000151181 001__ 151181
000151181 005__ 20250227101504.0
000151181 0247_ $$2doi$$a10.1016/j.jcis.2021.03.098
000151181 0248_ $$2sideral$$a125861
000151181 037__ $$aART-2021-125861
000151181 041__ $$aeng
000151181 100__ $$aGarrido P.F.
000151181 245__ $$aFluid interface calorimetry
000151181 260__ $$c2021
000151181 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151181 5203_ $$aHypothesis: Amphiphilic molecules spontaneously adsorb to fluid polar-nonpolar interfaces. The timescale of such adsorption depends on the molecular size and structure of the solute. This process should be accompanied by a power heat exchange that could be detected by commercial isothermal calorimeters. Experiments: Air is injected in the bulk of different aqueous solutions contained in the sample cell of an isothermal titration calorimeter. The formation of the resulting bubbles leads to a liquid/air interface to which the solute molecules spontaneously adsorb. Continuous injection experiments to produce multiple bubbles as well as experiments with static bubbles stand from the capillary tip, aiming to observe slow adsorption processes, were performed. Findings: The power associated with the formation, growth and release of air bubbles in different liquids was measured. Different independent contributions that can be associated to the pressure change in the gas phase, the evaporation-condensation of the solvent, the increase of interfacial area, the change in the heat capacity of the sample cell content, and the release of the bubble were observed. The periodic pattern produced by the continuous injection of air at a constant rate is used to determine the surface tension of different liquids, including solutions of different molecules and (bio)macromolecules.
000151181 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/BFU2016-78232-P
000151181 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000151181 590__ $$a9.965$$b2021
000151181 591__ $$aCHEMISTRY, PHYSICAL$$b33 / 165 = 0.2$$c2021$$dQ1$$eT1
000151181 592__ $$a1.397$$b2021
000151181 593__ $$aBiomaterials$$c2021$$dQ1
000151181 593__ $$aSurfaces, Coatings and Films$$c2021$$dQ1
000151181 593__ $$aColloid and Surface Chemistry$$c2021$$dQ1
000151181 594__ $$a14.5$$b2021
000151181 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151181 700__ $$aBastos M.
000151181 700__ $$0(orcid)0000-0001-5702-4538$$aVelázquez-Campoy A.$$uUniversidad de Zaragoza
000151181 700__ $$aDumas P.
000151181 700__ $$aPiñeiro Á.
000151181 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000151181 773__ $$g596 (2021), 119-129$$pJ. colloid interface sci.$$tJournal of Colloid and Interface Science$$x0021-9797
000151181 8564_ $$s1972553$$uhttps://zaguan.unizar.es/record/151181/files/texto_completo.pdf$$yVersión publicada
000151181 8564_ $$s1970464$$uhttps://zaguan.unizar.es/record/151181/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151181 909CO $$ooai:zaguan.unizar.es:151181$$particulos$$pdriver
000151181 951__ $$a2025-02-27-09:27:10
000151181 980__ $$aARTICLE