En este experimento, se explord la convergencia entre agentes inteligentes e inferencia causal.
Los hallazgos proporcionaron una nueva perspectiva sobre los efectos transformadores de incor-
porar el razonamiento causal en la ejecucién de tareas y la toma de decisiones, otorgando asi
una ventaja competitiva a los agentes.

La aplicacién de la inferencia causal en el CBOT mostré una ventaja significativa sobre las
metodologias alternativas. Proporcioné una comprension profunda de las causas detrds de los
eventos de deteccién, permitiendo al CBOT tomar decisiones inteligentes y disenar planes que
optimizaran la finalizacion de tareas. En contraste, los agentes EBOT se basaban tnicamente
en la seleccién aleatoria de rutas, lo que requeria una comprension exhaustiva de los factores
influyentes. Del mismo modo, el GBOT se enfocaba en la eliminacion de agentes sin considerar
explicitamente las relaciones causales.

Este experimento resalté la importancia de las distribuciones de probabilidad condicional
para comprender las posibles eventualidades y validar hipétesis. Sin embargo, también puso de
manifiesto la naturaleza contextual de estos métodos, como lo destacado por [I33], subrayan-
do la importancia de las técnicas de razonamiento para los agentes inteligentes que operan en
entornos de simulacién fisica diversos. Ademas, evidencié el potencial de agregar la inferencia
causal a agentes inteligentes, especialmente en situaciones donde los sensores pueden indicar qué
comportamientos son causados, lo que facilitaria la toma de decisiones méas acertadas.
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Capitulo

Incorporacion de la inferencia causal en el
procedimiento de muestreo de una Deep
()-Network para resolver problemas de control
clasico

8.1. Objetivo

El objetivo de este experimento fue desarrollar una Deep Q-Network que integrara un método
de muestreo basado en la inferencia causal. Esta red neuronal tenia como propdsito aprender
a equilibrar de manera efectiva un poste vertical sobre un carrito mévil mediante un conjunto
limitado de operaciones, especificamente movimientos hacia la izquierda o derecha. A través de
un diseno experimental, se evalud cémo el uso del muestreo basado en la inferencia causal afecta
el rendimiento de la Deep Q-Network en comparacién con el método tradicional de muestreo
aleatorio que se hace sobre el replay buffer del agente.

8.2. Método

Diseno de la tarea

El entorno CartPole provisto por OpenAl Gym, conocido como un ejemplo clasico en el
campo del aprendizaje por refuerzo, fue seleccionado como el escenario experimental para este
experimento [134]. La tarea del CartPole consiste en mantener el equilibrio vertical de un poste
mediante dos acciones diferentes: moviendo el carro hacia la izquierda o hacia la derecha.

La idea fue implementar una Deep Q-Network que permitiera a un agente el aprendizaje de
una politica que solucionara dicha tarea; asi, esta implementaciéon se llevé a cabo utilizando el
framework PyTorch [I35], mientras que el procedimiento de muestreo basado en la inferencia
causal fue desarrollado utilizando los médulos scikit-learn [136] y SciPy [137].
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Deep Q-Network (DQN)

La red neuronal profunda utilizada en este estudio, como se ilustra en la figura [8.1], siguié
una arquitectura convencional para el aprendizaje profundo por refuerzo. La capa de entrada
recibié observaciones del entorno. Se establecié una capa oculta compuesta por 128 neuronas,
cada una de las cuales utiliz6 la funcién de activaciéon Rectified Linear Unit (ReLU) que por sus
caracteristicas resulta ser util en neuronas de capas intermedias. Ademas, se cre6 una capa de
salida que contenia dos neuronas para cada accién en la tarea de CartPole.
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Entrenamiento de la Deep Q-Network

El procedimiento de entrenamiento de la Deep Q-Network siguié metodologias bien esta-
blecidas en el campo del aprendizaje por refuerzo, tomando como referencia el algoritmo de
Q-learning como marco fundamental [I38]. A lo largo del procedimiento de entrenamiento, la
Deep Q-Network se integré en un patron recurrente de episodios en los cuales interactuaba con
el entorno. Segun la informacién proporcionada en la publicacién de [139], el agente en cuestién
elegiria una accion de un conjunto predefinido de acciones durante cada episodio. Esta accién
seleccionada luego se aplicaria al entorno de prueba, lo que resultaria en alteraciones tanto en
la recompensa que obtenia el agente, como en el conjunto de acciones (transiciones) que habia
ejecutado durante su fase de entrenamiento.

Para asegurar una exploracion efectiva y un equilibrio entre la exploracion y la explotacién,
se implementé un mecanismo de exploracién-explotacion basado en la politica epsilon-greedy
segin lo recomendado por [140]. Esto implicé que para cada iteracién, el agente seleccionaria
una acciéon mediante uno de dos enfoques potenciales: exploracion o explotacion. El proceso de
exploracion implica seleccionar acciones al azar con una probabilidad denotada como €. Por el
contrario, la explotacién implica seleccionar la accién con el valor ”(Q”mas alto basado en la
politica actual, con una probabilidad de 1 — e.

Lo novedoso de este enfoque de entrenamiento radicé en como se manejo el replay buffer. El
replay buffer es una parte clave del aprendizaje profundo por refuerzo, que ayuda a aprender
mediante el uso de transiciones de muestra [141]. La utilizacién de un replay buffer facilité el al-
macenamiento y la recuperacién de transiciones histéricas del entorno, lo que permitié al agente
adquirir conocimientos a partir de experiencias previas. No obstante, el experimento implementé
una metodologia novedosa al modificar dindmicamente las prioridades de las transiciones alma-
cenadas en el replay buffer.

Para aplicar técnicas de inferencia causal para examinar una transicion en el replay buffer
derivé en analizar la accion que tomo el agente en cada episodio. Segun [142], si el valor p de-
rivado del analisis estadistico resultaba ser menor que el nivel de significancia predeterminado
(c), indicando una disparidad estadisticamente significativa en la longitud media de equilibrio
resultante de la intervencion, se asignaba una prioridad correspondiente a la transicién respec-
tiva. Al enfatizar las transiciones que tuvieron un impacto significativo en su rendimiento, esta
técnica facilité la capacidad del agente para aprender de manera mas eficiente.

En sintesis, el procedimiento de entrenamiento de la Deep Q-Network se siné a enfoques
convencionales en el campo del aprendizaje por refuerzo. Sin embargo, introdujo un aspecto
novedoso al integrar la inferencia causal en el mecanismo de priorizacién del manejo del replay
buffer. Esto permiti6 al agente mejorar su eficiencia de aprendizaje y, en tltima instancia, mejorar
su rendimiento en el problema de control clasico.

Muestreo Basado en Inferencia Causal

La metodologia implico la integracion de un procedimiento de inferencia causal en tiempo
real en el enfoque de muestreo del replay buffer. Para cada transicion de experiencia almacenada
en el replay buffer, se llevé a cabo un andlisis de inferencia causal especificamente sobre la
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accion del agente. El objetivo de este enfoque consistié en evaluar el impacto de priorizar las
transiciones en el proceso de muestreo, basandose en la presencia o ausencia de una diferencia
causal significativa, en la recompensa obtenida. La hipdtesis nula se confirmé cuando no se
observo una diferencia causal estadisticamente significativa, lo que indicé que la acciéon no tuvo
un impacto significativo en la recompensa obtenida. El resultado se logré ajustando la prioridad
de la transicion en el replay buffer, considerando la magnitud de la diferencia causal identificada.
El algoritmo [§, muestra los pasos en los que se incorporé la prioridad determinada por la
inferencia causal.

Algorithm 8: Proceso para agregar transiciones al replay buffer con inferencia causal

Require: state, action, nextState not Null
Require: rwd, episode_dur > 0

if current_episode < MIN_EPISODES then
T <« Transition(state, action, nextState, rwd);
replay_memory.push(T, episode_dur);
priorities.push(0);
end
else
psl < calc_prop_score(action = left);
ps2 < calc_prop_score(action = right);
match < KNN (psl, ps2);
T < Transition(state, action, nextState, rwd);
replay_memory.push(T, episode_dur);
has_significant dif f,dif f < calc_dif_dur_avg(match, psl, ps2);
if has_significant_dif f then
‘ priorities.push(dif f);
end
else
‘ priorities.push(0);
end
adjust_priorities(has_significant_dif f,dif f);
end

La variable state corresponde a la representacién actual del entorno durante la simulacion.
Para el problema del CartPole, el estado tipicamente comprende cuatro variables separadas:
Posicion de la rueda: denota la ubicacién actual de la rueda en un eje horizontal.

Velocidad del carrito: se refiere a la velocidad a la que el carrito se desplaza en direccion
horizontal.

Angulo del péndulo: se refiere a la inclinacién actual del poste en relacién con su posi-
cion vertical.

Velocidad angular del péndulo: coresponde a la tasa instantanea a la que el poste se
mueve en direccién hacia adelante o hacia atras.
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= La variable action denota el desplazamiento lateral del carrito, que es una acciéon funda-
mental para mantener el equilibrio en el péndulo.

» La variable nextState dicta la nueva configuracién del sistema después de que el agente
ejecuta una accién particular.

= La variable rwd representa las recompensas acumulativas obtenidas durante cada episodio.

La variable episode_dur especifica la duracién o longitud de cada episodio en el proceso de
simulacién.

Priorizacién de Transiciones

Para priorizar las transiciones en el replay buffer, basandose en la inferencia causal, se utilizo
el propensity score matching [143], una técnica de la teoria causal que se basa en calcular
puntajes (8.1), que representan la probabilidad condicional de tomar una accién especifica dado
un conjunto de caracteristicas.

PS(T | X) = P(T| X) (8.1)

Donde P(T | X) se estima a partir de los datos de entrenamiento. Estos puntajes de Pro-
pension se usaron para emparejar transiciones con acciones ligeramente distintas, calculando la
diferencia promedio en las duraciones de los episodios entre transiciones con T'=1y T = 0.

Asi entonces, se determiné 7' cémo la accién tomada por el agente (por ejemplo, mover hacia
la izquierda o hacia la derecha), Y como la duracién del episodio, y X como un conjunto de
caracteristicas observadas (por ejemplo, el estado del entorno). Luego, se aplicé el propensity
score matching para estimar el efecto causal de T en Y controlando las diferencias en X.

Las prioridades de las transiciones se ajustaron segun la diferencia causal estimada, como se
muestra en la ecuacion [8.2] para una transicion i.

Priority(i) = |EstimatedCausal Dif ference(i)| (8.2)

La diferencia causal estimada se obtuvo mediante el emparejamiento de estos puntajes, por
lo tanto, si la diferencia causal es significativa (valor —p > «), se asigna una alta prioridad; de
lo contrario, la prioridad es cero. Donde « corresponde al nivel de significancia en la prueba de
hipdtesis para determinar si la diferencia causal es estadisticamente significativa o no [144].

Muestreo Basado en Prioridades

Durante el proceso de muestreo del replay buffer, la eleccién de las transiciones se llevé a
cabo considerando su prioridad. Las probabilidades de seleccién P(i) para cada transicién i se
definieron siguiendo la ecuacién (8.3).
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Priority(e
Pi) = rity(i).
> Priority(j)
Esto garantizé que las transiciones con prioridades més altas tuvieran una probabilidad

mayor de ser seleccionadas durante el proceso de muestreo, mientras que aquellas con prioridades
cercanas a cero tuvieron una probabilidad muy baja.

(8.3)

Validacién Experimental

Para evaluar el rendimiento del enfoque de muestreo basado en la inferencia causal, se realizé
una comparacion rigurosa con un enfoque tradicional de muestreo aleatorio, por lo cual se imple-
mentaron dos versiones de la Deep Q-Network con configuraciones idénticas, excepto por cémo
se gestionaba el replay buffer como se describe a continuacién:

Deep Q-Network con muestreo basado en inferencia causal Esta iteracion de la Deep
Q-Network implemento el proceso de muestreo basado en inferencia causal descrito previa-
mente. Las transiciones almacenadas en el Replay Buffer fueron priorizadas en funcién de
la magnitud de la diferencia causal estimada, lo que resulté en un muestreo no uniforme.
El agente de aprendizaje utilizé estas muestras para actualizar su politica y mejorar su
rendimiento en CartPole.

Deep Q-Network con Muestreo Basado en Inferencia Causal La version de la Deep Q-
Network con muestreo aleatorio seguia la practica estdndar de seleccionar transiciones de
manera aleatoria y uniforme del replay buffer. Estas transiciones se elegian sin tener en
cuenta ninguna inferencia causal, lo que refleja el enfoque tradicional del aprendizaje por
refuerzo.

Métricas de Evaluacion

Durante el proceso de entrenamiento de la Deep Q-Network con muestreo basado en inferencia
causal, se utilizaron diversas métricas para evaluar el rendimiento y el comportamiento del agente
en el entorno del problema de control clasico. Estas métricas se calcularon para cada episodio y
proporcionaron la informacion relativa a la capacidad de aprendizaje y exploracion del agente.
Las métricas clave incluyen:

Recompensa acumulativa o Duracion Esta métrica representa la recompensa total obteni-
da por el agente en un episodio. La recompensa acumulativa, también denominada duracién
en ciertos escenarios, indica la suma total de las recompensas obtenidas por el agente dentro
de un episodio particular en un entorno de aprendizaje por refuerzo. Esta métrica es funda-
mental para evaluar la eficiencia del agente en lograr sus objetivos dentro del entorno dado.

En un entorno de control clasico, como el entorno de CartPole, la duracion esté intrinse-
camente relacionada con la capacidad del agente para mantener el sistema en un estado
equilibrado durante un periodo de tiempo dado. La duraciéon se define como el ntimero
de pasos de tiempo, o iteraciones, durante los cuales el agente logra mantener el sistema
estable antes de que se alcance un criterio de finalizacion predefinido.
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El célculo de la recompensa acumulativa, como se muestra en ({8.4)), se obtiene sumando las
recompensas individuales R; adquiridas en cada paso de tiempo t a lo largo de un episodio
completo.

T
CR=) R (8:4)
t=1

Pérdida acumulativa La pérdida acumulativa representa la pérdida total experimentada por
la red neuronal durante un episodio. Esta métrica se calcula sumando las pérdidas en cada
paso de tiempo y puede utilizarse para evaluar la capacidad de adaptacion del modelo
Deep Q-Network.

Porcentaje de Exploraciéon Este valor representa la proporcién de acciones que fueron selec-
cionadas mediante exploracion en lugar de explotacién durante el episodio. La exploracion
se realiza seleccionando acciones al azar, mientras que la explotacién elige la accion con el
mayor valor esperado segin la politica actual. Un alto porcentaje de exploracion indica un
agente que continiia explorando nuevas acciones.

Porcentaje de Explotacion Este valor es el complemento del porcentaje de exploraciéon y
representa la proporcién de acciones seleccionadas a través de la explotacion en lugar de
la exploracion. Un alto porcentaje de explotaciéon sugiere que el agente depende mas de su
conocimiento adquirido para seleccionar acciones.

Entropia de la Politica de la Red La entropia es una medida de la incertidumbre en la
politica del agente. Se calcula a partir de las probabilidades de seleccién de acciones.
Una entropia alta indica una politica incierta y exploratoria, mientras que una entropia
baja indica una politica mas determinista.

Al calcular y registrar métricas para cada episodio durante el proceso de entrenamiento de la
Deep Q-Network, el estudio evalué qué tan bien funcionaba agregar inferencia causal al aprendi-
zaje por refuerzo. Especificamente, se realizd una comparacion entre el rendimiento del algoritmo
de Deep Q-Network con muestreo basado en inferencia causal y el algoritmo de Deep Q-Network
con muestreo aleatorio.

Es esencial destacar que las métricas utilizadas en este experimento han demostrado ser
altamente informativas para evaluar tanto el rendimiento como la exploraciéon del agente. Estas
métricas han establecido la base para el analisis adicional y las conclusiones derivadas de este
experimento, pues ambas variantes de la Deep Q-Network fueron evaluadas a lo largo de multiples
episodios de entrenamiento, registrando métricas relevantes en cada episodio. Se compararon
sus resultados de rendimiento en términos de duracién del episodio, recompensa acumulativa,
pérdida acumulativa, porcentaje de exploracion, porcentaje de explotacién y entropia de las
politicas aprendidas.

8.3. Resultados

Se presentan los resultados obtenidos utilizando la metodologia de muestreo basada en infe-
rencia causal dentro del marco de la Deep Q-Network. Durante las distintas sesiones de entre-
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namiento y evaluacion, se recopilé una gran cantidad de datos que ofrecen una vision detallada
sobre la eficacia y las implicaciones de integrar la inferencia causal en el proceso de muestreo de
la Deep Q-Network.

Comparacion de rendimiento entre modelos con muestreo basado en inferencia cau-
sal y muestreo aleatorio en diferentes configuraciones de redes neuronales

Se realizé una evaluacién de diez modelos de Deep Q-Network en el entorno de aprendizaje
por refuerzo CartPole. Estos modelos se pueden dividir en dos grupos distintos: cinco de ellos
aplican técnicas de muestreo basadas en inferencia causal en el replay buffer, mientras que los
otros cinco utilizan métodos convencionales de muestreo aleatorio. La diferencia principal entre
estos dos grupos reside en su enfoque para manejar la seleccién de transiciones durante el entre-
namiento de la Deep Q-Network.

El experimento involucré la configuracién de diversas arquitecturas de redes neuronales para
cada grupo de modelos. Esto implicé la implementacién de dos metodologias de muestreo: una
basada en inferencia causal y otra utilizando muestreo aleatorio. Para estas configuraciones, fue
necesario ajustar el nimero de neuronas en la capa oculta. Se establecié un nivel de significancia
de o = 0,05 para el experimento. El tamano de la muestra se determiné en funcién del tamano de
la memoria de repeticion del agente, mientras que el tamano del lote se mantuvo constante en 64.

Se observd como se comportéd el rendimiento de la Deep Q-Network al emplear muestreo
basado en inferencia causal en diversas situaciones de modelado de la funcién @), utilizando di-
ferentes arquitecturas de redes. La tabla proporciona una vision general exhaustiva de los
resultados recopilados, mostrando diversas métricas y sus abreviaturas correspondientes.

Las métricas incluyen el modelo utilizado, el nimero de capas ocultas (NHL) y las técnicas
de muestreo utilizadas, como muestreo basado en inferencia causal (CIS) y muestreo aleatorio
(RS). Ademsds, también presenta métricas relacionadas con la recompensa promedio (AR), la
exploracién promedio (AER) y la explotacién promedio (AET).

Tabla 8.1. Métricas de rendimiento de modelos con muestreo basado en inferencia causal y
muestreo aleatorio.

Model NHL CIS RS AR AER AET

1 8 X 119.5 44.30 75.20
2 8 X 116.95 44.20 72.75
3 16 X 120.75 44.85 75.90
4 16 X 148.15 45.80 102.35
5 32 X 125.05 44.60 80.45
6 32 X 120.2 4445 75.75
7 64 X 1329 4545 87.45
8 64 X 1179 45775 72.15
9 128 X 131.9 45.35 86.55
10 128 X 34595 62.35 283.60
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Es evidente que, en tres de los cinco grupos, la Deep Q-Network con muestreo basado en
inferencia causal exhibié un rendimiento superior en comparacién con la Deep Q-Network con
muestreo aleatorio. Sin embargo, es importante tener en cuenta que la arquitectura y la confi-
guracién del modelo tienen un impacto significativo en su rendimiento. Entre los tres modelos
considerados, el de la Deep Q-Network con muestreo basado en inferencia causal destacd por su
rendimiento notable. Para propoésitos de evaluacion, se optoé por el modelo 7, el cual demostréd
un rendimiento superior, al igual que su contraparte, el modelo 8.

Comparaciéon de modelos de proceso de Markov y la Deep Q-Network con muestreo
basado en inferencia causal

Se compararon dos modelos de proceso de Markov en el escenario de control CartPole de
OpenAl Gym [134] (figura[8.2)), y se observaron disparidades significativas en términos de rendi-
miento y efectividad. El modelo inicial, desarrollado internamente y presentado en el algoritmo
9], alcanza una recompensa promedio de 29.806. Aunque este modelo produce resultados acepta-
bles, el otro modelo evaluado exhibe un rendimiento superior.

El segundo modelo, [145], muestra una recompensa media notablemente elevada, alcanzando
un valor de 96.15. La mejora sustancial en el rendimiento implica la utilizacion de estrategias mas
refinadas en contraste con el modelo inicial. Por otro lado, el modelo Deep Q-Network, que se
basa en inferencia causal para su procedimiento de muestreo, alcanza una recompensa promedio
de 20.17. Aunque este modelo demuestra un rendimiento ligeramente inferior en comparacién
con los modelos de proceso de Markov, vale la pena mencionar que los tres modelos muestran
diferentes niveles de éxito al abordar el problema de CartPole. La variacion en los resultados
entre estos modelos resalta la importancia de la metodologia de diseno y la incorporacién de
técnicas particulares en algoritmos de aprendizaje por refuerzo.

-

CartPole MountainCar

Figura 8.2. Entornos de prueba CartPole y MountainCar.
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Algorithm 9: Calculo de recompensas en el entorno CartPole usando el proceso de
Markov

Input: env, policy, render
1 Function DiscretizeAngle(angle):

2 if angle > 0 then

3 ‘ return 1

4 end

5 else

6 ‘ return 0

7 end

8 observation < env.reset();

9 total_reward < 0;
10 for t =1 to 1000 do

11 if render then

12 | env.render();

13 end

14 angle < observation|2] state <— DiscretizeAngle(angle) action < policy(state)

observation, reward, done, _, _ < env.step(action);

15 total_reward < total_reward + reward,

16 if done then

17 ‘ break;

18 end

19 end

20 return total_reward,

Rendimiento de la Deep Q-Network en los entornos de MountainCar y CartPole

Se evalué el rendimiento de la Deep Q-Network en el entorno de OpenAl Gym, especificamen-
te empleando muestreo basado en inferencia causal en el escenario de MountainCar. El modelo
mostré una recompensa promedio de -175, lo cual es significativamente menor que la recompen-
sa promedio original de 20.17 en el escenario de CartPole. En el escenario de MountainCar, el
proceso de toma de decisiones abarcé tres variables distintas para cada estado, mientras que en
CartPole solo estan involucradas dos variables. En el entorno de MountainCar, el objetivo princi-
pal es subir la montana, lo que generalmente conduce a una disminucion en la recompensa total.
La presencia de una recompensa promedio negativa indica que existe la necesidad de mejorar y
optimizar el modelo. La influencia de la complejidad de las variables y el nimero de episodios de
entrenamiento en el proceso de aprendizaje es evidente, lo que resalta la importancia de tener
una cantidad suficiente de datos en el replay buffer para mejorar la precisiéon del proceso de
inferencia causal.

Meétricas de Evaluacién

Para evaluar la efectividad de integrar inferencia causal en el proceso de muestreo de la
Deep Q-Network, se recolectaron y analizaron diversas métricas de evaluacion durante la fase
de entrenamiento y las interacciones entre el agente y el entorno en un escenario de control
estandar. Estas métricas brindan una visién integral del rendimiento de los modelos en términos
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de aprendizaje, exploracion, explotacion y estabilidad durante la resolucion de tareas de control.
En la evaluacién del rendimiento de los modelos 7 y 8, se observaron diferencias notables
en su comportamiento y rendimiento en el problema de control clasico. Como se muestra en la
figura 8.3 el modelo 7, que utilizé el muestreo basado en inferencia causal como parte de su
proceso de aprendizaje, tiende a obtener mas recompensas en cada episodio de entrenamiento
que el modelo 8. Este hallazgo sugiere que la integracién de la inferencia causal en el muestreo
puede conducir a una mejora en la capacidad del agente para alcanzar un rendimiento mas alto
en términos de recompensas acumuladas. Ademads, se observa que los episodios en el modelo 7
tienden a durar ligeramente mas en comparacion con el modelo 8. La duracién de los episodios
es un indicador de la estabilidad del controlador, y estos resultados sugieren que el modelo 7
puede ser mas efectivo en mantener el sistema en un estado equilibrado durante mas tiempo.

Cumulative Sum of Rewards per Episode

— DQN with Causal Inference-Based Sampling
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Figura 8.3. Recompensa Acumulativa: Muestreo Basado en Inferencia Causal vs. Muestreo
Aleatorio en Deep Q-Network

Sin embargo, como se muestra en la figura un aspecto interesante es la divergencia
en las estrategias de exploracién entre los dos modelos. A pesar de alcanzar recompensas mas
altas y episodios més largos, el modelo 7 exhibié un aumento en el porcentaje de exploracién
en comparacion con el modelo 8. Este aumento en la exploraciéon puede indicar que el Modelo
7 continud explorando un rango mas amplio de acciones, incluso cuando su rendimiento fue
superior.
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Exploration of DQNs

1.0 — Exploration of DQM with Causal Inference-Based Sampling
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Figura 8.4. Porcentaje de Exploracién: Muestreo Basado en Inferencia Causal vs. Muestreo
Aleatorio en Deep Q-Network

Por otro lado, como se ilustra en la figura 8.5, el modelo 7, aunque tuvo un porcentaje de
exploracion mas bajo, muestra un porcentaje de explotacion mas alto en sus acciones. Este
equilibrio entre exploracion y explotacion es una caracteristica importante del aprendizaje por
refuerzo y puede influir en la efectividad general del agente.
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Exploitation of DQNs
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Figura 8.5. Porcentaje de Explotacién: Muestreo Basado en Inferencia Causal vs. Muestreo
Aleatorio en Deep Q-Network

En cuanto a las métricas de pérdida en la figura[8.6, el modelo 8 muestra valores de pérdida
acumulada méas bajos en comparacién con el modelo 7. Esto puede indicar una convergencia mas
rapida o una adaptacién mas efectiva del Modelo 8 a las recompensas y transiciones del entorno.
Esto también confirma lo mencionado por [146)], "la priorizacién en el replay buffer podria ralen-
tizar el aprendizaje”. No obstante, es importante considerar que la pérdida no necesariamente es
el tinico indicador de rendimiento, y otras métricas como las recompensas acumuladas también
son cruciales para evaluar el rendimiento del agente.
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Figura 8.6. Pérdida Acumulativa: Muestreo Basado en Inferencia Causal vs. Muestreo
Aleatorio en Deep Q-Network

Un aspecto intrigante se relaciona con la entropia de las politicas aprendidas en ambos
modelos. En la figura se observa que la entropia de la politica del modelo 7 se mantuvo
consistentemente por encima de la del modelo 8, y ambos mostraron un aumento considerable
en cada episodio. Este fendémeno puede interpretarse como una senal de que una politica con
alta entropia es més exploratoria, ya que tiende a considerar un factor de ajuste () més amplio
de acciones de manera equitativa. Por otro lado, una politica con baja entropia se vuelve méas
determinista y predecible en sus acciones. La presencia de alta entropia en el modelo 7 pudo estar
relacionada con el grado de exploracién y la capacidad para descubrir estrategias mas diversas.
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Policy Network Entropy
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Figura 8.7. Entropia de la Politica aprendida: Muestreo Basado en Inferencia Causal vs.
Muestreo Aleatorio en Deep Q-Network

En general, estos resultados resaltan la influencia de la inferencia causal en el proceso de
aprendizaje por refuerzo. Si bien el modelo 7 mostré una tendencia hacia la obtencién de re-
compensas mas altas y episodios mas largos, su estrategia de exploracién y la alta entropia de
la politica despertaron interés en comprender cémo se equilibran la exploracion y la explotacion
en la toma de decisiones del agente. Estos hallazgos enfatizan la complejidad de integrar la in-
ferencia causal en el aprendizaje por refuerzo y sugieren que su impacto puede variar segun el
contexto del problema y los objetivos del agente.

8.4. Conclusiones

En este experimento, se evalué el rendimiento de dos modelos de Deep Q-Network con ar-
quitecturas de redes neuronales idénticas pero empleando dos enfoques de muestreo diferentes:
muestreo basado en inferencia causal y muestreo aleatorio. Los hallazgos revelan diferencias sig-
nificativas en el comportamiento y rendimiento de estos modelos en el contexto de un problema
de control clasico.

Los resultados indican que la integracion de la inferencia causal en el muestreo de una Deep
Q-Network puede mejorar su rendimiento en términos de duracién del episodio y recompensas
acumuladas en problemas de control clasicos. Sin embargo, también se observaron diferencias en
la exploracién y la entropia de la politica, subrayando la importancia de considerar cuidadosa-
mente el equilibrio entre exploracion y explotaciéon en el disenio de algoritmos de aprendizaje por
refuerzo.
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A través de la implementacién de esta estrategia, el objetivo no fue solo evaluar la eficacia
numérica de los modelos, sino también adquirir una comprensién mas profunda de su capacidad
para ajustarse y aplicarse a diversas circunstancias.

El muestreo basado en inferencia causal generé conocimientos que pueden eventualmente

mejorar el progreso de los algoritmos de aprendizaje por refuerzo mediante Deep Learning,
permitiendo soluciones mas flexibles y resilientes a problemas complejos del mundo real.
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Capitulo

Resultados

En esta estudio, se realizaron cinco experimentos para investigar la integracion de la inferencia
causal en procesos de Machine Learning. Cada experimento abordé aspectos especificos de esta
integracién y proporciono informacién relevante sobre su efectividad y aplicabilidad en diferentes
contextos.

9.1. Experimento 1: Simulacion y visualizacion del fenémeno
interaccion luz-materia

El primer experimento tuvo como objetivo simular la distribucién del valor de iluminancia
en un dominio espacial 3D con diversas configuraciones de iluminacién. Los resultados de este
experimento proporcionaron una linea base para la visualizacién de resultados en experimentos
posteriores.

En el primer ejercicio de visualizacion, se observo una distribucién uniforme de la luz, pero
con detalles perdidos debido a una singularidad en los calculos.
En el segundo ejercicio, al evitar esta singularidad, se mejord la visualizacién de la propagacion
de la luz en zonas mas alejadas de la fuente luminica. Sin embargo, atin no se logré una cobertura
total del area de interés.
En el tercer ejercicio, se combinaron los calculos reales de iluminancia con la visualizacién me-
jorada del segundo ejercicio, aunque se utilizo la técnica del falso color para una representacion
mas clara de los datos. Ademas, se demostré la asimetria en la distribucién de la iluminancia al
introducir multiples fuentes luminicas.

Patrones emergentes: Los resultados de este experimento destacaron la importancia de con-
siderar singularidades en los calculos de iluminancia para una visualizacién precisa. Ademas, se
demostré la capacidad de las técnicas de visualizacion para mejorar la comprension de fendmenos
fisicos complejos.
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9.2. Experimento 2: Estimacion de valores de iluminancia
mediante Deep Learning

Este experimento se centrd en el desarrollo de modelos de redes neuronales para estimar el
valor de iluminancia en un espacio tridimensional, teniendo en cuenta configuraciones precisas
de fuentes de luz -determindas en el primer experimento-. Se evaluaron dos enfoques: uno basado
en Feed-Forward Neural Networks (FFNN) y otro en Convolutional Neural Networks (CNN).

En el enfoque Feed-Forward Neural Networks, se observé que el modelo FFNN logré una
alta precisién en la estimacién de la iluminancia, alcanzando tasas de éxito del 98.8% y 96.0 %
en situaciones con una y dos fuentes de luz, respectivamente. La visualizaciéon de los valores
de iluminancia estimados mostré una correspondencia estrecha con los valores esperados, con
diferencias minimas entre ellos. En el enfoque Convolutional Neural Networks, el modelo CNN
también demostré un alto nivel de precisién en sus estimaciones, con tasas de éxito del 99.2 % y
96.4 % en situaciones con una y dos fuentes de luz, respectivamente. La comparacién entre los
valores de iluminancia estimados y los valores esperados mostré una excelente correspondencia,
destacando la efectividad de este enfoque. Al comparar los modelos FENN y CNN, se mostrd
que ambos modelos tuvieron un desempeno similar en términos de precision, aunque los modelos
CNN mostraron una ligera ventaja sobre los modelos FFNN en algunos escenarios.

En este experimento se explord la aplicacion de la inferencia causal en el calculo de la ilu-
minancia, considerando diversos factores que podrian influir en la distribucion de la luz. Estos
factores incluyeron, entre otras, la orientacién de las fuentes de luz, la distribucion espacial de
las fuentes de luz, la reflectividad de las superficies y la presencia de obstrucciones y sombras.
A través de modelos estructurales, se pudo analizar cémo cada factor afecta las componentes
horizontal y vertical de la iluminancia, lo que proporcion6 una comprensiéon mas completa de la
iluminacién en un entorno dado.

9.3. Experimento 3: Inferencia causal para determinar la
causa de un fenémeno de sombra en una imagen

En este experimento, se desarrollé un modelo artificial basado en inferencia causal para ex-
plicar la formacién de sombras proyectadas en una imagen, especificamente sobre la superficie
inferior de un escenario tridimensional. Se utilizé el método de descubrimiento causal NOTEARS
para validar el modelo causal estructural disenado.

Se observé que la generacion del modelo causal estructural fue exitosa tras aplicar una res-
triccién adicional al algoritmo de descubrimiento causal. Este modelo proporcioné coherencia a
la representacion de las relaciones causales entre las variables involucradas, incluida la presencia
de la esfera y la proyeccién de la sombra. A partir de la distribucién de probabilidad condicional
obtenida del modelo causal, se realizaron inferencias sobre la causa de la sombra proyectada. Se
encontré que la presencia de la esfera aumenta significativamente la probabilidad de detectar
una sombra en la superficie, lo que sugirié que la esfera fue la causa mas probable de la sombra
observada.
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Se compararon diferentes métodos de deteccion de sombras, incluida una combinacion del
método de Felzenszwalb con inferencia causal. Se encontré que este enfoque mostro los resultados
més prometedores, con una precisién del 51.5% en la deteccién de sombras. A pesar de la
presencia de factores de confusion, este enfoque logré determinar la causalidad de la sombra con
éxito, lo que resalta la utilidad de la inferencia causal en la comprension de fenémenos visuales
complejos a costa de un conjunto de datos que no solo se caracterice por lo correlativo sino que
incluya esencialmente informacién sobre intervenciones, factores de confusién, y resultados.

9.4. Experimento 4: Inferencia causal para el modelo de
comportamiento de un agente inteligente

En este experimento, se desarrolld un agente inteligente que empleé la inferencia causal para
comprender las causas detras de los fallos de otros agentes al completar una tarea. Este agente
fue disenado para ejecutar la tarea tomando decisiones informadas basadas en la inferencia cau-
sal, lo que le permitié anticipar posibles obstaculos y tomar medidas correctivas apropiadas.

Se aplicé inferencia causal para determinar la causa de los fallos en la ejecucién de la tarea

por parte de otros agentes. Se encontré que la presencia de sensores especificos en el agente opo-
nente tenia un impacto significativo en la probabilidad de éxito del agente. La inferencia causal
permitié identificar qué sensor del agente oponente influia més en el resultado de la tarea.
Se comparé el rendimiento del agente inteligente basado en inferencia causal con otros dos agen-
tes: uno que utilizaba un algoritmo de bisqueda no informada y otro que utilizaba el algoritmo
de busqueda informada A*. Se encontré que el agente basado en inferencia causal superaba al
agente con busqueda no informada y que también tenia un rendimiento similar al agente con
busqueda informada, pero con una comprensiéon més profunda de las causas subyacentes de los
fallos.

Ademas, se analizé la relacién entre el estado de los sensores del agente oponente y el éxito
en la tarea, asi como el consumo de energia de los agentes en diferentes escenarios. Se observé
una correlacién entre la detecciéon por parte del agente oponente y el consumo de energia del
agente, lo que sugiere que la capacidad de evadir la deteccion visual puede afectar la eficiencia
con la que se utilizan los recursos energéticos.

9.5. Experimento 5: Incorporacion de la inferencia causal
en el procedimiento de muestreo de una Deep Q-
Network

El objetivo fue desarrollar una Deep Q-Network que integrara un método de muestreo basado
en la inferencia causal para equilibrar un poste vertical sobre un carrito mévil (entorno CartPole

de OpenAl GYM).

Se evaluaron diez modelos de tipo Deep Q-Network, cinco con muestreo basado en inferencia
causal y cinco con muestreo aleatorio. Se observé un rendimiento superior en tres de los cinco
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modelos con muestreo basado en inferencia causal. La eleccion del modelo dependié de la ar-
quitectura y configuracion de la red. Se compararon dos modelos de proceso de Markov con el
modelo Deep Q-Network que utiliza muestreo basado en inferencia causal. Aunque este ultimo
mostré un rendimiento ligeramente inferior, se destaco la importancia de las estrategias de di-
seno en el aprendizaje por refuerzo. Asi mismo, se contrasté el rendimiento del modelo Deep
Q-Network con muestreo basado en inferencia causal en los entornos de control clasico CartPo-
le y MountainCar -también de OpenAl GYM-. En esta evaluacion se observé una recompensa
promedio mas baja en MountainCar debido a la complejidad de las variables y la necesidad de
mas datos en la memoria de repeticién o replay buffer.

Se determiné que la integracién de la inferencia causal en el muestreo de una Deep Q-Network
puede mejorar su capacidad para alcanzar mayores recompensas y prolongar los episodios. Tam-
bién se evidencié que la estrategia de exploracion y la entropia de la politica aprendida son
aspectos cruciales al evaluar el impacto de la inferencia causal en el aprendizaje por refuerzo.
Ademas, la complejidad del problema y la cantidad de datos disponibles pueden influir en la
efectividad de la inferencia causal en este contexto.

9.6. Generalizacion de resultados

Aunque los hallazgos de cada experimento tienen el potencial de aplicarse a contextos mas
amplios, es importante tener en cuenta las limitaciones especificas de cada estudio. La genera-
lizacién efectiva requiere considerar la variabilidad y la complejidad de los entornos y sistemas
en los que se aplicaran los hallazgos [62], [42], [147] y [148].

Experimento 1

Aplicabilidad: Los resultados de este experimento, que resaltan la importancia de conside-
rar singularidades en los calculos de iluminancia para una visualizacién precisa, son relevantes no
solo en simulaciones de iluminacién, sino también en cualquier contexto donde la visualizacion
de datos espaciales sea crucial.

Limitaciones: La simulacién se centrd en un fenémeno especifico (distribucién de iluminan-
cia en un espacio 3D) y puede que no sea directamente aplicable a otros fenémenos fisicos o
sistemas de datos.

Experimento 2

Aplicabilidad: Los modelos de redes neuronales desarrollados para estimar la iluminancia
pueden ser aplicables en una variedad de contextos donde la estimacién de variables espaciales
es necesaria, como la monitorizacién ambiental o la planificacién urbana.

Limitaciones: La precision y eficacia de los modelos pueden verse afectadas por la comple-

jidad y la variabilidad de los entornos de iluminacién, asi como por la disponibilidad y calidad
de los datos de entrenamiento.
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Experimento 3

Aplicabilidad: El uso de inferencia causal para entender la formacion de sombras en image-
nes puede ser relevante en campos como la vision por computadora, la robotica y la fotografia
computacional.

Limitaciones: La efectividad del modelo causal estructural puede depender de la compleji-
dad de las escenas y la disponibilidad de datos para entrenar el modelo. Ademas, el método de
deteccion de sombras utilizado puede no ser éptimo en todas las situaciones.

Experimento 4

Aplicabilidad: El enfoque de utilizar inferencia causal para comprender el comportamiento
de agentes inteligentes puede ser 1til en sistemas de inteligencia artificial y robdtica, asi como
en la toma de decisiones en entornos dinamicos.

Limitaciones: La generalizacion del rendimiento del agente basado en inferencia causal
puede depender de la complejidad y la variabilidad de los entornos, asi como de la disponibilidad
de datos para entrenar el modelo causal.

Experimento 5

Aplicabilidad: La integracién de la inferencia causal en el aprendizaje por refuerzo puede
ser relevante en una amplia gama de aplicaciones, desde control de robots hasta optimizacion de
procesos.

Limitaciones: La efectividad del enfoque puede verse afectada por la complejidad del en-
torno y la tarea, asi como por la capacidad del modelo de inferencia causal para capturar rela-
ciones causales complejas.

9.7. Analisis comparativo

El analisis entre los resultados obtenidos en los diferentes experimentos realizados se centra
en identificar similitudes y diferencias significativas en los hallazgos de cada experimento, asi
como en discutir cémo estas variaciones podrian relacionarse con las diferencias en los disenos
experimentales. Para facilitar la comprension y visualizacién de las comparaciones, se presenta
la Tabla que sintetiza los aspectos clave de cada experimento, incluyendo la precision de los
modelos utilizados, la utilidad de la inferencia causal, la aplicabilidad de los modelos en diferentes
contextos, el rendimiento de los modelos y la complejidad de los fenémenos estudiados. Esta tabla
servird como referencia para el andlisis detallado que se llevard a cabo a continuacion.
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Tabla 9.1. Analisis Comparativo de Experimentos

EXPERIMENTOS
Aspecto E1l E2 E3 E4 E5
Precision de Modelos - Alta - - Alta
Utilidad de la Inferencia
Causal - - Alta Alta -
Aplicabilidad de Modelos - - Visual Comportamental Refuerzo
Rendimiento de Modelos - Ligeramente inferior - - Mejoras
Complejidad del Fenémeno
Estudiado Media Media Baja Alta Alta
Diversidad de Datos
y Entornos Media Media Baja Alta Media

Similitudes en los Hallazgos:

Precisiéon de Modelos de Redes Neuronales: Tanto en el Experimento 2, en el que se
trabajo con redes feed-forward y redes convolucionales, como en el Experimento 5, en el que el
modelo intervenido fue la Deep QQ-Network, se observd una alta precision en la estimacion de
variables (iluminancia en el Experimento 2 y equilibrio del poste en el Experimento 5) utilizando
modelos de redes neuronales.

Utilidad de la Inferencia Causal: En los Experimentos 3 y 4, la aplicacion de inferencia
causal demostré ser til para comprender fenémenos complejos, ya sea la formacion de sombras
en imagenes o el comportamiento de agentes inteligentes.

Diferencias en los Hallazgos:

Aplicabilidad de Modelos de Inferencia Causal: Mientras que en el Experimento 3 la
inferencia causal se aplicé con éxito para comprender un fenémeno visual, en el Experimento 4
se utilizé para comprender el comportamiento de agentes inteligentes en un entorno dinamico.

Rendimiento de Modelos de Aprendizaje por Refuerzo: Aunque en el Experimento
5 se observaron mejoras en el rendimiento de la Deep Q-Network con muestreo basado en in-
ferencia causal, este enfoque mostré un rendimiento ligeramente inferior en comparacion con el
muestreo aleatorio en algunos modelos.
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Relacion con los Disenos Experimentales:

Complejidad del Fenémeno Estudiado: Las diferencias en la complejidad de los fenéme-
nos estudiados pueden haber influido en la efectividad de los enfoques utilizados. Por ejemplo, la
inferencia causal puede ser mas efectiva para comprender fenémenos visuales simples que para
modelar comportamientos complejos de agentes inteligentes.

Diversidad de Datos y Entornos: Las variaciones en los disenos experimentales pueden
reflejar diferencias en la diversidad de datos utilizados y en la complejidad de los entornos
simulados, lo que a su vez puede afectar la aplicabilidad y la generalizacién de los resultados.

9.8. Relacién entre los Resultados de los Experimentos y
los Objetivos de la Investigacion

En esta seccion, se analiza como los resultados obtenidos en cada experimento contribuyen
al logro de los objetivos especificos de la investigacion.

Objetivo 1: Desarrollar un modelo de aprendizaje de maquina para estimar el valor
de iluminancia en un escenario 3D

El Experimento 2 se centrd en el desarrollo de modelos de redes neuronales de tipo feed-
forward y convolucionales para estimar la iluminancia en un entorno tridimensional. Los resul-
tados de este experimento demostraron una alta precision en la estimacién de la iluminancia,
lo que cumple con el objetivo de desarrollar un modelo de aprendizaje de maquina para este
propésito especifico.

Objetivo 2: Desarrollar un modelo que aplique la inferencia causal para determinar
la causa de un fenémeno de sombra en una imagen

El Experimento 3 se enfoco en el desarrollo de un modelo artificial basado en inferencia
causal para explicar la formacion de sombras proyectadas en una imagen. Los resultados de
este experimento proporcionaron una representacion coherente de las relaciones causales entre
las variables involucradas, lo que respalda el objetivo de desarrollar un modelo que aplique la
inferencia causal para entender/explicar los fenémenos de sombras en imégenes.

Objetivo 3: Desarrollar un modelo cognitivo basado en inferencia causal para apoyar
la toma de decisiones de un agente en un entorno virtual

El Experimento 4 implico el desarrollo de un agente inteligente que utilizé la inferencia causal
para comprender las causas detras de los fallos en la ejecucion de una tarea y tomar decisiones
informadas en un entorno virtual. Estos resultados estan alineados con el objetivo de desarrollar
un modelo cognitivo basado en inferencia causal para apoyar la toma de decisiones de un agente
en un entorno virtual.
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Objetivo 4: Desarrollar un modelo de aprendizaje de maquina con una Deep Q-
Network que utilice inferencia causal para el proceso de muestreo del replay buffer

El Experimento 5 se centré en el desarrollo de una Deep Q-Network que integré la inferencia
causal en el proceso de muestreo del replay buffer para solucionar un problema de control clasico.
Los resultados de este experimento mostraron mejoras significativas en la capacidad de la Deep
Q-Network para solucionar problemas de control clésico, lo que respalda el objetivo de desarrollar
un modelo de aprendizaje de maquina que utilice inferencia causal para este proposito.
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Conclusiones

Durante el desarrollo de esta investigacion, se ha explorado la integracion de la inferencia
causal en procesos de Machine Learning, con el objetivo de mejorar la resolucién de problemas
donde la explicabilidad y la comprension de las relaciones causales son fundamentales. A través
de una serie de experimentos meticulosamente disenados y ejecutados, se han obtenido resul-
tados significativos que confirman el valor y las implicaciones de esta integracion en diversas
aplicaciones del aprendizaje automatico.

El primer experimento proporcioné una comprension detallada de los desafios asociados con
la visualizacion de la distribucién de iluminancia en un escenario tridimensional. Los hallazgos
destacaron la importancia de considerar factores como la subdivisién del escenario, el uso de
escalas logaritmicas y la anulacion de fuentes luminicas para obtener visualizaciones precisas y
significativas. Estas lecciones son fundamentales en el contexto mas amplio de esta investigacion,
ya que subrayan la necesidad de abordar la complejidad de los datos en el aprendizaje automati-
co y la importancia de la explicabilidad en la comprension de los fenémenos estudiados.

El segundo experimento se centro en el desarrollo de modelos de aprendizaje de maquina pa-
ra estimar la iluminancia en escenarios 3D. Aunque la precisién de las estimaciones no alcanzo
el 100 %, los resultados demostraron el éxito de la aplicacién de técnicas de Deep Learning en
esta tarea, cumpliendo asi con el objetivo de explorar como la integracion y complementacion
del Machine Learning y la inferencia causal pueden mejorar la resoluciéon de problemas donde
la explicabilidad es fundamental. Por ejemplo, se observé que tanto los modelos de redes neu-
ronales Feed-Forward (FFNN) como Convolutional Neural Networks (CNN) lograron una alta
precision en la estimacion de la iluminancia en un entorno 3D, con tasas de éxito superiores al
95 %, respaldando la eficacia de estos modelos para estimar variables ambientales.

En el tercer experimento, se introdujo el uso de la inferencia causal para determinar la causa
de fenémenos de sombra en imagenes. Este enfoque permitié fortalecer hipdtesis y mejorar la
comprension de eventos complejos, cumpliendo con el objetivo de analizar cémo la inferencia
causal puede potenciar diversas aplicaciones de Machine Learning relacionadas con la explica-
bilidad de imagenes. Por ejemplo, se encontré que el modelo basado en inferencia causal pudo
explicar de manera coherente la formacion de sombras en una imagen, lo que indica que la infe-
rencia causal puede ser efectiva para entender fenémenos visuales complejos.
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El cuarto experimento explord la convergencia entre agentes inteligentes e inferencia causal,
revelando el potencial transformador de incorporar el razonamiento causal en la toma de deci-
siones de los agentes. Los resultados obtenidos resaltaron la ventaja significativa de la aplicacién
de la inferencia causal en entornos de simulacion fisica diversos, cumpliendo asi con el objetivo
de analizar cémo la integracion de la inferencia causal puede mejorar la resolucién de proble-
mas donde la explicabilidad es fundamental. Por ejemplo, se demostro que el agente inteligente
basado en inferencia causal superé a otros agentes en la ejecucion de una tarea compleja en un
entorno virtual, demostrando una comprensiéon mas profunda de las causas subyacentes de los
fallos en la ejecucién de la tarea y tomando decisiones informadas para evitarlos.

Finalmente, el quinto experimento evalué el rendimiento de modelos de Deep Q-Network con
y sin integracion de inferencia causal en problemas de control clasico. Los hallazgos demostra-
ron mejoras significativas en el rendimiento al incorporar la inferencia causal en el proceso de
muestreo, destacando la importancia de considerar cuidadosamente el equilibrio entre explora-
cién y explotacion en el diseno de algoritmos de aprendizaje por refuerzo. Este cumplimiento
del objetivo de analizar como la integracion y complementacion del Machine Learning y la infe-
rencia causal pueden mejorar la resolucion de problemas se refleja en los resultados obtenidos.
Por ejemplo, se encontrd que la DQN que integré la inferencia causal en el proceso de muestreo
del replay buffer mostré mejoras significativas en la capacidad de alcanzar recompensas mas
altas y completar episodios mas largos en comparacién con una DQN que utilizaba muestreo
aleatorio, lo que respalda la efectividad de este enfoque para mejorar el aprendizaje por refuerzo.

En conjunto, los resultados obtenidos en esta investigacién subrayan el potencial y la rele-
vancia de la integracion de la inferencia causal en procesos de Machine Learning. Ademas de
contribuir al avance tedérico en este campo, los hallazgos tienen importantes implicaciones practi-
cas para diversas aplicaciones del aprendizaje automatico, desde la estimacién de iluminancia
hasta el aprendizaje por refuerzo en entornos complejos.

Se identifican areas prometedoras para futuras investigaciones, como la mejora de la inferen-
cia causal en entornos gréaficos complejos, la exploracion de nuevas estrategias de aprendizaje por
refuerzo basadas en principios de inferencia causal y el desarrollo de modelos adaptativos capa-
ces de manejar variaciones en las configuraciones de iluminacién y otras condiciones ambientales.

En sintesis, este trabajo de tesis proporciona una contribucién significativa al entendimiento
y la aplicacion de la inferencia causal en el contexto del Machine Learning, cumpliendo con el
objetivo de explorar cémo esta integraciéon puede mejorar la resolucion de problemas donde la
explicabilidad es fundamental, y ofreciendo una base sélida para futuras investigaciones y el
desarrollo de aplicaciones préacticas en una variedad de campos.
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Trabajo futuro

Basado en los resultados y observaciones de los experimentos actuales, se identifican varias
vias para futuras investigaciones y desarrollos. Estas incluyen la mejora de los algoritmos, la
exploracion de nuevos entornos y la mejora de la robustez y generalizaciéon de las politicas
aprendidas. Especificamente, se proponen las siguientes areas de enfoque:

Mejoras algoritmicas
Estrategias avanzadas de exploracién

Implementar técnicas avanzadas de exploracion, como Upper Confidence Bound y Mues-
treo de Thompson, podria mejorar el equilibrio entre exploracion y explotacion, potencialmente
llevando a un aprendizaje més eficiente.

Aprendizaje profundo por refuerzo

Extender el trabajo actual para incorporar técnicas de aprendizaje profundo, como Double
Deep Q-Network o Deep Deterministic Policy Gradient, podria permitir manejar entornos mas
complejos con espacios de estado de alta dimension.

Aprendizaje por refuerzo multi-agente

Explorar escenarios con miiltiples agentes interactuando podria proporcionar informaciéon
sobre dinamicas colaborativas y competitivas, permitiendo el desarrollo de politicas més sofisti-
cadas y robustas.

Diversidad de Entornos
Espacios de estado y accion continuos

Investigar entornos con espacios de estado y accién continuos, como Pendulum-v1 o LunarLanderContinu
v2, podria ayudar a entender la escalabilidad y adaptabilidad de los algoritmos.
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Aplicaciones del mundo real

Aplicar los algoritmos a problemas del mundo real, como el control de robots, la conduccién
auténoma o el comercio financiero, podria validar su utilidad préactica y efectividad fuera de
entornos simulados.

Entornos estocasticos y parcialmente observables

Examinar el rendimiento en entornos estocéasticos y parcialmente observables, como los Pro-
cesos de Decision de Markov Parcialmente Observables, podria llevar al desarrollo de politicas
mas resilientes.

Optimizacién de hiperparametros
Ajuste Automatico de Hiperparametros

Implementar técnicas de optimizacion automatica de hiperparametros, como la Optimizacién
Bayesiana o Algoritmos Genéticos, podria identificar configuraciones de pardmetros 6ptimas mas
eficientemente y mejorar el rendimiento del aprendizaje.

Tasas de aprendizaje adaptativas

Explorar esquemas de tasas de aprendizaje adaptativas podria mejorar la velocidad de con-
vergencia y la estabilidad de los algoritmos, particularmente en entornos dinamicos y no esta-
cionarios.

Robustez y generalizacion de politicas
Aprendizaje por transferencia

Investigar enfoques de aprendizaje por transferencia para aplicar el conocimiento adquirido
en un entorno a otro podria mejorar la eficiencia del aprendizaje y la generalizacién de politicas
a través de diferentes tareas.

Meta-Aprendizaje

Implementar técnicas de meta-aprendizaje para permitir que los algoritmos se adapten rapi-
damente a nuevos entornos o cambios dentro del mismo entorno podria mejorar su flexibilidad
y aplicabilidad.

Robustez ante la incertidumbre

Desarrollar métodos para manejar la incertidumbre y la variabilidad en el entorno, como el
aprendizaje por refuerzo robusto o enfoques sensibles al riesgo, podria mejorar la fiabilidad y
seguridad de las politicas aprendidas.

115



Analisis de Desempeno y Comparativas
Analisis comparativos detallados

Realizar comparativas detalladas a través de una gama més amplia de entornos y algoritmos
podria proporcionar una comprension mas detallada de las fortalezas y limitaciones de cada
enfoque.

Evaluacién a largo plazo

Realizar evaluaciones a largo plazo para evaluar la estabilidad y persistencia de las politicas
aprendidas durante periodos extendidos podria asegurar su robustez y efectividad en aplicaciones
del mundo real.

Enfoques interdisciplinarios
Incorporar conocimientos especificos del dominio

Incorporar conocimiento especifico del dominio y heuristicas en el proceso de aprendizaje
podria acelerar la convergencia y mejorar el rendimiento en aplicaciones especializadas.
Aprendizaje con Human-in-the-Loop

Desarrollar marcos para el aprendizaje por refuerzo con humanos en el bucle, donde la expe-
riencia humana guia el proceso de aprendizaje, podria mejorar la calidad e interpretabilidad de
las politicas aprendidas.

Al seguir estas lineas de accién futuras, se puede mejorar significativamente la robustez,

eficiencia y aplicabilidad de los algoritmos de aprendizaje por refuerzo, allanando el camino para
su adopcién e impacto mas amplio en diversos dominios.
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Contribuciones de la investigacion

Esta investigacion ha demostrado la aplicabilidad exitosa de la inferencia causal en una
variedad de contextos de Machine Learning, incluyendo la estimacién de iluminancia, la deteccién
de sombras, la toma de decisiones de agentes inteligentes y el aprendizaje por refuerzo. Esta
amplia gama de aplicaciones destaca la versatilidad y utilidad de la inferencia causal en diferentes
areas de estudio.

12.1. Contribuciones metodolégicas y empiricas

12.1.1. Avance en la Estimacién de Iluminancia mediante Aprendi-
zaje Profundo

Esta investigacion ha demostrado el éxito de la aplicacion de técnicas de Deep Learning

para la estimacién de iluminancia en escenarios 3D. Esta contribucion sugiere que el aprendizaje

profundo puede ser una herramienta valiosa para resolver problemas de estimacion de iluminancia
en diversas configuraciones de iluminacion.

12.1.2. Fortalecimiento de la Deteccion de Sombras a través de la
Inferencia Causal
La incorporacién de la inferencia causal ha mejorado la capacidad de determinar la causa de

fenéomenos de sombra en imédgenes. Esta contribucién subraya cémo la inferencia causal puede
fortalecer hipotesis y mejorar la comprension de eventos complejos en el analisis de iméagenes.

12.1.3. Mejora en la Toma de Decisiones de Agentes Inteligentes me-
diante Inferencia Causal

La integracién de la inferencia causal ha proporcionado una ventaja significativa en la toma

de decisiones de agentes inteligentes en entornos virtuales. Este hallazgo destaca el potencial

transformador de incorporar el razonamiento causal en la ejecucién de tareas complejas por
parte de agentes inteligentes.
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12.1.4. La integracion de la inferencia causal en el muestreo de una
Deep Q-Network ha mostrado resultados prometedores rela-
cionados con su rendimiento en problemas de control clasico

Esta contribuciéon resalta la importancia de considerar cuidadosamente el equilibrio entre
exploracion y explotacion en el disenio de algoritmos de aprendizaje por refuerzo, apoyandose en

un muestreo prioritario, de las experiencias aprendidas por un agente, basandose en la inferencia
causal.

12.2. Contribuciones a la literatura

Las publicaciones derivadas de esta investigacion han contribuido significativamente al cuerpo
existente de literatura en el campo del Machine Learning y la inferencia causal, proporcionando
nuevos conocimientos, métodos y perspectivas que avanzan en la comprensién y aplicacion de
estas areas. Estas contribuciones se resumen a continuacién:

Exploring Deep Learning Techniques for Illuminance Estimation

En esta publicacién, exploramos en detalle el impacto de la integracién de la inferencia
causal en la estimacién de iluminancia en escenarios 3D. Nuestros hallazgos han demostrado
la viabilidad y eficacia de esta aproximacién en la resolucion de problemas de estimacién de
iluminancia en entornos complejos, lo que amplia el conjunto de herramientas disponibles para
los investigadores y profesionales en el campo de la iluminacion arquitectonica y el diseno de
escenarios virtuales.

Journal: Expert Systems

EISSN: 1468-0394

JCR: Q2

DOI: http://doi.org/10.1111/exsy.13559

URL: https://onlinelibrary.wiley.com/doi/10.1111 /exsy.13559

Causal Inference Applied to Explaining the Appearance of Shadow Phenomena in
an Image

En esta publicacién, presentamos un enfoque novedoso para la deteccion de sombras en
imagenes mediante el uso de la inferencia causal. Nuestros resultados destacan la importancia
de considerar la causalidad en la comprension de fendmenos visuales complejos, y proporcionan
nuevas perspectivas sobre como abordar este problema fundamental en el procesamiento de
imégenes y la vision por computadora.

Journal: INFORMATICA

EISSN: 1822-8844

118



JCR: Q2
DOI https://doi.org/10.15388/23-INFOR526
URL: https://informatica.vu.lt/journal/ INFORMATICA /article/1302/info

Approach from Artificial Intelligence to poorly predictive behaviors derived from
artificial cognitive models

En esta publicacion, propusimos generar modelos conductuales artificiales para determinar
las condiciones en que estos demuestran comportamientos poco predictivos. El entorno virtual
de pruebas, la arquitectura de los modelos y el desarrollo de software fueron posibles gracias a
la interaccion de Pogamut, Unreal Tournament, SOAR y Java. Los modelos conductuales pro-
puestos en el experimento consistieron en maquinas de estados finitos y producciones derivadas
del uso de la arquitectura cognitiva SOAR.

Journal: Tesis Psicolégica
EISSN: 2422-0450

PUBLINDEX: Categoria B Equivalente a Q3 segun el indice bibliografico nacional del Minis-
terio de ciencia, tecnologia e innovacién de la Republica de Colombia.

URL: https://revistas.libertadores.edu.co/index.php/TesisPsicologica/article/view /1101

Intelligent Agents and Causal Inference: Enhancing Decision-Making through Cau-
sal Reasoning

En esta publicacién, exploramos el papel de la inferencia causal en la toma de decisiones de
agentes inteligentes en entornos virtuales. Nuestros hallazgos han demostrado que la integraciéon
de la causalidad en los modelos cognitivos de los agentes puede mejorar significativamente su
capacidad para realizar tareas complejas y adaptarse a entornos cambiantes, lo que tiene im-
portantes implicaciones para el disenio de sistemas de inteligencia artificial en una variedad de
aplicaciones practicas.

Journal: Applied Sciences

EISSN: 2076-3417

JCR: Q2

DOI: https://doi.org/10.3390/app14093818

URL: https://www.mdpi.com/2076-3417/14/9/3818
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Integration of Causal Inference in the DQIN Sampling Process for Classical Control
Problems

En esta publicacion, investigamos el impacto de la integracién de la inferencia causal en el
aprendizaje por refuerzo mediante el uso de Deep Q-Networks. Nuestros resultados sugieren que
la incorporacion de la causalidad en el proceso de muestreo puede mejorar el rendimiento y la
eficacia de los algoritmos de aprendizaje por refuerzo en la resoluciéon de problemas de control
clasico, lo que abre nuevas oportunidades para aplicaciones en robotica, juegos y otras areas
relacionadas.

Journal: NEURAL COMPUTING & APPLICATIONS
EISSN: 1433-3058

JCR: Q2

DOI: Pendiente

URL: Pendiente

En conjunto, estas publicaciones representan contribuciones importantes a la literatura académi-
ca en el campo del Machine Learning y la inferencia causal, proporcionando nuevas ideas, méto-
dos y resultados que avanzan en el conocimiento y la practica en estas areas.

12.2.1. Otras publicaciones

S-COGIT: A Natural Language Processing Tool for Linguistic Analysis of the Social
Interaction Between Individuals with Attention-Deficit Disorder

Este articulo describe el diseno e implementacion de una plataforma informatica destinada a
monitorear la interaccién social en sujetos con trastorno por déficit de atencion como una condi-
cién cognitiva especial. Aplicando algoritmos de Procesamiento de Lenguaje Natural (NLP), se
pretende apoyar el monitoreo e intervencion de individuos con necesidades especiales mediante
el analisis del lenguaje, como en el caso del trastorno por déficit de atencion.

Journal: Advances in Intelligent Systems and Computing
EISSN: 978-3-030-53036-5

SJR: Q4

DOI: https://doi.org/10.1007/978-3-030-53036-5_32

URL: https://link.springer.com/chapter/10.1007/978-3-030-53036-5_32
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Apéndice

Codigo Fuente del Software Desarrollado

A.1. Introduccion

En este apéndice se proporciona informacion sobre los codigos fuente del software desarrollado
para esta tesis doctoral. Cada uno de los softwares ha sido registrado en Zenodo y esta disponible
a través de un DOI (Digital Object Identifier) para garantizar su accesibilidad y permanencia a
largo plazo.

A.2. Software 1: ML-Atlas

Descripcion

El desarrollo de técnicas avanzadas de machine learning ha revolucionado diversas areas del
conocimiento, incluyendo la fisica experimental. Este software ha sido disenado para experimen-
tar con una amplia gama de técnicas de machine learning con el objetivo de descubrir y formular
leyes fisicas a partir de datos experimentales. Al aprovechar la capacidad de procesamiento y
analisis de estas técnicas, es posible identificar patrones complejos y relaciones subyacentes en
los datos que de otro modo podrian pasar desapercibidos.

El software implementa una variedad de algoritmos de machine learning, desde métodos
tradicionales como regresion lineal y arboles de decision, hasta enfoques mas sofisticados como
redes neuronales profundas y técnicas de aprendizaje no supervisado. La flexibilidad y el poder
de estas herramientas permiten abordar problemas de diferentes naturalezas y escalas, ofreciendo
una visién integral del proceso experimental.

Repositorio GitHUB

https://github.com/jvelez-dev/ML-Atlas.git

DOI en Zenodo

DOI 10.5281/zenodo.12729378
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A.3. Software 2: DL-Illuminance

Descripciéon

Este software de redes neuronales esta disenado para predecir los valores de iluminancia en
un escenario 3D configurable con distintas distribuciones de fuentes luminicas, tanto simétricas
como asimétricas. Utilizando modelos avanzados de redes neuronales convolucionales (CNN) y
perceptrones multicapa (MLP), el software analiza y procesa datos complejos para generar pre-
dicciones precisas sobre la distribucion de la luz en el espacio. Este enfoque permite a los usuarios
explorar como diferentes configuraciones de iluminacion afectan la iluminancia del entorno, fa-
cilitando la planificaciéon y optimizacion de sistemas de iluminacién en diversas aplicaciones.

Repositorio GitHUB

https://github.com/jvelez-dev/DL-I1luminance.git

DOI en Zenodo

DOI 10.5281/zenodo.12727651

A.4. Software 3: SR-Illuminance

Descripcion

Este software de regresion simbdlica utiliza la potencia de calculo de un clister de maquinas
para descubrir las ecuaciones que gobiernan conjuntos de datos de iluminancia en un escenario
3D con diversas configuraciones de iluminacién, tanto simétricas como asimétricas. A través de
técnicas avanzadas de regresion simbdlica, el software analiza y modela la distribucién de la luz
en el espacio, identificando patrones y relaciones subyacentes en los datos. Este enfoque permite
una comprensiéon mas profunda y precisa de cémo diferentes configuraciones de iluminaciéon
afectan la iluminancia en el entorno, facilitando asi la optimizacion y el diseno de sistemas de
iluminacion eficientes y efectivos.

Repositorio GitHUB

https://github.com/jvelez-dev/SR_Illuminance.git

DOI en Zenodo

DOI 10.5281/zenodo.12726291
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A.5. Software 4: CI-Shadow

Descripciéon

Este software permite la experimentacién con técnicas de inferencia causal, con el objetivo
de identificar y analizar la causa de la aparicién de una sombra en una imagen. A través de este
enfoque, se busca aplicar métodos avanzados de inferencia causal para determinar las variables
y factores que contribuyen a la presencia de sombras, lo cual permite una comprensién méas
profunda de los procesos subyacentes en la formacién de imagenes. El experimento no solo se
centra en la deteccién de sombras, sino también en la identificacion de las relaciones causales
entre distintos elementos de la imagen, proporcionando asi un marco solido para futuros estudios
y aplicaciones en el campo del procesamiento de imagenes y la vision por computadora. Este
trabajo demuestra como la inferencia causal puede ser una herramienta poderosa para mejorar el
analisis y la interpretacién de datos visuales, abriendo nuevas posibilidades para la investigacion
y el desarrollo en esta area.

Repositorio GitHUB

https://github.com/jvelez-dev/CI-Shadow.git

DOI en Zenodo

DOI 10.5281/zenodo.12725465

A.6. Software 5: CI-Based Behaviour

Descripcion

En este repositorio se presenta un experimento en el que un agente inteligente utiliza la
inferencia causal para guiar su comportamiento. El escenario del experimento es un entorno de
videojuego FPS (Unreal Tournament 2004), en el cual se ha disenado un escenario especifico
denominado ” TestEnvironment”. En este entorno, un agente llamado ” GuardBOT” se posiciona
en una ubicacién determinada, mientras que otro agente, CausalBOT”, tiene la tarea de tomar
la posicién del GuardBOT sin ser detectado. Este experimento demuestra como la inferencia
causal puede ser aplicada en entornos complejos para mejorar la toma de decisiones de agentes
inteligentes.

Repositorio GitHUB

https://github.com/jvelez-dev/Causal_Inference.git

DOI en Zenodo

DOI 10.5281/zenodo.8174586
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A.7. Software 6: CI-Based Sampling

Descripciéon

Al incorporar el muestreo basado en inferencia causal en el buffer de repeticién de un DQN, se
buscé mejorar la eficiencia y efectividad del aprendizaje en la resolucién del problema clasico de
control. Este enfoque permite priorizar experiencias con mayor probabilidad de tener un impacto
causal en el proceso de toma de decisiones del agente, conduciendo a un aprendizaje mas enfocado
e informado. En contraste, el muestreo aleatorio tradicional en el buffer de repeticién de una
Deep Q-Network carece de esta priorizacion, lo que puede resultar en una convergencia mas lenta
y un rendimiento suboptimo.

Repositorio GitHUB
https://github.com/jvelez-dev/CI-based_Sampling.git

DOI en Zenodo

DOI 10.5281/zenodo.8421523
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Apéndice

Regresion simbolica para determinar las
ecuaciones que gobiernan los conjuntos de datos
de iluminancia

B.1. Introducciéon

Durante el desarrollo de modelos predictivos de Deep Learning, especificamente redes neuro-
nales convolucionales y feed-forward, surgié un interés por experimentar con la regresion simboli-
ca para descubrir las ecuaciones subyacentes en los conjuntos de datos utilizados para entrenar
estos modelos. La regresion simbdlica, a diferencia de otros métodos de aprendizaje automatico,
busca identificar expresiones matematicas explicitas que describan las relaciones presentes en los
datos, proporcionando asi una comprensiéon mas intuitiva y directa de los procesos estudiados.

Aprovechando la capacidad de computo disponible en el Instituto Universitario de Investiga-
ci6én en Ingenierfa de Aragén (I3A), fue posible procesar grandes volimenes de datos y realizar
calculos complejos en paralelo, lo que permitio la generacion de dos modelos de regresién simbéli-
ca. Estos modelos lograron identificar con un alto nivel de precision las ecuaciones que gobiernan
los datos.

El éxito de esta integracion no solo demostré la eficacia de la regresion simbdlica en la identi-
ficacion de patrones y relaciones en datos complejos, sino que también abrié nuevas posibilidades
para el andlisis y la interpretacion de datos en diversos campos de estudio. Al descubrir las ecua-
ciones subyacentes, se obtiene una visiéon mas profunda de los mecanismos que generan los datos,
lo cual es fundamental para avanzar en la comprension cientifica y el desarrollo tecnoldgico. Este
experimento ha establecido un precedente para futuras investigaciones que busquen combinar
técnicas de Deep Learning y regresion simbolica, maximizando asi el valor de los recursos compu-
tacionales y el conocimiento derivado de los datos.

B.2. Método

B.2.1. Obtencién y Preprocesamiento de Datos

Los conjuntos de datos utilizados en este estudio fueron seleccionados de diversas fuentes
relevantes para el analisis de iluminancia en escenarios 3D con diferentes configuraciones de

136



iluminacion. Estos datos incluyeron medidas de intensidad luminica en diversas posiciones y
condiciones, tanto simétricas como asimétricas. Los datos fueron preprocesados para eliminar
valores atipicos y normalizados para asegurar una coherencia en el entrenamiento de los modelos.

B.2.2. Desarrollo de Modelos Predictivos de Deep Learning

Inicialmente, se desarrollaron modelos predictivos utilizando redes neuronales convoluciona-
les (CNN) y redes feed-forward. Estos modelos fueron entrenados con los conjuntos de datos
preprocesados para identificar patrones y relaciones complejas dentro de los datos. Las arqui-
tecturas de las redes neuronales fueron disenadas y ajustadas mediante técnicas de validacién
cruzada y optimizacién de hiperparametros para maximizar la precision de las predicciones. El
detalle de esta experimentacion puede verse en la seccion [5| de este documento.

B.2.3. Implementacion de la Regresion Simbdlica

Una vez que los modelos de Deep Learning demostraron ser efectivos en la prediccion de

iluminancia, se procedié a implementar técnicas de regresion simbdlica para descubrir las ecua-
ciones subyacentes en los datos. La regresion simbdlica se llevé a cabo utilizando herramientas
especializadas que permiten la buisqueda de expresiones matematicas explicitas que mejor des-
criben las relaciones en los datos.
Parafraseando la explicacién proporcionada por [149], el procedimiento comienza definiendo una
poblacién con un conjunto de nodos generados aleatoriamente, formando arboles de diferentes
tamanos y estructuras. Luego, se inicia el proceso de seleccion, en el cual se evalia la aptitud
de cada solucién en la poblacién comparando su valor de aptitud con el valor esperado. A con-
tinuacién, la generacién actual evoluciona aplicando operaciones genéticas (cruces, mutaciones
y reproduccién) a los individuos. Dependiendo del valor de aptitud de un individuo, serd se-
leccionado como progenitor; generalmente, cuanto mayor sea el valor de aptitud, mayor sera la
probabilidad de ser seleccionado para la reproduccién (supervivencia del mas apto). Las opera-
ciones genéticas que se pueden realizar en la evolucién son el cruce, la mutacion y la reproduccion;
la primera toma dos ganadores del proceso de seleccién como progenitores para reproducir su
descendencia; la segunda toma solo una estructura progenitora y reemplaza aleatoriamente un
subarbol con otra estructura generada aleatoriamente; y la tercera duplica el programa selec-
cionado e inserta directamente su descendencia en la siguiente generaciéon. Los recién nacidos se
anaden a la siguiente generacién, y la siguiente generacién pasa nuevamente por el proceso de
evaluacion de aptitud y seleccion natural hasta que el valor de aptitud alcance un cierto criterio
o se alcance un numero maximo de generaciones; asi, el resultado serd el arbol de expresion
matemadtica correspondiente a la ecuacién [150].

La asignacion de los valores paramétricos, al igual que en las redes neuronales, fue expe-
rimental, realizando variaciones en los valores de los pardmetros del algoritmo genético para
seleccionar el modelo que presenté la mejor medida de error. La Tabla [B.I] muestra el valor de
cada parametro sujeto a variacién en el proceso de ajuste, destacando en este caso, que el nimero
de trabajos se configuré de manera que el proceso de evolucién se ejecutara en paralelo como
una contramedida al tiempo de ejecucién implicado por la naturaleza iterativa del algoritmo.
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Tabla B.1. Parametrizacion del regresor simbdlico

Parametro Valor

Tamano poblacién 1000

Generaciones 500

Criterio de parada 0.01

Conjunto de funciones ’add’,’mul’,’sub’,’div’,’sqrt’
Ntmero de trabajos -1

Meétrica RMSE

Integracion con la Capacidad de Cémputo del I3A

Aprovechando la capacidad de computo avanzada del Instituto Universitario de Investiga-
cién en Ingenieria de Aragén (I3A), se implementé un entorno de procesamiento paralelo. Es-
to permitié manejar grandes volimenes de datos y realizar cédlculos complejos eficientemen-
te. Los recursos computacionales del I3A fueron esenciales para la generacion y evaluacion de
multiples modelos de regresion simbdlica en paralelo. El cédigo fuente reposa en el repositorio
https://github.com/jvelez-dev/SR_Illuminance.git.

Se generaron dos modelos de regresion simbdlica que fueron evaluados en términos de preci-
sion y capacidad para identificar las ecuaciones subyacentes en los datos. La evaluacion se realizé
mediante métricas estandar de precision y validacion cruzada para asegurar la robustez y gene-
ralizacién de los modelos. Se compararon los resultados obtenidos con los modelos de regresion
simbdlica contra las predicciones realizadas por los modelos de Deep Learning para verificar la
consistencia y exactitud de las ecuaciones descubiertas.

B.3. Resultados

Los modelos de regresion simbdlica lograron identificar las ecuaciones con un alto nivel de
precision. Se realizdé un andlisis detallado de las ecuaciones descubiertas para interpretar las
relaciones y patrones presentes en los datos. Este andlisis no solo confirmé la eficacia de la
regresion simbélica en la identificacién de patrones complejos, sino que también proporciond una
comprension mas profunda de los mecanismos subyacentes en los datos de iluminancia. La Tabla
m muestra la precisién de cada modelo, en la cual el coeficiente de correlacién R? es superior
al 90 % cuando se trabaja con la configuraciéon asimétrica en la iluminacién y, en los casos donde
la configuracion fue simétrica, sorprendentemente la precision es casi del 100 %

Tabla B.2. Precision de los modelos para cada conjunto de datos

Conjunto de datos R?
1 Simétrico 0.9998
3  Asimétrico 0.9147

B.3.1. Ecuaciones obtenidas

Para la interpretacién de cada ecuacion, es necesario, primero, conocer cuales son los com-
ponentes de las ecuaciones. La Tabla muestra la descripcion de cada uno de ellos.
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Tabla B.3. Descripcién de las componentes de las ecuaciones generadas por el proceso de
Regresion Simbdlica.

Etiquetas de las caracteristicas
Variable Descripcién

Fx coordenada x de la fuente luminica
Fy coordenada y de la fuente luminica
Fz coordenada z de la fuente luminica
FI Intensidad de la fuente luminica
Px coordenada x de la fuente luminica del punto iluminado
Py coordenada y de la fuente luminica del punto iluminado
Pz coordenada z de la fuente luminica del punto iluminado
D Distancia de la fuente luminica al punto iluminado
Ey Valor de iluminancia horizontal
Eyv Valor de iluminancia vertical
Flx coordenada x de la primera fuente luminica
Fly coordenada y de la primera fuente luminica
Flz coordenada z de la primera fuente luminica
F1I Intensidad de la primera fuente luminica
F2x coordenada x de la segunda fuente luminica
F2y coordenada y de la segunda fuente luminica
F2z coordenada z de la segunda fuente luminica
F2I Intensidad de la segunda fuente luminica
EP Tluminancia en el punto P

Ecuacién que gobierna los datos del escenario con iluminacion simétrica y todos los
componentes

EyFz 2By Ey 0.5
=V  py—(-3Ey+E
ot M) Fy + 'y + 'z ( o+ v)

20,5

EP = —E%5+EH+(

0,57 0,5 0,5
- [—EV + <—EH + 2Ev> } + (—ZEH + 3By — FI°’5)

! Ey By Fx? 05

_ Ly 4 77 Eg
EH + Fx + F20.25

(B.1)
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Ecuacién que gobierna los datos del escenario con iluminacion asimétrica y todos
los componentes

Ey

e e L G o e L el
EP = T T P
(p;},i—?mﬁpz ' Faw = Fu ( )0’5 :

D

E E 0,5
+ [—E&5 + (—F220’5 + Pz> (_Wipy + F2x + fH)} (—D — EY° + F2x + F22>

E 0,5 E 0,5
— %} } + 9P + {_Tipy + {Pz _ [F1x0’5 (D — F2z)] }{—mx{mx — {

Ey 0,5 Ey Ey Ey 0,5
S Pz F2x + F2z — =2 S Y 1) VSR il A —-D— EY®
V—l—{{ z( T + z D) ]{ —F2x+Py+ x—i—D D v

Ey % Ey 0,5 Ey
2 F22) — — e Pz — |F12°°( D — F2 e
R ) B R e i (el L GRS (e

Ex\ ™ 0,5 D+ Ey En Ey
F2 — —-D—E)° + F2 F2 - —— + [72 —
+ :1:+D>} ( v T2+ 102z ) + 9705 + —F2x—|—Py+ 91:+D

E 0,5
{le - FZm{le - {—sz + Pz <—D — B’ + F2x + FQZ) - fv} } — F2x + Pz (—D

0,5y Y 0,5 D+ FE
—E?,’5+F2x+F22)+Pz}} }} (—D—E&5+F2x+F2z)+{ -
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E E
+ (_T}:—Py + F2x + %) {le - F2x{F1m - {—sz + Pz (—D — BV 4 F2x + F22>

E 0,5 0,5 0,5
- fv} }—F2x+Pz(—D—E&5+F2x+F2z) +PZ}} }} }

B.4. Conclusiones

Con este experimento se demostré cémo, utilizando regresion simbdlica, es posible enfren-
tar el desafio de encontrar la relacién matematica que puede describir un conjunto de datos
experimentales, lo que llevo a identificar dos ecuaciones que gobiernan los conjuntos de datos
de iluminancia. Sorprendentemente, aunque estan lejos de las ecuaciones utilizadas para gene-
rar los datos, las ecuaciones para los conjuntos de datos con iluminacién simétrica (completa y
parsimoniosa) muestran una precisiéon de casi el 100 %.

Sin duda, contar con un volumen considerable de datos en el conjunto de datos de apren-
dizaje y ajustar los parametros del algoritmo de regresién simbolica, fueron condiciones que
garantizaron la precisién en las ecuaciones que gobiernan los conjuntos de datos de aprendizaje.
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Implicaciones y Futuras Investigaciones

El éxito de esta integracion de Deep Learning y regresion simbdlica abre nuevas posibilidades
para el andlisis de datos en diversos campos. Las técnicas desarrolladas en este experimento
establecen un precedente para futuras investigaciones que busquen combinar estas metodologias,
maximizando asi el valor de los recursos computacionales y el conocimiento derivado de los datos.
Este enfoque promete avances en la comprension cientifica a través de la identificacion precisa
de relaciones matematicas subyacentes en conjuntos de datos complejos.
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