000151137 001__ 151137
000151137 005__ 20251017144606.0
000151137 0247_ $$2doi$$a10.3390/antiox10091437
000151137 0248_ $$2sideral$$a125819
000151137 037__ $$aART-2021-125819
000151137 041__ $$aeng
000151137 100__ $$0(orcid)0000-0003-3459-8605$$aMarcuello C.
000151137 245__ $$aAtomic force microscopy to elicit conformational transitions of ferredoxin-dependent flavin thioredoxin reductases
000151137 260__ $$c2021
000151137 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151137 5203_ $$aFlavin and redox-active disulfide domains of ferredoxin-dependent flavin thioredoxin reductase (FFTR) homodimers should pivot between flavin-oxidizing (FO) and flavin-reducing (FR) conformations during catalysis, but only FR conformations have been detected by X-ray diffraction and scattering techniques. Atomic force microscopy (AFM) is a single-molecule technique that allows the observation of individual biomolecules with sub-nm resolution in near-native conditions in real-time, providing sampling of molecular properties distributions and identification of existing subpopulations. Here, we show that AFM is suitable to evaluate FR and FO conformations. In agreement with imaging under oxidizing condition, only FR conformations are observed for Gloeobacter violaceus FFTR (GvFFTR) and isoform 2 of Clostridium acetobutylicum FFTR (CaFFTR2). Nonetheless, different relative dispositions of the redox-active disulfide and FAD-binding domains are detected for FR homodimers, indicating a dynamic disposition of disulfide domains regarding the central protein core in solution. This study also shows that AFM can detect morphological changes upon the interaction of FFTRs with their protein partners. In conclusion, this study paves way for using AFM to provide complementary insight into the FFTR catalytic cycle at pseudo-physiological conditions. However, future approaches for imaging of FO conformations will require technical developments with the capability of maintaining the FAD-reduced state within the protein during AFM scanning.
000151137 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E35-20R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-103901GB-I00$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-110900GB-I00
000151137 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000151137 590__ $$a7.675$$b2021
000151137 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b50 / 297 = 0.168$$c2021$$dQ1$$eT1
000151137 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b12 / 144 = 0.083$$c2021$$dQ1$$eT1
000151137 591__ $$aCHEMISTRY, MEDICINAL$$b4 / 63 = 0.063$$c2021$$dQ1$$eT1
000151137 592__ $$a1.008$$b2021
000151137 593__ $$aBiochemistry$$c2021$$dQ1
000151137 593__ $$aPhysiology$$c2021$$dQ1
000151137 593__ $$aMolecular Biology$$c2021$$dQ1
000151137 593__ $$aClinical Biochemistry$$c2021$$dQ1
000151137 594__ $$a6.5$$b2021
000151137 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151137 700__ $$aFrempong G.A.
000151137 700__ $$aBalsera M.
000151137 700__ $$0(orcid)0000-0001-8743-0182$$aMedina M.$$uUniversidad de Zaragoza
000151137 700__ $$0(orcid)0000-0001-7460-5916$$aLostao A.
000151137 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000151137 773__ $$g10, 9 (2021), 1437 [19 pp.]$$pAntioxidants$$tAntioxidants$$x2076-3921
000151137 8564_ $$s8947724$$uhttps://zaguan.unizar.es/record/151137/files/texto_completo.pdf$$yVersión publicada
000151137 8564_ $$s2766028$$uhttps://zaguan.unizar.es/record/151137/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151137 909CO $$ooai:zaguan.unizar.es:151137$$particulos$$pdriver
000151137 951__ $$a2025-10-17-14:15:38
000151137 980__ $$aARTICLE