000151178 001__ 151178
000151178 005__ 20250227101504.0
000151178 0247_ $$2doi$$a10.1515/fca-2021-0075
000151178 0248_ $$2sideral$$a125704
000151178 037__ $$aART-2021-125704
000151178 041__ $$aeng
000151178 100__ $$0(orcid)0000-0003-4847-0493$$aNavascues, M.A.$$uUniversidad de Zaragoza
000151178 245__ $$aSome properties of the fractal convolution of functions
000151178 260__ $$c2021
000151178 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151178 5203_ $$aWe consider the fractal convolution of two maps f and g defined on a real interval as a way of generating a new function by means of a suitable iterated function system linked to a partition of the interval. Based on this binary operation, we consider the left and right partial convolutions, and study their properties. Though the operation is not commutative, the one-sided convolutions have similar (but not equal) characteristics. The operators defined by the lateral convolutions are both nonlinear, bi-Lipschitz and homeomorphic. Along with their self-compositions, they are Fre acute accent chet differentiable. They are also quasi-isometries under certain conditions of the scale factors of the iterated function system. We also prove some topological properties of the convolution of two sets of functions. In the last part of the paper, we study stability conditions of the dynamical systems associated with the one-sided convolution operators.
000151178 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000151178 590__ $$a3.451$$b2021
000151178 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b20 / 108 = 0.185$$c2021$$dQ1$$eT1
000151178 591__ $$aMATHEMATICS, APPLIED$$b20 / 267 = 0.075$$c2021$$dQ1$$eT1
000151178 591__ $$aMATHEMATICS$$b8 / 333 = 0.024$$c2021$$dQ1$$eT1
000151178 592__ $$a1.435$$b2021
000151178 593__ $$aApplied Mathematics$$c2021$$dQ1
000151178 593__ $$aAnalysis$$c2021$$dQ1
000151178 594__ $$a5.3$$b2021
000151178 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000151178 700__ $$aMohapatra, R.N.
000151178 700__ $$aChand, A.K.B.
000151178 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000151178 773__ $$g24, 6 (2021), 1735-1757$$pFract. Calc. Appl. Anal.$$tFractional Calculus and Applied Analysis$$x1311-0454
000151178 8564_ $$s371120$$uhttps://zaguan.unizar.es/record/151178/files/texto_completo.pdf$$yPostprint
000151178 8564_ $$s1480345$$uhttps://zaguan.unizar.es/record/151178/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000151178 909CO $$ooai:zaguan.unizar.es:151178$$particulos$$pdriver
000151178 951__ $$a2025-02-27-09:27:06
000151178 980__ $$aARTICLE