000151170 001__ 151170
000151170 005__ 20251017144609.0
000151170 0247_ $$2doi$$a10.3390/biom11081216
000151170 0248_ $$2sideral$$a125276
000151170 037__ $$aART-2021-125276
000151170 041__ $$aeng
000151170 100__ $$0(orcid)0000-0003-1885-4365$$aOrtega-Alarcon, David$$uUniversidad de Zaragoza
000151170 245__ $$aStabilization Effect of Intrinsically Disordered Regions on Multidomain Proteins: The Case of the Methyl-CpG Protein 2, MeCP2
000151170 260__ $$c2021
000151170 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151170 5203_ $$aIntrinsic disorder plays an important functional role in proteins. Disordered regions are linked to posttranslational modifications, conformational switching, extraintracellular trafficking, and allosteric control, among other phenomena. Disorder provides proteins with enhanced plasticity, resulting in a dynamic protein conformationalfunctional landscape, with well-structured and disordered regions displaying reciprocal, interdependent features. Although lacking well-defined conformation, disordered regions may affect the intrinsic stability and functional properties of ordered regions. MeCP2, methyl-CpG binding protein 2, is a multifunctional transcriptional regulator associated with neuronal development and maturation. MeCP2 multidomain structure makes it a prototype for multidomain, multifunctional, intrinsically disordered proteins (IDP). The methyl-binding domain (MBD) is one of the key domains in MeCP2, responsible for DNA recognition. It has been reported previously that the two disordered domains flanking MBD, the N-terminal domain (NTD) and the intervening domain (ID), increase the intrinsic stability of MBD against thermal denaturation. In order to prove unequivocally this stabilization effect, ruling out any artifactual result from monitoring the unfolding MBD with a local fluorescence probe (the single tryptophan in MBD) or from driving the protein unfolding by temperature, we have studied the MBD stability by differential scanning calorimetry (reporting on the global unfolding process) and chemical denaturation (altering intramolecular interactions by a different mechanism compared to thermal denaturation).
000151170 536__ $$9info:eu-repo/grantAgreement/ES/DGA/B25-20R$$9info:eu-repo/grantAgreement/ES/DGA/E45-20R$$9info:eu-repo/grantAgreement/ES/ISCIII/CPII13-00017$$9info:eu-repo/grantAgreement/ES/ISCIII-ERDF-ESF/PI15-00663-Investing in your future$$9info:eu-repo/grantAgreement/ES/ISCIII-ERDF-ESF/PI18-00349-Investing in your future$$9info:eu-repo/grantAgreement/ES/MCIU-AEI-FEDER/BES-2017-080739$$9info:eu-repo/grantAgreement/ES/MCIU-AEI-FEDER/BFU2016-78232-P
000151170 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000151170 590__ $$a6.064$$b2021
000151170 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b75 / 297 = 0.253$$c2021$$dQ2$$eT1
000151170 592__ $$a1.019$$b2021
000151170 593__ $$aMolecular Biology$$c2021$$dQ2
000151170 593__ $$aBiochemistry$$c2021$$dQ2
000151170 594__ $$a5.7$$b2021
000151170 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151170 700__ $$aClaveria-Gimeno, Rafael
000151170 700__ $$0(orcid)0000-0002-1232-6310$$aVega, Sonia
000151170 700__ $$aJorge-Torres, Olga C.
000151170 700__ $$aEsteller, Manel
000151170 700__ $$0(orcid)0000-0001-5664-1729$$aAbian, Olga$$uUniversidad de Zaragoza
000151170 700__ $$0(orcid)0000-0001-5702-4538$$aVelazquez-Campoy, Adrian$$uUniversidad de Zaragoza
000151170 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000151170 773__ $$g11, 8 (2021), 1216 [18 pp.]$$tBiomolecules$$x2218-273X
000151170 8564_ $$s2716166$$uhttps://zaguan.unizar.es/record/151170/files/texto_completo.pdf$$yVersión publicada
000151170 8564_ $$s2596494$$uhttps://zaguan.unizar.es/record/151170/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151170 909CO $$ooai:zaguan.unizar.es:151170$$particulos$$pdriver
000151170 951__ $$a2025-10-17-14:16:37
000151170 980__ $$aARTICLE