000151158 001__ 151158
000151158 005__ 20250227101504.0
000151158 0247_ $$2doi$$a10.1016/j.egyr.2021.03.003
000151158 0248_ $$2sideral$$a125789
000151158 037__ $$aART-2021-125789
000151158 041__ $$aeng
000151158 100__ $$aZhang C.
000151158 245__ $$aPerformance analysis of different arrangements of a new layout dish-Stirling system
000151158 260__ $$c2021
000151158 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151158 5203_ $$aCascade solar thermal systems provide a new direction for solar power generation. This paper focuses on the configuration optimization of a cascade solar system in which a Stirling engine array is applied. The array has multiple configurations. To find out the influence of the configuration on the performance of the engine array, five basic connection types were proposed. A Stirling engine model considering various losses and irreversibilities was developed. The model was evaluated by considering the prototype GPU-3 Stirling engine as a case study. Stirling engine array models were developed based on the Stirling engine model. Global efficiency and power of different connection types of Stirling engine arrays with the same hot and cold flows were evaluated. The effects of different factors on the performance of the Stirling engine arrays were considered. The result shows that flow order, the co-current flow or the counter-current flow, has little influence on the engine array performance. The maximum differences of thermal efficiency and output power of different flow orders are 0.39% and 0.70%, respectively. Serial flow connection type is the best for a Stirling engine array to obtain the best performance and adaptability for given heating and cooling fluids. © 2021 The Author(s)
000151158 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000151158 590__ $$a4.937$$b2021
000151158 591__ $$aENERGY & FUELS$$b58 / 119 = 0.487$$c2021$$dQ2$$eT2
000151158 592__ $$a0.894$$b2021
000151158 593__ $$aEnergy (miscellaneous)$$c2021$$dQ1
000151158 594__ $$a4.5$$b2021
000151158 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151158 700__ $$aXu Q.
000151158 700__ $$aZhang Y.
000151158 700__ $$0(orcid)0000-0001-5473-6919$$aArauzo I.$$uUniversidad de Zaragoza
000151158 700__ $$aZou C.
000151158 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000151158 773__ $$g7 (2021), 1798-1807$$pEnergy Rep.$$tEnergy Reports$$x2352-4847
000151158 8564_ $$s608008$$uhttps://zaguan.unizar.es/record/151158/files/texto_completo.pdf$$yVersión publicada
000151158 8564_ $$s3028226$$uhttps://zaguan.unizar.es/record/151158/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151158 909CO $$ooai:zaguan.unizar.es:151158$$particulos$$pdriver
000151158 951__ $$a2025-02-27-09:26:33
000151158 980__ $$aARTICLE