000151150 001__ 151150
000151150 005__ 20251017144608.0
000151150 0247_ $$2doi$$a10.1111/1751-7915.13775
000151150 0248_ $$2sideral$$a124386
000151150 037__ $$aART-2021-124386
000151150 041__ $$aeng
000151150 100__ $$0(orcid)0000-0003-1210-8732$$aPérez-Rodríguez, S.$$uUniversidad de Zaragoza
000151150 245__ $$aMicrofluidic devices for studying bacterial taxis, drug testing and biofilm formation
000151150 260__ $$c2021
000151150 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151150 5203_ $$aSome bacteria have coevolved to establish symbiotic or pathogenic relationships with plants, animals or humans. With human association, the bacteria can cause a variety of diseases. Thus, understanding bacterial phenotypes at the single-cell level is essential to develop beneficial applications. Traditional microbiological techniques have provided great knowledge about these organisms; however, they have also shown limitations, such as difficulties in culturing some bacteria, the heterogeneity of bacterial populations or difficulties in recreating some physical or biological conditions. Microfluidics is an emerging technique that complements current biological assays. Since microfluidics works with micrometric volumes, it allows fine-tuning control of the test conditions. Moreover, it allows the recruitment of three-dimensional (3D) conditions, in which several processes can be integrated and gradients can be generated, thus imitating physiological 3D environments. Here, we review some key microfluidic-based studies describing the effects of different microenvironmental conditions on bacterial response, biofilm formation and antimicrobial resistance. For this aim, we present different studies classified into six groups according to the design of the microfluidic device: (i) linear channels, (ii) mixing channels, (iii) multiple floors, (iv) porous devices, (v) topographic devices and (vi) droplet microfluidics. Hence, we highlight the potential and possibilities of using microfluidic-based technology to study bacterial phenotypes in comparison with traditional methodologies.
000151150 536__ $$9info:eu-repo/grantAgreement/ES/MEC/FPU16-04398$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-104690RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/RTI2018-094494-B-C21
000151150 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000151150 590__ $$a6.575$$b2021
000151150 591__ $$aMICROBIOLOGY$$b29 / 137 = 0.212$$c2021$$dQ1$$eT1
000151150 591__ $$aBIOTECHNOLOGY & APPLIED MICROBIOLOGY$$b23 / 159 = 0.145$$c2021$$dQ1$$eT1
000151150 592__ $$a1.106$$b2021
000151150 593__ $$aApplied Microbiology and Biotechnology$$c2021$$dQ1
000151150 593__ $$aBiotechnology$$c2021$$dQ1
000151150 593__ $$aBiochemistry$$c2021$$dQ1
000151150 594__ $$a8.2$$b2021
000151150 655_4 $$ainfo:eu-repo/semantics/review$$vinfo:eu-repo/semantics/publishedVersion
000151150 700__ $$0(orcid)0000-0002-9864-7683$$aGarcía-Aznar, J.M.$$uUniversidad de Zaragoza
000151150 700__ $$0(orcid)0000-0001-8841-6593$$aGonzalo-Asensio, J.$$uUniversidad de Zaragoza
000151150 7102_ $$11011$$2630$$aUniversidad de Zaragoza$$bDpto. Microb.Ped.Radio.Sal.Pú.$$cÁrea Microbiología
000151150 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000151150 773__ $$g15, 2 (2021), 395-414$$pMicrob. biotechnol.$$tMicrobial biotechnology$$x1751-7907
000151150 8564_ $$s1911345$$uhttps://zaguan.unizar.es/record/151150/files/texto_completo.pdf$$yVersión publicada
000151150 8564_ $$s2850588$$uhttps://zaguan.unizar.es/record/151150/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151150 909CO $$ooai:zaguan.unizar.es:151150$$particulos$$pdriver
000151150 951__ $$a2025-10-17-14:16:02
000151150 980__ $$aARTICLE